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ABSTRACT. Recently, the first author gave a characterization of operator
algebras up to complete isomorphism. We give here some characterizations
of quotients of function algebras (Q-algebras), again up to complete isomor-
phism. Using these, we examine which operator space structures on £, (with
pointwise product) correspond to operator algebras, and which to Q-algebras.
We also give a new approach to the long outstanding similarity problem of
Halmos, studying operator space structures on the disc algebra. Finally, we
show that the Banach algebra of von Neumann-Schatten p-class operators
on a Hilbert space is an operator algebra for all 1 € p < oo (with either
the usual or the Schur product). That is, these algebras are bicontinuously
and algebraically isomorphic to a norm closed algebra of operators on some
Hilbert space. However, with the usual operator space structures they are
not completely bicontinuously isomorphic to any closed algebra of operators.
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1. INTRODUCTION AND PRELIMINARIES

It has been clear for many years that the full understanding of an operator algebra
A requires the knowledge of the norms induced by the embedding A C B(H) on
the spaces M;;(A) of n X n matrices with entries in A. It should be especially
noticed that two such algebras Ay C B(H;), Ay C B{H3) can be isomorphic as
Banach algebras and have non-comparable matricial norms. The great importance
of M, (A) for nonselfadjoint operator algebras was revealed by the work of Arve-
son ([1]) and has seen many developments and applications recently (see e.g. [26],
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8], [6], [15], [3]). Paulsen’s formulation of Halmos’ similarity problem ([25], [23])
is another example of where the importance of matricial norms for an.operator
algebra may be seen clearly. Hitherto the question as to the variety of possible
matricial norms associated with a given operator algebra has been given scant
attention. In this paper we give a very geometrical approach to this question. In
fact it will be seen here in several examples that whether a given A is an operator
algebra or not simply depends on its operator space geometry, or more particularly,
on how much the multiplication stretches the unit balls of M,(A).

The main example considered in this paper is the space £,, for
1 < p € +00. Equipped with the pointwise multiplication this Banach space
becomes a Banach algebra. Davie ([12]) and Varopoulos ([33]) proved that £, is
then an operator algebra. In other words, there exists a Hilbert space H and a
bicontinuous homomorphism from £, onto some closed subalgebra of B(H). More
precisely, they showed that £, is a Q-algebra, i.e. we can find a uniform algebra
B as well as a closed ideal J C B such that £, and the quotient algebra B/J
are isomorphic in the Banach algebra sense. The fact that Q-algebras are actu-
ally operator algebras was an earlier theorem of Cole ([37], see also [9], p. 272).
The matricial approach to operator algebras, together with the work of Davie and
Varopoulos, leads to the following problem:

Given 1 € p € +oo, what are the matricial norms induced on £, by its
representations as a subalgebra of B(H)7

It will appear later that for 1 € p < +oo, the answer is not unique. In order
to study this, we need to work in the setting of operator spaces.

We recall that an operator space is a subspace £ C B(H), where H is a
Hilbert space. We will assume throughout that our operator spaces are complete.
An operator space is equipped with the matricial norms induced on Mn(E) by
regarding this as a subspace of B(¢5(H)). Equivalently, an operator space is a
closed subspace E of a C*-algebra B, with the convention that M,(E) inherits
the norm from the C*-algebra M, (B). We also recall that if £ and F are operator
spaces, then a map u : E — F is completely bounded (c.b. in short) provided
that the maps u® Ipr, : My(E) — Mo(F) are uniformly bounded. The ¢.b. norm
of u is then defined by |jullc = sup [l ® In, |- When equipped witk 0, -

nzl

set of all c.b. maps from E into F is 2 Banach space denoted by CB(E, F'). We
say that u : E — F is a complete isometry if all the maps « ® Iy, are isometries
and that it is a complete isomorphism if « is an isomorphism such that 4 and u!
are both ¢.b. maps. We also call such a map a completely bounded isomorphism
or a completely bicontinuous isomorphism. Furthermore two operator spaces E
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and F are completely isomorphic (resp. completely isometric) provided that there
exists a complete isomarphism (resp. completely isometric isomorphism) between
E and F. Of course, operator spaces are always defined and studied up to complete
isometry. Given a Banach space E, an operator space siruclure {0.s.s. for short)
on E will be a sequence of norms, the n-th norm defined on M,(E), such that
there exists an embedding J : £ — B(H) for which all the J ® Ips, are isometries.
We refer the reader to [32] for the fundamental characterization of operator space
structures.

We will use the quotient and the dual within the category of operator spaces.
Given an operator space F and a closed subspace F' C E, the quotient operator
space E/F is defined by letting M,(E/F) be the Banach space M,(E)/M,(F)
([32]). The dual Banach space E* of an operator space £ becomes an operator
space by letting

(1.1) M, (E*) = CB(E, M,)

under natural identification. The reader is referred to [32], [7], [5], [16], [4] for
details about quotients and duality and for the basic results of the theory of
operator spaces.

Now let A be an operator space. Assume that A is endowed with a Banach
algebra multiplication.

DEFINITION 1.1. We will say that A is an operator algebra provided that
there exist a Hilbert space H, a closed subalgebra B C B(H) and a complete
isomorphism from A onto B which is also a Banach algebra homomorphism.

If E is a Banach algebra, an operator algebra structure on £ will be an 0.s.s.
on E which makes F an operator algebra in the sense of Definition 1.1. With this
terminology, the problem raised above reads:

(1.2) What are the operator algebra structures on £,7

Likewise we will study @-algebras in the framework of operator spaces.

DEFINITION 1.2. An operator space A endowed with a Banach algebra mul-
tiplication will be called a (matricial) Q-algebra provided that there exist a uniform
algebra B, a closed ideal J C B and a complete isomorphism between A and B/J
which is a Banach algebra homomorphism.

In Definition 1.2, B has the minimal o.s.s. induced by its representation as
a subalgebra of some commutative C*-algebra (see below for details). We know



318 DAvVID P. BLECHER AND CHRISTIAN LE MERDY

from (8] that Cole’s theorem generalizes as follows: any matricial Q-algebra in the
sense of Definition 1.2 is an operator algebra in the sense of Definition 1.1.

If E is a Banach algebra, a matricial Q-algebra structure on E will be an
0.s.s. on E which makes E a matricial Q-algebra. When there is no confusion we
will drop the word “matricial”. Thus a complementary question to (1.2) is now:

(1.3) What are the matricial @-algebra structures on £,7

Before going on, we should say that we are very far from being able to describe
all the 0.s.s. on £,. One of the main purposes of this work is then to give a partial
answer to problems (1.2) and (1.3) by determining which of the most common and
tractable 0.s.s. on £, are actually operator algebra structures or even Q-algebra
structures. The o.s.s. to be studied later will be mainly defined by using the Min
and Max functors, and operator space interpolation. Let us recall the necessary
definitions. Let E be a Banach space. The operator spaces Min £ and Max £ ({5])
are respectively the smallest and the greatest 0.s.s. on E. They are defined by the
formulae (1.4) and (1.5). Let K be the compact set (Bg-,oc(E*, E}). Then for any
r= [:c.',-]EM,, [

(1.4) 2l p.cvin £y = sup{Il[¢(zi)lllm, | € € K}

zliar.(Max EY = sup {||[T(z:;)} | a.BUHY) | H is a Hilbert space,

(1.5) T € B(E,B(H)}, |IT|| € 1}.

It follows quite easily that a bounded map 7T into Min E, or out of Max E, is
completely bounded with ||T|c, = {|T|]. We shall use this fact several times. The
operator space Min E can equivalently be defined by stating that the canonical
embedding Min E C C(K) is a complete isometry. We recall for later use that the
minimal and maximal o.s.s. are duals of each other. Namely we have complete
isometries ([5]):

(1.6) (Min E)* = Max E*, (Max E)" = Min E*.

We now turn to the (complex) interpolation of operator spaces which was recently
introduced by Pisier ([28]). We refer to [2] for background on the interpolation
theory of Banach spaces. Let Eg, E; be two operator spaces. Assume that (Eg, E1}
is a compatible couple in the sense of the interpolation of Banach spaces. For any
n > 1, (Ma(Eo), Ma(E1)) is then a compatible couple. For any 0 < 8 < 1, we
can thus equip the interpolated space Eq = [Eg, E1]gs with an o.s.s. by letting
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Mu(Eg) = {M,(Ep), Ma(E1)])s. We will always assume that Ep has this o.ss. It
will be worthwhile to have another description of the cperator space Ey. Let S
be the open strip {0 < Rez < 1} and let F be the space of all the continuous
functions f from S into Ep + Ey which are analytic on S and such that ¢ — f(it)
(resp. ¢ — f(1 +it)) is continuous from R into Fy (resp. Ey) and tend to 0 as
|t| — +o00. The space F is a Banach space with the norm:

(1.7) 11} = max{sup | £(it)l|z,, sup[lF(1+ it)]le, }-

For any 0 € @ € 1, we then denote by Fp the space {f € F | f(8) = 0}. Then we
have ([2}):

(1.8) Ey = F/Fs.
Now note that (1.7) means that we have an isometric embedding:
(1.9) FC LR, Eo) & L (R, B).

The right hand side of (1.9) has a natural o.s.s. Namely, if we have Eq C
B(Hy), E1 C B(Hi), the space L*®(R, Ey) @ L*(R, E1) is clearly a subspace
of the C*-algebra L*(R, B(H,)) & L>=(R, B(H,)), whence the o.s.s. Therefore
(1.9) yields an o.s.s. on F. It is fairly clear that the o.s.s. defined on Ep by (1.8)
coincides with the previous one.

Using interpolation, Pisier introduced a distinguished o.s.s. on £, ([28], [29])
which we will denote by 04, and is defined as:
(1.10) . 0L, = [Minﬁw,Maxﬁl]%.
One of the main features of these structures is that, letting s+ % = 1, we have for
any 1 < p < 4o0:

(1.11) (04,)" = 04,

completely isometrically. We refer the reader to [29] for a more concrete description
of Of,. The self-dual Hilbertian operator space Of; is usually denoted by OH. See
[28] for the important properties of this operator space.

In Section 3, we will prove that for all 1 € p < 400, Of, is an operator
algebra. We will also calculate the values of p for which Min£, or Max{, is
an operator algebra. We will then start the study of Q-algebra structures. In
Section 2, we investigate the particular case £3, where different natural o.s.s. than
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Min £5, Max ¢y or OH arise. We especially show that RNC is an operator algebra
whereas R + C is not (see [28} and below for the definitions).

Section 4 is devoted to (-algebras. We give two characterizations of matricial
(J-algebras, and a useful sufficient condition. We use these to show that RN C is
a matricial Q-algebra. As a corollary we obtain that for any 1 < p < +o00, there
is a continuum of matricial ()-algebra structures on £,.

In the Section 5, we leave £, and consider the analogous problem of deter-
mining operator algebra structures on the disc algebra A(D). Our motivation is
that the existence of an operator algebra structure on A(D) non-completely iso-
morphic to Min A(D) would provide a counterexample to the famous similarity
problem of Halmos. The main theorem in [3] shows that in order to solve Hal-
mos’ problem in the negative it suffices to find a new operator space structure
on A(D) for which multiplication is still a completely bounded bilinear map. It
is tempting to guess that for @ sufficiently small and positive, the interpolated
0.5.s. [Min A(D), Max A(D)]s would be such a structure. However, perhaps unfor-
tunately, we are able to show that any o.s.s dominating (or equal to) one of these
interpolated o.s.s. cannot be an operator algebra structure.

In Section 6 we show that the trace class 5y (and indeed all the von Neumann-
Schatten p-classes) are bicontinuously isomorphic to (norm closed) operator alge-
bras. This is with respect to either the usual or the Schur product. However, S;
is not completely boundedly isomorphic to an operator algebra if we equip it with
its standard o.s.s.

We end the paper with a list of open problems.

In the rest of this section, we give some background and introduce some
notation. Let us first come back to interpolation. With the notation above,
assume that Ey and E; are operator algebras such that the muléiplications on
Ey, E extend to the same Banach algebra multiplication on Eg+ E,. Then Fis a
Banach algebra under pointwise multiplication. Clearly, L=(R, Ep) %3 L*(R, E1)
is an operator algebra and the isometric embedding (1.9} is a homomorphism.
Hence F is an operator algebra. Since any quotient of an operator algebra is still
an operator algebra ([8], Corollary 3.2), the alternative definition (1.8) shows that
Ey is also an operator algebra. Therefore:

{1.12) The class of operator algebras is stable under interpolation.

We now turn to a quite convenient characterization of operator algebras which
was recently established by the first author ([3]). It will be our main tool in order
to deal with problem (1.2). In order to state this result, and for later use, we
need the notion of a c.b. bilinear map. Let X,Y,Z be three operator spaces
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and let u : X xY — Z be a bilinear map. For any n > 1, u induces a map
u®) : My (X) X Ma(Y) — My(Z) defined by:

”(n)([rij]:[yij])z [Zu(xik,ykj):l .
5]

k=1

We say that u is c.b. provided that [|u||cs = sup |ju!™)|] < +00. The characteriza-
n2l
tion is:

THEOREM 1.3. ([3]) Let A be an operator space. Assume that A is endowed
with a Banach algebra multiplication m : A x A — A, then

A is an operator algebra & m is c.b.

The particular case of “4=” when A had a normalized unit and ||m]|ep < 1,
had been previously obtained in [8]. Note also that, as observed in [3], the assertion
(1.12) can be viewed as a consequence of Theorem 1.3.

Completely bounded bilinear maps are — by now — a well understood sub-
ject. We refer the reader to [11], [27], (10], [17], [4] for the main results about them.
We merely recall that the complete boundedness of w: X x Y — Z corresponds to

h
the complete boundedness of the linearized map (still denoted by) u: X ® Y — Z,

h
where X ® Y is the Haagerup tensor product of X and Y. Thus in the setting of
Theorem 1.3, A is an operator algebra. iff

h
(1.13) lm:A®A— Al < +00.

A
We will often invoke the simple fact that ® is a uniform operator space tensor
norm in the sense of [7]. Thus if u; : X3 — Y] and us : X3 — Y, are c.b. maps
between operator spaces, then:

h h
YyRU: X1 X—-YI0Y,
is c.b. and we have:

(1.14) lfu1 @ wallew < [fus [lenlualleb-

In order to study operator algebra structures on £,, we will often restrict to the
finite dimensional spaces £3. We will denote by m,, : £; ® £y — {7 the pointwise
multiplication (same notation for all 1 € p < +00). Assume that we are given an
0.5.5. on £p. This induces an o.s.s. on each £;. Then it is not hard to see using
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Theorem 1.3 in the form of (1.13), that the o.s.s. on £, is an operator algebra
structure iff:

h
(1.15) IC|Yn2 1, [jma: £ @€ — £l < C.

We will denote by (e;);»; the canonical basis of £,. To avoid confusion with the
injective tensor product of Banach spaces we will denote by X é Y the spatial (or
minimal) tensor product of two operator spaces X and Y (see e.g. {7]). Note that
© satisfies the property (1.14) stated for % .

Lastly, we denote S} = M, the dual operator space of M.

2. THE CASE OF {3

Besides Min £;, Max#; and OH, there are at least four interesting and well-under-
stood 0.5.s. on £ which are usually denoted by R, C, RNC, R+C. Let us now recall
what these structures are. Given a Hilbert space H, the column operator space He
is the 0.s.s. on H given by the identity H. = B(C, H). The notation C stands for
(£2) and we denote by C, = (£3). the n-dimensional version of C. We use similar
notations for row structures. Namely, H, = B(H*,C), R = (£2)r, Ra = (&)r.
The matrix norms on C and R are easy to compute. For any ay,...,an in B(fs):

e I s PR o

By definition [28], RN C is the o.s.s. on £y which satisfies for any a1,...,an €
B(fz) :

I I 2

1
3

L[Sl

In other words, RN C is the diagonal subspace of the direct sum R % C. Lastly,
R+C is the dual operator space of RNC. We now determine, using condition (1.15),
which of the seven o.5.5. on &3 reviewed above are operator algebra structures.

THEOREM 2.1. (i) The following are operator algebras: R,C,OH,RNC,
Max £y. Indeed €9 with any o.s.s. which dominates both R and C is an operalor
algebra.

(ii) The following are not operator algebras: R+ C, Minfy. Indeed £y with
any 0.s.5. which is dominated by both R end C is not an operator algebra.
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Proof. Let M, be the vector space of n x n matrices, without prescribed
n

norm. We identify £2 @ £ with M, in the usual way. Given h = }_ h;e; and
1

k= i kie; in £3, we regard h ® k as the matrix [hik;] € M. Under this identifi-
catiorl1, the multiplication on £§ becomes the diagonal map my, : M, — C" given
by ma([ty;]) = (fis)igiga.

(i) Let H S, be the Hilbert space obtained by equipping M,, with the Hilbert-
Schmidt norm. It is well-known that under the above identification, we have
completely isometrically ([7], [17], [4]):

h h
Cn®Cn:(HSn)c, Rn®Rn:(HSn)r-
h
Hence my, is a contraction from C, ® C, into C, and thus (see [17], [4]),

h
[[mn : Cn @ Cn — Chlee € 1.

This proves that C is an operator algebra. Similarly, R is an operator algebra.
From [28], we have OH = [R,C]% whence OH is also an operator algebra by
(1.12).

Now note that we also have the complete isometry ([7])

A
R,®C, =57
whence:
h
(2.2) [imn : Rn ® Cpn — Max £7 ||, € 1.

Indeed in (2.2), my, is the adjoint of the canonical inclusion of Min £5, into M, as
the space of diagonal matrices.

Assume that /5 is endowed with an o.s.s. for which |[Id : £ — Rnfle € 1

h
and {jId : €8 — Cy||cb < 1. Then it follows from (1.14) and (2.2) that [jm, : £5 ®

£3 — £3]|cb < 1. Since this clearly holds for N C and Max£», these are operator
algebras.
(ii) This time we use the following identity ([7]):

h
(23) Cn ® Rn = Mn.

Since ||mn : My, — £2|| = /n, an o.s.s. on £; for which [|Id : Ry — £3||cy < 1 and
|I1d : G — £3||cv < 1 is not an operator algebra structure. Consequently, R+ C
and Min ¥, are not operator algebras.

Among the five 0.s.s. listed in (i}, RN C is the only one which is completely
isomorphic with a quotient of a minimal operator space (see [22] and below). It
turns out that RN C is actually a matricial Q-algebra but that is not clear at this
level. This will be proved in the fourth section.
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3. REGARDING Min {,, Max{,, Of,

The main purpose of this section is to determine the values of p € [1,-+oo] for
which Min#, or Max £, or O¥4, is an operator algebra. We begin with the two
extreme cases p = 1 and p = +oco. These two situations turn out to be quite
dichotomous.

THEOREM 3.1. (i) Min 4y is, up o complete isomorphism, the only operator
algebra siructure on £y
(ii) Any o.s.s. on £y is an operator algebra structure.

Thus, in some sense, £; is a “better” operator algebra than £y ! It is conve-
nient to separate the following estimate.

LEMMA 3.2. We have ||Id : Miné; - RNC||ep = 1.
Proof. Let ay,...,a, in B(€3). Then by (1.4),

“;aj "B(l;)@Mmtl {”Zﬁs J”B(b) 121;2.1 1B;] <€ 1}.

Moreover, we can write:
Saje = / (Za, ) (D ase) a
i

hence

1211'
o
|E o] <5
i 0

12
‘Z aje"‘ di
i

Therefore "Z aja;
J

IDULE
7

“B(t,)&wn 4

1 1
L . 3
|2 < HZa,— ® e; . Similarly, ”Zaja;f" <
i j

' ”B(t,)émn £
. By (2.1), this proves the lemma.

Proof of Theorem 3.1. (i) This is a straightforward consequence of Kadi-
son’s theorem which asserts that any bounded homomorphism from the C*-algebra
Min £, into some B(H) is always completely bounded (see e.g. [23], Theorem 8.7).

(i1) Applying Lemma 3.2, (1.14) and (2.2) we obtain that for alln 2> 1

h
[J77en - Minf‘f ® Minf’; — Maxf?“ch <1

This proves the assertion. 1o
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In view of definition (1.10), Theorem 3.1 and (1.12) we immediately have:
COROLLARY 3.3. For any 1 < p < +oo, OF, is an operator algebra.
We now look at minimal and maximal structures ((1.4), (1.5)).

THEOREM 3.4. Let 1 € p € +o00. Then we have
(i) Min£, is an operator algebra <> p=1 or p = +00.
(ii) Max{, is an operator algebra & 1 < p< 2.

Proof. (i) We fix 1 < p < 400 and set
A
on = {lmn : Min&; ® Mindy — £]|.

n h
Let u =3 e; ® e; € Minfy ® Min£?. Then ||ma(u)f| = n*/?. Recall that for any
1

h
Banach space F, MinF ® Min F is isometrically isomorphic to E 5 E where
72 is the Grothendieck norm of factorization through Hilbert space (see e.g. [30],
Chapter 2). Therefore letting % + % =1, ||u|| is the y2-norm of the identity map

Id : €8 — £7. By trivial factorization £} LN £ X, £, we obtain that when
2
p 22, |lul| = 1 and thus o, > n'/?, whereas when p < 2, ||u|| € n?~ ! and thus
on 2= nl/9 In any case, Lim on, = +oo hence Min/, is not an operator algebra.
oa

(i1) Let 1 < p < 2. It follows from (2.2) that

h
||m : Max £y @ Max £y — Max 4| < 1.

The contractive inclusions £; — £, — £, together with (1.14) then yields:

I
||m : Max £, ® Max £, — Max£plles < 1

hence Max £, is an operator algebra.

Now let 2 < p € co. In order to prove that Max £, is not an operator algebra,
we will use Clifford matrices. The idea of using Clifford matrices for the study of
maximal operator spaces goes back to Paulsen ([24], see also [18]). Given n > 1,
Clifford matrices are unitaries uq, ..., u, € Ma» (which do exist) satisfying:

() vpec, ”iﬁiu;" < ﬁ(i |ﬂi|2)%
1 1

(i) |[$u,. ® ul

(3.1)

.

Man(Man)
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Welet%+%=1(l<q€2)andset:

‘b
o = ||myq : Max £y @ Max £y — Max £3]|cb.

Since the identity map Id : £; — £ has norm nt/? it follows from Lemma 3.2
that ||Id : Min £ — R, N Cplleb € nl/P_ Therefore, duality (1.6) implies the two
estimates:

1 : C, — Max £3||c < ns
|[1d : Ry — Max £p]leb € n:.
Applying (1.14), we then deduce:
A
(3.2) [[mn : Co @ R — Max 2|y € n¥7n.

A
By (2.3), the map 8, : Min £, — C,; ® R, defined by 6(e;) = e; ®e¢; is a complete
isometry. Since m,6, is just the identity map, it now follows from (3.2) that:

(3.3) [I1d : Min £2, — Max £ |y < 07 7a.

1
We wish to find a lower bound for the left hand side of (3.3). Let u = > u; ® e;.
1

Since each u; has norm 1, formula (1.4) yields [jullar,n(Mints) = 1. The iden-
tity Ma~(Max£;) = CB(Min£;, M3») resulting from (1.1) and (1.6) means that
[lullafn (Maxep) is the cb. norm of the map T : Minfy — M~ defined by
T(e;) = uj. By (1.4) and (3.1) (i), llullptan(Mineg) € V2nT~7 and by (3.1) (ii),
(T ® Intya )(1)liMan(Man) = 1. Therefore we have:

1,1
n3its

7

1_1\~1
llatamtaxey = 1T lkes > n (VEn3=7) " =

1

1.1
This shows that |[Id : Min£}, — Max£ |l > '—'%L. Going back to (3.3), we

-1

‘gbtain T 2 %—’— whence lim 7, = +00. This completes the proof that Max¥£,
) 2 n-—00

is not an operator algebra. 18

We now turn to Q-algebras. We know from [12] and [33] that for all
1 € p < 400, there exists at least one matricial Q-algebra structure on £,. Our aim
is then to exhibit such structures and to determine which of the operator algebras
provided by Theorems 2.1, 3.1, 3.4 and Corollary 3.3 are actually Q-algebras. The
situation is trivial for p = +o0o. We then look at the case p = 1 where once again,
the picture is clear.
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PrROPOSITION 3.5. Min#; is, up to complete isomorphism, the only Q-alge-
bra structure on £;.

Proof. Assume that ¢; is endowed with a matricial @-algebra structure. By
Definition 1.2, we have an onto homomorphism p: ¢; — B/J for some uniform
algebra B and some closed ideal J C B, such that {|pl|es, |lo™ |ew < +oc. Let
g : B — B/J be the quotient map. From the lifting property of £;, we know
that there exists a bounded map 5: £, — B with ¢5 = p. Since B = Min B, 7 is
c.b. from Min#¢; into B. Writing the identity map Id : £; — £ as Id = (p~1q)5,
we thus obtain that ||Id : Min¢; — £y < +o0. Hence £; has, up to constants,
the minimal operator space structure. By [12] and [33] (the assertion that £; is a
Q-algebra), the converse is obvious. 1

Before going further, it will be worthwhile to introduce the following defini-
tion, which generalizes that of matricial Q-algebra.

DEFINITION 3.6. Let E be an operator space. We say that F is a Q-space
provided that E is completely isomorphic to a quotient of a minimal operator
space.

Let E, F be two operator spaces. We define :

deo(E, F) = inf{{|T{|el| T |cb }

where the infimum runs over all possible isomorphisms between E and F. If E and
F are not completely isomorphic, we write dep(E, F'}) = co. In order to measure
the “Q-space structure” of an operator space we then define :

. Min Fy
dQ(E) = inf {dcb (E, m) }
where the infimum runs over all included Banach spaces Fy C Fy. Clearly, dg(F) <
+oo iff £ is a @-space. These Q-spaces were recenily characterized by Junge ([19],

see also [31]) following a conjecture of Pisier. In Section 4 we shall provide another
proof.

THEOREM 3.7. ([19], [31]) Let E be an operator space. Then E is a -space
if and only if there exists C > 0 such that for anyn,m 2 1 and any T : M, — My,

(3.4) 17 ® Ie : Ma(E) = Mn(E)|| < CHTY|.

Moreover, dg(E) = inf C such that (3.4) holds.

The class of ()-spaces is stable under interpolation. Indeed keeping the
notation in Section 1, let (Ey, E1) be a compatible couple of operator spaces.
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Assume that Ey, B, are both @Q-spaces. Since given Banach spaces ¥ C X,
L®(R, X)/L=(R,Y) = L*®(R, X/Y), the spaces L*(R, Eq) and L*(R, E,) are
both @-spaces. Therefore, L™ (R, Eg) %3’ L*>(R, Ey) is also a Q-space. Hence by
(1.9), F is a @-space. By (1.8), this clearly implies that each Ejy is a -space. This
stability property can also be deduced from Theorem 3.7 and this in fact yields
the precise estimate:

(3.5) do(Ee) < dg(Eo)' ~*do(Ey)’.

Note for further use that similarly, when FEj, F; are matricial Q-algebras, the
construction leading to (1.8) shows that for all 0 < ¢ < 1, Ep is a matricial
Q-algebra.

Let us compute do(O£}). The following is already known in the case p = 2

([28], (19]).

ProrosITION 3.8. For any 1 < p < +oo,

L
nzs 2

Proof. Obviously, dg(Min %) = 1. Furthermore, Paulsen ([24]) proved that
dep(Max €7, Min £7) < /n hence dg(Max £7) < 4/n. Therefore the interpolation
formula (3.5) gives the upper estimate.

Let us now prove the more interesting lower estimate. We shall apply (the
easy part of) Theorem 3.7 to the map T' : C,, — Mon defined by T'(e;) = u;,
where u;, ..., uy are the Clifford matrices introduced in the proof of Theorem 3.4.
From (3.1)(i), we know that ||T}] € V2. Let o+ % = 1. It is easy to check that
[JId : Max &7 — Cqleu = 1 and ||Id : Min €% — Ch|le = +/n whence

[1d: O£ — Cullcy < n¥

n
by interpolation, and (1.10). By (1.11), this means that |5 e; ® e,‘ncn(oz;) £
I

7 n
nl/?? Now (T ® Ioe)(2ei ®ei) = 3 ui ® ei. Therefore invoking Theorem 3.7, it
i 1

remains to prove:

(36) IS i o

To see this, define u : C* — Man by letting u(e;) = uj. Obviously

1
Zne.
Myn(O2L2)

flu: Min €y, — Man|les < n, [ju:Maxéf — Monfls <1
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hence by interpolation

(3.7) flu: O — M|y < 075,

Since (Ip, @ )X ui ®e;) = 3 u; ® u;, the estimate (3.6) follows from (3.1) (ii)
1 1
and (3.7). 1

Following similar arguments as above, it is not hard to prove that for any
1 < p < 4oo, dg(Max£y) > cy/n for some absolute constant ¢ > 0. In any case
this can be viewed as a corollary of [20], Theorem 3.2. This and Proposition 3.8
lead to:

CoRroOLLARY 3.9. (i) Let 1 < p < 400. The operator algebra OL, is not a
matricial Q-algebra.
(ii) Let 1 € p £ 2. The operator algebra Max £, is not a metricial Q-algebra.

The only matricial Q-algebra structures on £, (p # 1, c0) that we can exhibit
at this time come from interpolation (see the discussion before Proposition 3.8).
Let 8 = %; then [MinZ,,Minf;]y is a Q-algebra representation of £,. We will see
below (Corollary 4.8) that for any 1 < p < 00, there is actually a continuum of
matricial Q-algebra structures on £,.

4. CHARACTERIZATIONS OF Q-ALGEBRAS AND APPLICATION TO RN C

We wanted to know which of the operator algebras listed in Theorems 2.1, 3.1,
3.4 and Corollary 3.3 are matricial Q-algebras. In view of the previous results, it
remains to look at R,C and RN C. It is clear and well-known that R and C are
not Q-spaces. For instance, (3.4) is wrong with E = C or R for the transposition
map 7. On the contrary, RN C is a @-space. This is a consequence of the main
result of [22]. Note that this can also be viewed as a formal combination of Junge’s
Theorem 3.7 with the Grothendieck-Pisier inequality ([30], Corollary 9.5). As a
corollary of the methods of this section we shall prove:

THEOREM 4.1. RN C is e matricial Q-algebra.

We first give an abstract criterion which can be considered as an operator
space version of Davie’s characterization of @-algebras ([12], Theorem 3.3). We
will need a little more notation. Suppose that A is an operator algebra. Let n, N, r
be three positive integers and et w : M, x -+ x M, — My be an r-linear map.
We denote by ug : My(A) X -+ - x My(A4) — My (A) the r-linear map defined by
tensoring u with the r-fold multiplication on A. Namely for any z1,...,2, in M,
and ay,...,a, in A, we have ua(z1 ®ay, -, 2z, Qar) = ule1,...,z,) @ (a1...ar).
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THEOREM 4.2. Lel A be a commutaiive operator algebra. The following
condilions are equivalent:

(i) A 1s @ matricial Q-elgebra.

(i) There ezists a constant K > O such that for eny n,N,r > 1 and any
relinear u: My X -+ X My, — My, we have ||ua] < K"||ul}.

The proof of Theorem 4.2 will combine jdeas from [12] and [3]. We will
especially make use of a symmetrization principle observed by Davie.

LEMMA 4.3. ([12]) Let X,Y be Banach spaces and letv: X x---xX —Y be
an r-linear map which ts symmetric with respect to permulations of the variables.
Then {|o]] < (2¢)" sup{ljo(z, ..., 2)ll | € X, [l2ll < 1}.

Proof. We refer the reader to [12], Lemma 2.1. Davie deals with the case
X = £4,Y = C but his argument works as well in the general case. 1

We now come to quantum variables. We will use commutative ones which
will be sufficient for our purpose. Given n 2 1, we let PP, be the algebra of all
polynomials in n? commuting variables X;; (1 € ¢, j < n) without constant term.

We equip PP, with the following norm:

1Pl = sup{|P((z:;))] | Nlzislllar, < 1}-
Furthermore we endow PP, with the minimal structure which makes it (its com-
pietion) an operator space.
Let A be a commutative operator algebra and let § > 0. For any n, N 2 1,
given P € My ® PP, we set:

41)  IPllae = sup{[[P((a:;))lImnca), aii € A, [l[ais)lmaca) < 6}-
With this notation we have ||P|| = ||Pllc,1- In the following, by a homogeneous
P € My @PP,, we mean a matrix of polynomials whose entries are homogeneous
polynomials of same degree.

The statement below can be regarded as the “quantized version” of Craw’s
Lemma.

PROPOSITION 4.4. Let A be a commutative operator algebre. The following
condilions are equivelent:
(i) A is e matricial Q-algebra.
(ii) There are two constants M,§ > 0 such thal for any N,n 2 1 and any
PeMny®@PPn
I1Plla,s < M||P]].
(iii) Seme as (ii) for homogeneous P € My ® PPn.

We remark that our proof will show that A is completely isometric to a
quotient of a function algebra iff (ii) holds with M =§ = 1.
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Proof. Clearly for a uniform algebra B, ||P||g,1 < ||P|| for any P. It is then
easy to check that (i) =(ii). The implication (iii) =+ (i1) is an old trick. Assume

(111) with M, 6 > 0. Any P € My ® PP, can be written as a finitesum P = 3 P;
r21

where P, is zero or a homogeneous polynomial of degree r. Moreover, ||P|| < (| P]|
for all r > 1 as in [3]. Then, (|P[l4 2 < X [|Pllas < M Z 277||P| < MIPJ].
? r21 =

Hence (i1} is fulfilled with M and g—.

Now assume that (ii) holds. Let 7" be the closed unit ball of B(£3) endowed
with the usual w*-topology. Any t € T will be considered as a infinite matrix
(tij)ij»1. Denoting by K the space of all compact operators on 43, we let A
be the closed ball of K ® A of radius 6. Then we let I' = T be the set of all
functions from A into 7', with product topology. By Tychonov’s theorem the set
I' is compact. For any a € A and any integers 4,j 2 1, we define f% : ' — C by
letting ff;(¢) = w(a)i;. Obviously, ff; € C(T'). Now let V' be the algebra generated
by all the f; (a € A; 4,5 2 1) and let E = V ¢ C(T). By construction, E is a
uniform algebra.

We wish to define a c¢.b. homomorphisin ¢ : £ — A by letting ¢(f}) = as;
for all a, 1, j. In order to prove that this is indeed possible we consider v = [vg] €
My ® V. There exist distinct a{1), - a(r) in A and m 2 1 such that each vy lies

a(p) i 1<

in the algebra generated by {fj; € 1<4, j €m}. Let n = mr. Each

vi¢ 18 a polynomial in the variables f!.j(”) (1< p<r 14 j< m) Therefore
making the substitution

i
[Xij] <
[fi';'(r)]
we obtain Pry € PP, such that
= Pt ([ Me-e [0 ]) :

We may suppose in addition that Pgg only depends on the variables which vge
depends on. Let P = [Py] € My @ PPy, we claim that

(4.2) 121} = lvll-
Indeed ||P|| = sup{||P(a1 ® - & o )||mn | ¥p € My, sup |Joy|] € 1} whereas
. )

sup{||[vee(9)lllmry | @ € T}
sup{[|lP(FED (N @ - @ 57 (e))liarw | 0 €T
sup{[IP([p(a(1))i;] @ - - - @ [p(a(r)}i;])lImn | © € T}

livll

I
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whence the result.
Given 1 € p < 1, let us denote by b(p) € My, (A) the m x m upper left corner
b(1)
of a(p). We set ¢ = € M,(A). Then |lc|| = sup|lb(p)|} <
b(r) ’
sup [|a(p)|| € 6. Thus our assumption gives [}P(c)||mn(a) € M||P||. Now P(c) =
P

[g(vke)], hence we deduce from (4.2) that

llla(vell] < MJo]j.

This shows that ¢ is a well-defined and c¢.b. homomorphism from E into A.

Let b € M, (A) with ||b]| = 6. We can consider b as an element of A by the
usual embedding. Then v = [f}] € Mn(V) has norm 1 and g(v) = b. Therefore ¢
is onto and ¢~ : A — E/kerq is c.b. We thus obtain (i). #

Proof of Theorem 4.2. Assume (ii). We will prove that the condition (1i1)
in Proposition 4.4 is fulfilled. Suppose that we are given a homogeneous P €
My @ PP, of degree r > 1. Let I = ({1,...,n} x {1,...,n})". For any @ =

(Gr,51),-- -, (ir, 3r)) € I, we set ap = (ip,Jp). We now write: P = Yo ®
134
X, -+ Xo, With Ay € My. We can assume that for any «,8 in I, whenever

Xa, -+ Xar = Xp, - Xp., we have Aq = Ag. Let (Eij)igi j<n be the canonical
basis of M,,. We define an r-linear map u : M, x --- x M, — My by letting
Ae = wW(Eqy, ..., Ea,). By construction, u is a symmetric map. Since [|P|} =
sup{[|u(z, ..., 2)|| | = € My, |||l € 1}, Lemma 4.3 implies that |jul| < (2¢)"[|P]|.
Therefore ||ua]| < (2¢K)"||P|. Since A is commutative, we have ||P||a,1 < (luall.
Hence ||P||a,s < ||P||for § = (2¢K)~!, whence the result. The converse implication
(i) = (ii) is easy and left to the reader. &

REMARK 4.5. Following Varopoulos’s approach to Craw’s Lemma. ([34], see
also Dixon [14]), we can establish a non-commutative and more general version of
Proposition 4.4 with essentially the same proof. For this purpose we need a non-
commutative analogue of PP,,. For any n > 1, we let 5’5" be the algebra of all
polynomials in n? non-commuting variables X;; (1 < i, j < n) without constant
term. Let A be an operator space which is also a Banach algebra. As above, for
any P € My ® PPy and any § > 0, we define [|P||a,s by (4.1). Now suppose
B is an operator algebra which is also a dual operator space. The following are
equivalent:

(i) There exist M, § > 0 such that for all N,n > 1 and any P € My ®’5§n,
1Plla,s € M||P|B,1;
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(ii) There exist a compact set I and a subalgebra E of C(T', B) such that A
is ¢.b. homomorphic to a quotient algebra of E.

Note that in this statement, we do not assume that A is an operator algebra.
This was already the case in Proposition 4.4 although not mentioned there. Since
the quotient of an operator algebra is completely isometrically isomorphic to an

operator algebra ([8]) we thus obtain a characterization which slightly improves
([3], Corollary 3.2):

An operator space A which is a Banach algebra is an operator algebra iff it
satisfies (i) for B = B(£;).

Clearly there is also a completely isometric version of these results. We refer the

reader to [21] for possible generalizations.

REMARK 4.6. Junge’s Theorem 3.7 can be viewed as a particular case of
Theorem 4.2. Indeed let E be an operator space. Let us equip E with the
trivial multiplication, i.e. zy = 0 for all z,y € E. Clearly E can be regarded
as an operator algebra. Indeed, if £ C B(H), £ is completely isometric to

0
A= {(0 g) |a: € E} C B(H @ H), which is a suitable operator algebra.

Now assume that E satisfies (3.4). Then A satisfies the condition (ii) of The-
orem 4.2. Therefore, Theorem 4.2 implies that £ is a (J-space. Conversely, a
Q-space equipped with the trivial multiplication is a matricial Q-algebra.

It should be noticed that if C is the constant appearing in {3.4), the construc-
tion in the proof of Proposition 4.4 yields a c.b. isomorphism of exactly constant
C between E and a quotient of a minimal operator space. Thus (with minor
changes), the proof of our Proposition 4.4 provides a new proof of Theorem 3.7.

The following consequence of Theorem 4.2 should be compared with [33],
Theorem 1.

COROLLARY 4.7. Let A be a commutative operator algebra. Assume that A
is @ Q-space and that the multiplication m on A satisfles: ||m: A ® A — Allew <
+oo. Then A is a matricial Q-algebra.

Proof. Since A is a {)-space, there exist a Banach space £ and a quotient
map ¢ : E — A such that :

Min E

~ Min {Kergq) < Feo.

Ci=|lg:MinE — Af|ep < 00, Cp = “q_l A

cb

Furthermore we set C3 = ||m: A <§> A — Ale.
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Our aim is to show that A verifies the condition (ii) of Theorem 4.2. Suppose
that we are given an r-linear map u : M,, x - .- x M, — My . We can assume that
r22 Letay,...,ar in M, (A) such that ||a;f| < 1 for all 1 € 7 £ r. We will prove:

(4.3) lualas, ..., an)ll < (CrCCa)[[ull

where Cy = max{Cjs,1}. Let us denote by ® and ® the projective and injective
tensor products of Banach spaces (see e.g. [13]). Recall that we denote by ST the
dual (operator) space of M,. Then the multilinear map u canonically induces a
map U : Myu® - - &M, — My whose adjoint U* : SV — §7 ® @ St has norm
equal to [|u||. Note also that the r-fold tensor product Q = ¢ ® - - - ® g satisfies
(4.4) IQ:MinE@ - @MinE »A® & Allew < Cl.

Now let 1 € i < r Since Ma(MinE) = M, @ E, there exist f; € My ® E
such that (g ® In, )(fi) = a: and ||fil] € Cz. Under the classical identification
M, éz E = B(S}',E), fi corresponds to a linear map T; : S} — E of norm less
than C;. Then T =T, @ - - - @ T, satisfies:

(4.5) IT:$"® - @S ~E®---® E|| < CS.

Under the identity My(A4) = CB(S],A4) (see (1.1)} the A-valued matrix
ug(ay,...a,) corresponds to some 6 : S{V — A Jetm, A® - - @ A— A
be the r-fold multiplication on A. Then it is an easy algebraic exercise to check
that

(4.6) b=m,-Q -T-U".

Recall that Min(E ® --- ® £) = MinE ® -~ ® MinE, so that - T makes
sense. From (4.5), we have [TU* : S¥ — Min(E & --- ® E)||e» < C5||U]|. Since
lmefleo € C571, (4.3) then follows from (4.4) and (4.6). This completes the proof
that the condition (ii) of Theorem 4.2 is fulfilled. &

We remark that the condition of Corollary 4.7 is not a necessary condition
for A to be a matricial Q-algebra. That is we have examples (for instance A =
[Min £;, Min fm]%) to show that not every matricial Q-algebra A satisfies [[m: A ®
A— Ach < 400,

Proof of Theorem 4.1. Recall that RN C is a (-space ({22), see also [29] for
explanation of this). Thus applying Corollary 4.7, it remains to show that:

(4.7) lm:(RNC)® (RNC)— RNC||e < 1.

We saw (proof of Theorem 2.1) that |jm : C é C — Clls € 1. However, C é
C = C ® C completely isometrically (117), [4]), hence ||m : C ® C — Cller < 1.
Therefore, ||m : (RAC) ® (RNC) - Clle < 1. Similasly, [jm : (RO C) @
(RNC) — Rl|eb € 1, whence (4.7). &
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COROLLARY 4.8. Let 1 < p < +4oo. There is a continuum of QQ-algebra
structures on £y.

Proof. We merely sketch the proof. We let Eg(p) = [Minée, Miné]1. For
14

any 2 < p < 400, we set E1(p) = [Minfy, RNC]z2 and for any 1 < p < 2, we set
E1(p) = Min4;, RN C]2 where 11—)+ % = 1. Lastly we define for any 0 < 4 < 1:

Eo(p) = [Eo(p), Ea(p)]s-

By Proposition 3.5, Theorem 4.1 and interpolation, all the Ey(p) are matricial
Q-algebras. Moreover for any 1 < p < 400, it is not hard to show that the spaces
Ey(p) (0 € 8 < 1) are mutually distinct. 8

REMARK 4.9. Varopoulos ([33], [35]) defined a D@Q-algebra to be a Ba-
nach algebra A for which there exists a uniform algebra B, a continuous sur-
Jjective homomorphism f : B — A, and a conlinuous linear one sided inverse map
g:A— B (so fg =Id). He showed that A is a D@Q-algebra if and only if A is an
injective algebra, that is if and only if the product map induces a map AQ A — A
which is continuous with respect to the Banach space injective tensor norm. We
observe that if A is a DQ-algebra, then it is fairly clear that Min A is a matricial
Q@-algebra in the sense of our paper. This is the case for A = £; for example.

REMARK 4.10. It is interesting to look at another example of a Q-algebra
which appeared in Davie’s paper ([12]). Given r € N, we let C"(I) be the space of
all 7-continuously differentiable complex functions on a compact interval I. This
1s a Banach space with the norm

071l = sup{(lf® o [ 0 < & < 7}

where ||g||cc = sup |g(¢)]. Davie showed that C"(I) can be represented as a Q-
tel

algebra, whence the question of exhibiting a matricial Q-algebra structure on C”" (1)
follows. It turns out that:

(4.8) Min C7(I) is a matricial Q-algebra.

To check (4.8), note that the map J : CT(I} — £F3}(C(I)) defined by J(f) =
(f,f's..., f")) is an isometry. Using this it is not hard to verify that

(4.9) m: CT(I) ® C™(I) — C” (1)

is bounded (with norm € 27). Hence C"([) is an injective algebra in the sense of
Remark 4.9. Therefore, it follows from that remark that Min C”(I) is a matricial
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Q-algebra. Note that the matrix norms on MinC” (I} may be written in a more
appealing form. Since £.}1(C(I)) is a commutative C*-algebra, the map J defined
above induces the minimal operator space structure on C"(I). Consequently for
any fi; € C"(I), 1< 1i,j < n, we have:

s Matacvtnriry = sup (NLA Maencecrn -

Finally note that (4.8) can also be viewed as a consequence of our work. Indeed
(4.9) means that Min C"(I) satisfies Corollary 4.7.

5. OPERATOR ALGEBRA STRUCTURES ON THE DISC ALGEBRA

By definition, the disc algebra A(D) is the closure of the vector space P of all
complex polynomials in C(T) with T = {t € C|[t| = 1}. Although A(D) is
naturally a uniform algebra, it makes sense to look for operator algebra structures
on A(D) different from the minimal one. This problem is particularly interesting
in connection with the similarity problem of Halmos.

Let T € B(H). We recall that by definition, T' is polynomially bounded
provided that there is a constant C > 0 such that [|[P(T)|| < C||P|| for any P € P.
The Halmos problem is the question of whether every polynomially bounded T
is similar to a contraction, i.e. there exists an invertible map S € B(H) such
that [[STS~1|| < 1. A striking Theorem of Paulsen ([25], [23]) asserts that this
similarity problem is equivalent to the following:

(5.1) Is every bounded homomorphism from A(D) into B(H) necessarily com-
pletely bounded?

It has probably been observed by several people that (5.1) has the following equiv-
alent formulation.

(5.2) Let B be an operator algebra which is bicontinuously homomorphic to A(D).
Is B necessarily completely isomorphic to Min B?

The restatement (5.2) of the similarity problem leads to the study of operator
algebra structures on A(D). Note that thanks to Theorem 1.3, a counterexample
to Halmos’s problem would be obtained if we could:

(5.3) Find an o.s.s. on A(D) non-completely isomorphic to the minimal one, for
A
which m : A(D) ® A(D) — A(D) is c.b,
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What can be showed at this time is that except Min A(D}), all the interpolated o.s.s.
between Min A(D) and Max A(D) are not operator algebra structures. These are
obvious candidates to try, in connection with (5.3). For any 0 < # < 1, we set:

Ag = [Min A(D), Max A(D)]p.

THEOREM 5.1. (i) For any § € ]0,1], the multiplication

h
m : Max A(D) ® Max A(D) — Ay

ts not c.b.

(i1} Let A be the space A(D) endowed with an 0.s.s. Assume that there exists
0 €10,1] for which Id : A — Ay is ¢.b. Then A is not an operator algebra.

(i) VO € ]0,1], Ag is not an operator algebra.

In order to establish Theorem 5.1, we will appeal to the following well-known
lemma, which can be proved by a classical use of outer functions. We omit the
proof.

LEMMA 5.2. Letn > 1 and let ¢ > 0. Then there exist fi,..., fo in A(D)
such that:

(5.4) Vig<i<n, (ll=%
(5.5) vieT, Y i) <1+e
i=1

Proof of Theorem 5.1. Clearly (i) = (ii) = (iii) hence we only have to prove

h
(i). We set A = A(D) and fix 0 < £ < . We assume that m : Max A ® Max A —
Ay is ¢.b. and wish to show that 8 =0, i.e. Ag = Min A. Let

}
C=|m: MaxA ® Max A — Aplleb-

The factorization theorem for ¢.b. multilinear maps ({11], [27]) yields:

(5.6} For any N > 1 and any bounded u : A — My, there exists a Hilbert space
H as well as bounded maps o : A — B(¢Y , H),8 : A — B(H,£)) such
that ||a||||8]| € C|lu : A¢ — My||cb and such that u(ba) = B(b)a(a) for all
a,be A

We now give ourselves a linear map T : €2, — My . Appealing to Lemma 5.2
we then define a linear map V : €0, — A by letting V(e;) = f7. We also let
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E=V({L)CA Lt y= Z’y,e. € £ . Given 1 < j < n, we know from (5.4) that
there exists tg € T for whlch |fi(t0)| = 1. Then we have:

[l = 1v; 7 (to)] < "Z%ﬁ ”+| > ifi(to) [

l$t<n
g

Since each f; has norm one, we have |f;(#)|? < |fi(t)] for all t € T. Therefore the
inequality (5.5) implies:
It <6
1€ign
iRy
Hence |y;] < || 29 21l + esup [yl Consequently, we have (1~ £)lvll < IV()IL,
n satisfying ||V € 1+ 2e.

By Hahn-Banach, V~! has an extension W : A — £2, with same norm. Let us

apply (5.6) to u = TW. Let £, ; = [Min £}, Max £} J. Then by interpolation:

]
which means that V is one-one, with V-1 : E — £°

(W = Ag — £ gllw < IWI| = IV < 1+ 2¢.
Hence we obtain «, 8 factorizing u as in (5.6) with:

(6.7) oAl 1Al < C(L+ 26)||T : £55,6 = Mivleo-

In what follows, the notation |||, stands for the c.b. norm of T' acting on the
classical Min £g,. For any 1 < j < n, T(e;) = u(f}) whence:

(55) T(es) = BU)alfy)

We claim that:

(5.9} ITlles < (1 + )2 lNexl| 18]
Combining (5.7) and (5.9), we thus obtain that
ITlles < K|IT < £2,6 — Mnlleo

for some absolute constant K not depending on n, N. This readily implies that
=0

It thus remains to check (5.9). Let 7 : £, — M, be the canonical represen-
tation of the C*-algebra €2 as the diagonal matrices. It follows from (5.8) that
for all y € €3, :

a(fi)

T(y) = (B(f1)s -, B(fa))(m(7) @ Tdm)
a(fn)
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Therefore

a(fj) o(f;)

Iles < [ B8 )|

Let J : £, — A be defined by J{e;) = fJ For any v € £, HZ’y]fJ” =
sup | >0y fi ()] € (1 +¢)||v|| by (5.5). Hence ||J[| € 1+ ¢. Now by Lemma 3.2,
teT 5

[Setire
J

hence || o(f;)* e f)IIM? < (L + e)llall- Similarly, || 5°8(£)8(5)IM? <
j i
(1 +¢)||8l|, whence (5.9).

Another curious statement, whose validity is equivalent to Halmos’ problem

"<l

by the new characterization of operator algebras, is the following:

(5.10) Suppose T' : A(D) — B(H) is a bounded Jnear map for which there is a
constant K such that for all » and all matrices [f;;], [g:5] in M, (A(D)) we
have:

|7 (3 fiwns)] | < KU,
k=1
Then T is completely bounded.

This last condition is also equivalent to the same condition but now with
K = 1. This seems to be an apparent weakening of Paulsen’s condition.

6. OPERATOR ALGEBRA STRUCTURES ON THE TRACE CLASS OPERATORS

We end by examining the von Neumann-Schatten p-classes S, = S,(H) defined on
an infinite dimensional Hilbert space H for 1 € p € +o00. We shall mainly focus on
the trace class Banach space S, the dual Banach space to K(H). Each S,(H) has
two natural Banach algebra multiplications, the usual product of operators, and
the Schur product. We assume that H = #5, the general case for all our theorems is
identical. We believe that it was shown first in [36] that S; with Schur product is a
Banach algebra (although this also follows from our considerations below). As was
pointed out to us by P.G. Dixon, one reason why it is of interest to know whether
S1 with usual product is bicontinuously an operator algebra, is because it is easily
shown to be a Banach algebra satisfying the non-unital von Neumann inequality.
It was an open question for a long time whether the non-unital von Neumann
inequality was sufficient to characterize operator algebras amongst all non-unital
Banach algebras; a very nice counterexample was given in 1993 by Dixon ([38]).
The unital version of this question is still open.
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THEOREM 6.1. Let S; be equipped with either the usual or the Schur product.
Then S is bicontinuously isomorphic to an operator algebra. In fact for allp such
that 1 € p € 2, Max S, with Schur product is an operetor algebra in the sense of
"Definstion 1.1.

Proof. To prove the assertion for the usual product we endow S, with an o.s.s.

h
for which (1.13) holds. Namely, consider the operator space Max (£2) ® Max (€2).
This is isometrically isomorphic to S; as a Banach algebra, if we equip £2® {2 with
the product which concatenates the middle terms:

(@' ®y)=(y =)@y

Here “-” is the bilinear “dot-product” on £5. The fact that the isomorphism above
is isometric follows quickly from the general fact that for Banach spaces E, F', the
Haagerup norm on Max (E) ® Max (F) equals the 5 norm as Banach space norms
([4]), although a direct proof is easily given.

We now appeal to (1.13). We need to check that multiplication

(Max (€3) & Max (€)) ® (Max (£)  Max (£5)) — Max (£) & Max (£2)

is completely contractive. However the domain of this map reordered by associa-
tivity is Max (£2) é (Max (£2) é Max (€2)) é Max (£2). The scalar valued con-
catenation of the two middle factors is just the trace on Si, which is contractive,
and hence automatically completely contractive since it is scalar valued.

For the assertion about the Schur product notice that as Banach algebras
S, with Schur product is the same as £3(N x N) with pointwise product. Then
(2.2) gives a complete contraction (S3)c % (S2)c — Max(£;(N?)). However the
“identity map” from Max (£;(N?)) — S; is contractive and therefore automatically
completely contractive whatever o0.s.s. we give to this last copy of S;. Thus, the
Schur product s satisfies

3
(6.1) lls : (S2)e ® (S2)e — Max Syfew < L.

Hence it is completely contractive from Max So % Max S into Max S;. For any p
between 1 and 2, if we compose this last map with the identity maps Max Sp —
Max S, and MaxS; — MaxS,, we see from (1.13) that Max S, is an operator
algebra for the Schur product. &

By interpolation we obtain:
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CoROLLARY 6.2. For 1 < p < o0, the von Neumann-Schatten p-class Sy
ts bicontinuously isomorphic to an operator algebra (with either the usual or the
Schur product).

As a corollary we deduce that all of these algebras are Arens regular. As far
as we aware this and Corollary 6.2 were unknown for 1 € p < 2.

For the remainder of this section we will write O.S, for the “usual” o.5.5. on
S,, namely the interpolated o.s.s. (introduced by Pisier in [29]) between Sy =
K(£;) and Sy (the latter viewed as the operator space dual of K(£,), and also as

a subspace of K(£;) =C é R, but with the Ré C matrix norms). We will write
O8S: for the o.s.s. transpose of OS; (that is, the operator space with matrix norms
=il aacossy = llzsillaracosy))-

Since £;, with its 0.s.5. as the operator dual of ¢g, is completely boundedly
isomorphic to an operator algebra, one might conjecture that OS; is also com-
pletely boundedly isomorphic to an operator algebra. Note that in this analogy it
is not clear whether to take the usual or the Schur product on S;.

THEOREM 6.3. With notation as above, OS; and OS5} are not operator al-
gebras (in the sense of Definition 1.1 with either the usual or the Schur product.
Indeed with the usual product, OS, is not an operalor algebra for any 1 < p < co.

Proof. Again we appeal to (1.13). For the case of the usual product, and
usual 0.s.s, the linearization of multiplication is not even bounded on the Haagerup
tensor product, as is easily seen by taking a; = Ey;,b; = E;; for 1 € 1< n. Then
| 2 aibills, = [| 3= Eulls, = n. On the other hand, as an element of R,(05})}, we
have [|[as - - -an]|| = 1, and as an element of Ca(OS:), we have ||[by - - -ba]*[| = 1.
Thus || 3 a; ® bifln < 1.

Th‘e same argument shows that OS5, is not an operator algebra for any 1 <
p < oo. To show the assertion for OS} with usual product, we simply switch a;
and b; in the above.

Now we consider a multiplication m : 0S; @ 0S; — 0OS;. Suppose this
was completely bounded w.r.t the Haagerup tensor product (see (1.13)). By the
elementary operator space identifications ([7], [17], [4]), we see that m lies in

R h h h A h
CB((R®C)®(R®(),05)=CB(R®(C® R)® C,05).
However, denoting by ® the projective operator space tensor product ([7}, [16]),

h h h ~~ —~ —~
R®(C®R)®C=R® K(£) ® C = K(£;) ® 0S:.
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Therefore m lies in

CB(K(£;) ® 0Sy,08;) = CB(K(£;), CB(0S;,051))
= CB(K(£2), CB(K (£2), B(£2))).

This last equality is because for any operator spaces E, F' we have CB(E ® FC)=
CB(E, F*) = CB(F, E*). If we take m to be the Schur product, and unravel these
correspondences, we find that m corresponds to the map S — (T — S*oT)) which
is supposed to be in CB(K (£3), CB(X(£2), B(£2))). Here “o” is the Schur product
on B(¢z) and “*” is transposition, with respect to a fixed orthonormal basis of
£,. We are grateful to Roger Smith for an example which shows that for fixed n
there is a unitary n x n matrix U,, such that the map S — S*o U, has c.b. norm
2 /n. (To be more specific, if w is a primitive n-th root of 1, let U, = 71;[w‘j].
Let A = [w™%e;;] € My(M,). Then A is a unitary, but the action described above
acting on A yields norm /n). This yields the desired contradiction.
The same argument gives the result for OS} with Schur product. 8

The last few results bring up the question of determining, analoguously to
our work in Sections 2 and 3 for £,, the possible operator algebra structures on Sp.

A
We saw that Max (£;) ® Max(€;) is an operator algebra with the usual
product. Another example of an 0.s.s on S; making it an operator algebra is

h .
(RN C) @ (RN C). The proof of this is just like the proof of the first part of

B
Theorem 6.1. We observe that (RNC) @ (RNC) is isometric to S, this is because
of the following contraclive factorization of the identity map:

Sy — Max (&) ® Max(£,) — (RNC) @ (RNC) —» R® C = 5.

The same argument shows that for any two o.s.s. E; and E; on £ larger than

RN C, we have that S; = E, é} E; isometrically, and that with this o0.s.s. 5y
is an operator algebra for the usual product. In particular, various interpolation
structures between RNC and Max (£3) yield operator algebra structures on $;. It
is also possible to show that all the 0.s.s.’s on S; discussed in this paragraph are
operator algebras for the Schur product. This is left to the reader.

On §; equipped with the usual product, the situation remains unclear, It is
easy to see that (S2)r = R % R and (S3)c = C % C are not operator algebras,
since the ‘two middle term concatenation’ is clearly not bounded. We saw earlier
that OS; is not an operator algebra. Let (S2)inc = (S2)r N (S2)c. We are also
able to show that this space is not an operator algebra for the usual product. In
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fact the simplest operator algebra structure on Sy we know is (S3)rne N K (€3), as
communicated to us by Haskell Rosenthal. To define this space, we consider S
as a subspace of K(£2) and endow S> with the largest matrix norm coming from
(S2)rne and K(£3). We claim that A = (S3)me N K(£2) is an operator algebra
structure on S3. Indeed it satisfies (1.13). This is because K(£;) is an operator
algebra, and because of the following completely contractive factorization (and its

companion column version):

h h h h h
AQA— (S ® K(H)2(R®R)® (CQ® R)
h h h h
“R@(R®C)®R— R® R=(S,),.

After hearing our announcement of Theorem 6.1, Haskell Rosenthal has found
and shown us another 0.s.s. on Sy which makes it an operator algebra for the usual
product. This structure is Min (S;}N(S2)mcNK (£2). It should be emphasized that
as a Banach algebra this is just usual S, it is the higher level matrix norms which
are different. We now give a proof using standard operator space identifications
([7], {17], [4]) of Rosenthal’s result. The usual multiplication gives a completely
contractive map

h
(6'2) "m : (32)r ® (Sz)c - OSl“cb <1
This is because we can factor the above map
h h h h A A h A
(S2)r ®(S2): Z(ROR)®(CRC)*RR(RIC)RC - RRC =08

where the “—” is given by the scalar valued (completely contractive) concatenation
of the two middle terms (see the proof of Theorem 6.1). We saw that A = (S3)ncN
K(£;) satisfies (1.13). Combining with (6.2) we see that OS; N (S2)nc N K (£2)
satisfies (1.13) and so is an operator algebra structure on Sj.

It is also clear from the above that for any operator space structure on S;
smaller than 05, S; N(S2)cnc N K(£€2) is an operator algebra structure on S; for
the usual product.

We now turn to the Schur product. By our analysis in Section 2, (S3);,
(S2)c, (S2)cnc and OS; are all operator algebras with the Schur product, since as
Banach algebras Sy with Schur product is just £2(N x N) with pointwise product.
Moreover:
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COROLLARY 6.4. For all 2 < p < oo, and with the Schur product, OS, ts
an operator algebra. For 1 < p < 2, and for any operator space structure on Sy,
Sp N (S2)inc is an operator algebra structure on Sp, for the Schur product.

Proof. In [3] we showed that K'(£;) is an operator algebra with Schur product.
As remarked above we have that OS5, with Schur product is an operator algebra.
The first result follows by interpolation. The proof of the second assertion follows
from statement (6.1) using the trick we used above to show Rosenthal’s result. 8

There is another device whereby to manufacture operator algebra structures
on various operator ideals with the Schur product, namely by taking the spatial
tensor product of the operator algebras found in Sections 2 and 3. For instance,
Max (£2) was found to be an operator algebra, therefore Max (£2) ® Max (£3) is
also one. However, results of Paulsen ([39]), Junge and Pisier ([20]) show that
Max (£2) ® Max (£2) is bicontinuously isomorphic to S1, which gives another op-
erator algebra structure on S; with Schur product.

QUESTIONS 6.5. Some open questions that arose in our study of Sp:

(1) Is Max (S2) an operator algebra for the usual product?

(2) Let 1 < p< 2. Is OS, an operator algebra for the Schur product?

(3) Could S, with Schur product be a Q-algebra for any p not equal to 27
Indeed notice that by Corollary 6.4, Min (51} N (S2)rnc is & @-space structure on
S; which is an operator algebra for the Schur product. Is it a matricial Q-algebra?

QuESTIONS 6.6. General open questions:

(1) Is B(H) or £, (2 < p < c0), with an arbitrary Banach algebra multipli-
cation, bicontinuously isomorphic to an operator algebra? (This is an old question
of Varopoulos.)

(2) If A is a commutative Banach algebra such that Min A is an operator
algebra, then is A a Q-algebra? Is Min A a matricial Q-algebra? If Min A is an
operator algebra and a Q-algebra then is Min A a matricial Q-algebra? If Min A
is a matricial Q-algebra, then is it an injective algebra in the sense of Varopoulos
(see Remark 4.9)7

(3) If A is a unital Banach algebra satisfying von Neumann’s inequality, then
is A bicontinuously isomorphic to an operator algebra? (See remarks at beginning
of Section 6.)
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