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ABSTRACT. In this note certain results on the structure of the finite rank
subalgebra of a CSL algebra are proved. These enable us to show that there
are CSLs not generated by any finite family of CD CSLs.
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Given subspace lattices L1, Lo, ..., Ly, it is of interest to know how certain prop-
n 7
erties of Alg £;, 1 = 1,2,...,n, reflect on the structure of Alg( V LI,-) = NAlgZL;.
$=1 i=1

This is a direction taken by A. Hopenwasser and R.L. Moore in investigating the
structure of the rank one subalgebra of a commutative subspace lattice. In [5],
their main theorem shows that if £1, £, ..., £, are mutually commuting CSLs and
F a finite rank operator which, for each i = 1,2, ..., n, is the sum of rank one op-

erators from Alg £;, then there are finite many rank one operators in Alg (\7 ﬁ,-) ,
whose sum equals F'. Their result inspired subsequent work by Froelich ([41]5,1 Kat-
soulis and Moore ([6]), Rosenoer ([10]) and others; the main object of investigation
in these papers was the rank one subalgebra and its relation to certain classes of
compact operators.

The main result of this note is an analytic variant of the result of A. Hopen-

wasser and R. Moore mentioned above; we show that if £, £,, ..., £, are mutually
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commuting CSLs and T a Hilbert-Schmidt operator which, foreach ¢ =1,2,...,n,
is the || - ||2 limit of finite rank operators in Alg L;, then there exists a sequence of

n
finite rank operators in Alg( vV £.~) converging to T'.
sl

. For lattices generated by finitely many CD CSLs, our result shows that al-
gebras of such lattices contain non-zero Hilbert-Schmidt operators iff they contain
non-zero rank one operators. In addition, we prove that algebras of lattices with
prime elements must contain non-zero rank one operators. These results enable
us to answer the question of whether every CSL is generated by finitely many CD
CSLs. This question was raised to the second named author by D.R. Larson. We
give examples to show that the answer is no.

Let us establish some notation and terminology. A commulative subspace
lattice {abbr. CSL) is a complete lattice of selfadjoint projections acting on a
separable Hilbert space $. A CSL is said to be completely distributive (abbr. CD
CSL) if and only if it satisfies any infinite distributive law (see [8] for a precise
definition and properties of such lattices). If {£;}7, is a finite family of mutually

commuting CSL’s then V/ £; is the complete lattice generated by {L}, A

lattice generated by ﬁni{:e_l;' many commuting nests is said to be of finite width.
Lattices of infinite width have already appeared in the literature and the reader
will not find it difficult to construct one. Latiices which are not generated by
finitely many commuting CD CSLs are less obvious.

If £ is a CSL then Alg £ denotes the algebra of all bounded operators which
leave invariant every element of £. The algebra generated by all finite rank (resp.
rank one) operators belonging to Alg £ will be denoted by F(L) (resp. R(L)). In
general R(L) is strictly contained in F(£). But, the norm closure of R(L) always
contains §(L) (see [3], Theorem 23.16).

In this article we shall need to make use of Arveson’s spectral representation
theorem for commutative subspace lattices. This theorem states that the following
scheme for constructing examples of commutative subspace lattices yields, up to
unitary equivalence, all commutative subspace lattices. Let X be a compact metric
space, let € be a reflexive and transitive relation on X whose graph G(X,<) is a
closed subset of X x X and let # be a finite Borel measure on X. A Borel subset
S C X is said to be increasing if z € S and z < y imply y € S. For each Borel
subset S of X let P(S) denote the corresponding orthogonal projection acting on
the Hilbert space L*(X, u), i.e. P(S) is the multiplication operator obtained from
the characteristic function of S. Let £(X, <, p) = {P(S) | S is an increasing Borel
subset of X}. Arveson’s Theorem ([2], Theorem 1.3.1) asserts that every CSL is
unitarily equivalent to some £{X, <, p).
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We start with the main result (observe that part (ii) is Theorem 5 in [5]).
Its proof depends on Arveson’s spectral representation theorem and the following
well-known facts. If T is a Hilbert-Schmidt operator acting on L?(X, ) then
there exists a function 7' € L*(X x X, ¢ x ), the kernel function for T, so that
Tf(z) = [T(z,y)f(y) du(y), for any f € L2(X, ). I T is a rank one operator
then its kernel is of the form T'(z, y) = g(z)h(y), for suitable g, h in L%(X, u); such
kernels will be called elementary.

THEOREM 1. If £y,Ls,..., Ly are mulually commuting CSLs then,

(i) cly 9{( {1/ ﬁ;) = ﬁclz R(L;) = cly f)‘"(ifl [a‘);
) 2( V z:) AL,

where cls denotes the closure with respect to the Hilbert-Schmidt norm.

Proof. Tt is enough to prove the theorem in the case where n = 2, The
general case follows by simple induction.

We start by providing a suitable Arveson model for the lattice £ = £; V £».
Let {P]@, (z),,..} be a strongly dense subset of £;, i = 1,2. Now, imbed £
in a maximal abelian von Neumann algebra R and choose countable strongly
dense subset {@1, @2, ...} of the projection lattice of R. Let U be the C*-algebra
generated by {P,Ei) [k eN,i=1,2} and {Q+}$2, and let X be the spectrum of .

Arguing as in the proof of Theorem 1.3.1 in [2], we obtain a probability
measure i and a partial order € on X such that Uﬁ(%,\,u)U“ = L, for a
suitable unitary U. In particular z < y if and only if ¥ F;); () € X (y) for all ¢
and k, where E(’-) is the increasing set corresponding to U~ 1P( Y. Define partial
orders €;, 7 = 1,2 on X to mean z <; y if and only if X(’] () € XEk(y) for all k.
Using Theorem 1.2.2 in (2}, one can show that U - U~ carries £{X, <;, p) onto £;,
1=1,2.

(1) It is enough to show that cly R(L1) Nely R(Ly) is contained in cly R(L- V/
L3). Let T be a Hilbert-Schmidt operator in

cly MIL(X, <1, 1) Nela ML(X, €, 1))

and let T(-, -) be its kernel function, i.e., Tf(z) = [T(z,y)f(y)du(y), Vf €
L%(%, ). Since T belongs to cla (R{L(X, <, 1)) there exist sequences {gJ Dy 21

where
n

9z, y) = }j e (@) )

k=1
and
) £ (suppel’)) x (supp 7)) € G(x, <4),
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such that T(-, -) is the L?-limit of {g](-‘.)};";l, 1 = 1,2. Rearrange the rectangles
QE:Z so that they form a sequence of the form {QE:')},?:l: clearly, T(-, -) lives

i X p-almost everywhere on
o o]
e, =12
n=1

and thus it lives p x p-almost everywhere on

(G ) (D a@) = (J (@ nal) C G, <) NG(X, <) = G(%, <).
m=1

n=1 mneN

Since every oV na?isa subrectangle of G(X, <), a standard application of the
Stone-Weierstrass Theorem shows that the Hilbert-Schmidt operator with kernel
function T'(-, ')Xnﬁ‘) nnS,"I’(" -} can be approximated by elements of (L1 V L)
An application of Lebesgue Convergence Theorem shows that the same is true
for T.

(ii) It is enough to show that R(L£1) NR(L2) C R(L1 V L2). I T belongs
to R(L,) NR(Ly) then, arguing as in case (i), we generate sequences {QS‘I) }nen,
{er%)}meN of rectangles contained in G(¥, <) and G(X, <5) respectively. How-
ever, the assumption T € R(L;), 7+ = 1,2, implies that these sequences can be
chosen finite, of length, say, k. Then,

k
T, )= 3 TC, Wapae ()

n,m=1

For all m,n,Qg) ﬂﬂg) is a rectangle contained in G(X, <) and so the kernel
T, ')Xn“’ nn® is a sum of elementary kernels with supports contained in Qg) N

Q2. Thus the corresponding operator belongs to R(L; V £3) and so does T. 8

In the rest of this note we specialize in lattices generated by finitely many
commuting CD CSLs; for convenience we abbreviate them as FCD CSLs. We
prove two theorems on the existence of non-trivial compact operators in algebras
of such lattices. The first is an application of Theorem 1 while the second is of
independent interest. Both are not valid in the general case of a CSL, thus showing
that FCD CSLs are behaving rather nicely.
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THEOREM 2. Let 2 < p < o0, let £4,Ly,...,L, be mutually commuting

CD CSLs and assume that for every i = 1,2,...,n the subspace C, N Alg L; has
n

a complement in C,. Then, Alg( V ﬁ,;) contains a non-zero Cy-operator iff it
i=1

contains ¢ non trivial rank one operator.

Proof. First notice that in the case where p = 2, the requirement of C, N
Alg £; being complemented, i = 1,2,...,n is always satisfied, since (Ca, || - ||2) is
a Hilbert space. For the proof, we distinguish two cases:
p=2. Since £;,i=1,2,...,nis compleﬂely distributive, R(L;) is w*-dense
in Alg £;. “Theorem 23.18 in (3] implies that (L) is || - ||2-dense in Cy N Alg L;,
for all i. Theorem 1 shows now that if Alg(.\’}1 Ei) contains a non trivial Hilbert-
iz

Schmidt operator, then ?R( \n/ Ei) # {0}.
f=1

p > 2. Since all subalgebras C, N Alg £; are complemented, Proposition 2.2
n
in [1] shows that C, N Alg(\/ Ei) is complemented. Let 7 be the idempotent
i=1 .

1l
projecting onto C, N Alg( vV £;) which satisfies the requirements of Theorem 2.1
i=1

in [1]. Then the restriction of 7 on C7 equals iy, the orthogonal projection form
n

Cs onto C3 N A]g( V Ci) ({1], Proposition 3.1). Since C3; C G, is {| - ||,-dense,
(e

we conclude that Cp N Alg(\n/ Cg) is || - ||p-dense in Cp, N Alg(\/ ,C;). Thus,
=1 i=1

k2l
if Alg( vV L'.-) contains a non-zero Cp-operator, it contains a non-zero Hilbert-
=1
Schmidt operator. The rest of the proof follows from previous considerations. #
CororLary 3. ([6]) If £ is a CSL of finite width then AlgL contains a

Cp-operator iff it contains a non-zero rank one operaior.

It 1s known that a CSL algebra Alg £; contains a non-zero rank one operator
iff there is at least one projection £ and £ so that E_ 2 VIFeL, F?E}is
different from 7. In what follows, we show that a much simpler lattice theoretic
condition is sufficient for the existence of non-trivial rank one operators in algebras
of FCD CSLs.

A non-zero element G of a lattice £ is called joini-irreducible (or prime) if
E,Fe L, EVF =G implies E =G or F = G. If I is a join-irreducible element
then £ is called primary; nest are always primary while Boolean lattices are not.
The join-irreducible elements of a lattice £ are of importance in the study of its
representations. In [9], J. Orr and S. Power prove that every CD CSL contains
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join-irreducible elements and, as a result, they obtain new representations for such
lattices.

THEOREM 4. Let {L£:}0, be any finite family of commuting completely dis-
tributive CSLs. If L = \/ L; contains a join-irreducible element, then Alg L con-

i=1
tains ¢ non-trivial rank onc operator.
Proof. We first prove the result in the case where I is a join-irreducible
element. The proof follows by induction on n. By the way of contradiction assume

n—1
that Alg( vV E;) contains non-zero rank one operators but Alg £ does not; let E
=1 "

1

n—1 -1
be an element of ( vV ,C;) such that E_ # I (E_ is computed in \/ L;).
n=1 fa=1
Observe now that if F is an element of £, and R is an arbitrary rank one

operator, then EFR(E_)*(F_)* =0, since Alg £ does not contain rank-one ‘op-
erators. This mean that for any F in £, such that EF # 0, wehave E_VF_ =]
(F- is computed in L,).

We now define n(E) = \/{P € L, | P is orthogonal to E}; clearly n(E) € Ly
and m(E) # I. Moreover, since Ly, is completely distributive, 7{E) = A{F_ | F €
Lo, F € n(E)}. (Theorem 5.2 in [8].) Hence,

E_va(E)y=NE-VF_-|FeLl,, F¢gr(E))}
SDAMNE-VF_|FeL,, EF #0}
DMNE_VF_|F€Ls E_VF_=1I}
=1

Since wm(E), E_ are both different from the identity we conclude that £ is not
primary, a contradiction. For the general case, if E € £ is join-irreducible, consider
the lattice EL = {EF | F € L} acting on the Hilbert space E($). It is easily seen
that E£ is FCD CSL and I is a join-irreducible element of EL. Thus Alg EL =
E(Alg £) contains a non-trivial rank one operator and the conclusion follows. &

The present work was stimulated by the fact that it seemed to be unknown
whether or not every CSL can be generated by finitely many CD CSLs. Using
Theorems 2 and 4, we are in position to show that this question has a negative
answer.

COROLLARY 5. Let X = [0,1] x [0,1], # = A x X where X is the Lebesgue
measure, and let < be the partial order with graph

CG={{z,2) |0z < }U{(z,) |0z -yl andy~z € K}

[ ST
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where K is a closed nonwhere dense subset of [0,1] with positive measure. Then

L(X,<, ) ts not generated by finitely many CD CSL's.

Proof. 'T. Trent has shown that the algebra of a lattice of the above form
contains Hilbert-Schmidt but no rank one operators. The conclusion follows now

from Theorem 2. &

For our next example, let 2°° be the Cantor space of all sequences (z;) of
zeros and ones, and define (2;) < (1) to mean z; € y;, forevery i = 1,2,... . For
each real number p, 0 < p < 1, let m,, be the infinite product measure mgxmgx. ..,

where mg assigns mass p to {1} and mass 1 — p to {0}.

CoroLLARY 6. The lattices £(2%°,<€,mp), 0 < p < 1, are not generated by
any finite family of CD CSLs.

Proof. W. Arveson has shown in {2], p. 519, that the lattices £(2%,<,m,;)
are primary and J. Froelich ([4]) proved that their algebras consist of non-compact

operators. The conclusion follows now from Theorem 4. 1

REMARKS. (i) Theorem 4 leads to the following interesting characterization
of complete distributivity in the class of FCD CSLs: A FCD CSL £ s completely
disiributive iff for every semi-invariant projection P the lattice PL contains a
join-irreducible element.

(1)) We would like to show that if the assumption of mutual commutativity is
dropped, Theorem 1 is no longer valid; there is a lattice £ generated by four (non-
commuting) nests whose algebra contains trace class but no rank one operators.

Indeed, let $ = L%([0,1], A), where ) is the Lebesgue measure and let

M =50,

M,=08 45,

M; = {{z,2) |z € £},
My ={(z,Vz) |z € %},

where V is the Volterra integral operator. Define £; = {0, M;,I},1=1,2,3,4, and
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: 4
let £ = \/ L;. Easy calculations show that Alg £ = { (;1 3) | A€ B(9),AV =
i=1

VA}. Since the invariant subspace lattice of V consists of infinite dimensional

subspaces, there are not finite rank operators commuting wit}21 V and thus Alg £
\4

0 V2
Alg £ and so Alg £ contains non-trivial trace class operators.

contains no finite rank operators. On the other hand, belongs to
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