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ABSTRACT. For any absolutely continuons contraction operator T on Hilbert
space we produce a Borel set Xr contained in the unit circle T; X7z local-
izes a sequence condition which, obtaining on all of T, is equivalent to the
membership of T" in Ay, (the most restrictive of the classes of contractions
arising from the Scott Brown theory). By conmsideration of Xr along with
other subsets of T arising naturally from the minimal isometric dilation apd
minimal coisometric extension of T', we improve known results on the struc-
ture of dual operator algebras. Further results include a new characterization
of membership in the class A1y, and that T € A n, implies T € Aq n,-
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1. INTRODUCTION

This paper is a continuation of the sequence [11], {7], and [9], and may be described
as an attempt to unify and clarify various concepts that appear in these earlier
papers by the introduction of a new subset of the unit circle to be associated with
any absolutely continuous contraction operator on Hilbert space. This set may be
described informally as a way to localize membership in Ay,, the most restrictive
of the various classes A,, , (definitions reviewed below); it is on this subset of the
unit circle that the “classical” Scott Brown approximation procedure works for a
general absolutely continuous contraction. As a consequence of our new results,
we obtain improvements of the major theorems of [9] and [18].

We shall suppose that the reader is familiar with the basics of the theory
of dual operator algebras, and the notation and terminology herein coincide with
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those in [5]. For the reader’s convenience, however, we begin by recalling some of
the most important notation and terminology that will be needed below. Through-
out this paper D will denote the open unit disc in the complex plane C, T the
boundary of D, N the set of positive integers, Np the set of nonnegative integers,
and Z the set of integers. If A C D we write NTL(A) for the subset of T consisting
of all non-tangential limits of sequences from A. We will say that A is dominating
for a subset ¥ of T if £\ NTL(A) has Lebesgue measure zero (for the case © =T,
this notion originated in [6]).

For 1 € p € +oo, the spaces HP(T) and LP(T) are the usual Hardy and
Lebesgue spaces with respect to normalized Lebesgue measure m on T. Further-
more, H}(T) denotes the subspace of H!(T) consisting of those functions f whose
analytic extension to D vanishes at 0. If ¥ is an arbitrary Borel subset of T, we
shall denote by L?(Z) the (closed) subspace of L?(T) consisting of all (equivalence
classes of) functions f in LP(T) such that f vanishes almost everywhere (m) on
T\ E. The space H%(Z) is the closure in L2(L) of the linear manifold consisting of
those functions that agree (a.e.) with some polynomial on £, and if m(T\Z) # 0,
then one knows that H?(X) = L%(Z).

In what follows, H will denote a separable, infinite dimensional, complex
Hilbert space, and L£(H) the algebra of all bounded linear operators on . More-
over C,(H) C L(H) is the Banach space and ideal of trace-class operators under
the trace norm. If T € £(H), we shall write Ap for the dual algebra generated by
T and Qr for its predual C;(H)/* Ar, so Ar = Q% under the pairing

(A, [L]) = trace(AL), A€ Ar,L € Ci(H),

where [L] (or [L]r) denotes the element of the quotient space @ containing the
trace-class operator L. In particular, we will deal extensively with cosets of the
form [z®y] where zQ®y is the usual rank-one operator in L(H) defined by (z®y)u =
(u, )z for u in H. Note that [|[z ® 3]ll < [z ® yllc,r = = sl

Recall that if 7 is an absolutely continuous contraction in £(#), then the
(Sz.-Nagy-Foiag) functional calculus &7 : H*°(T) — Ay which maps f to f(T') 2
®r(f) is a weak*-continuous algebra homomorphism with range weak*-dense in
Ar, and thus is the adjoint of a one-to-one contractive linear transformation ¢r :
Qr — (L}/HL)(T) & LY(T)/HL(T) (see (5] for details). The class A = A(H) is
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defined to be the set of all absolutely continuous contractions 7" in £(H) for which
® 1s an 1sometry. It follows easily that in this case ®7 is a weak*-homeomorphism
of H*°(T) onto Ar and ¢r is a surjective isometry. If T' is an arbitrary absolutely
continuous contraction in £(*) and ¥ is a Borel subset of T, then we say that
L is essential for T if ||f(T)] 2 ||f|Z]lco = esssup(|f|Z|] for every function f in
H*®(T). (Thus T € A if and only if T is essential for 7.) We shall use some of the
results about such sets from [8], where they seem to appear explicitly for the first
time.

We recall now the properties (R, ) and (Rpm (7)), where m and n are
any cardinal numbers satisfying 1<m, n<Ro. A dual subalgebra A of L(H) has
property (Ap ) if, for every doubly indexed family {[L,J]}ZE.J((,: of elements of

Qa = C1{H)/* A, there exist sequences {z;}ogicm and {y;}og;<n of vectors from
‘H such that

(1.1) (Li;] = [2:®y;], 0<i<m, 0<j<n

A dual algebra A has property (Am ,(r)) for some r > 1 if, for every doubly
indexed family {[L ,_,]}o<‘<m of elements of 4 such that the rows and columns
085 <

of the matrix ([L;;]) are summable and for every s > r, there exist sequences
{#:}ogiem and {y;}ogj<n from H satisfying (1.1) and also the inequalities

llesl)* < s Z L)), 0<i<m,

0gj<n

lyll? <s D L)l 0<i<n
0€i<m

It is obvious that if rn and n are finite cardinals and A has property (Am n(r)) for
some 7, then A has property (A, »). Furthermore, an easy scaling argument shows
that if A has property (A y,(r)) for some r, then A also has property (Ajx,).
The class A, » = A n(H) is defined to be the set of all T in A(H) such that the
dual algebra Ar has property (Am ). The classes A, = Ap n, 1 € n < Rg, were
introduced in [4] and have played a major role in the theory of dual algebras (see,

g-, [5]). One knows, in particular, that A = A;(1) ([2], [8]). One also knows that
T € Ay, if and only if 7" € A; x,(r) for some 7 > 1 ([9], Theorem 6.2).
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2. PRELIMINARIES ON UNITARY DILATIONS

If T is an absolutely continuous contraction in £(), then T has various unitary
dilations, and it will be convenient in what follows to employ a certain class of
these. We introduce now the notation for such a dilation. Let D be a complex
Hilbert space satisfying 1 £ dim(D) < Rg , and denote by L%(T,D) the Hilbert
space of (equivalence classes of) Lebesgue measurable, square integrable functions
z : T — D with the inner product defined by

(z1,22) = /(rl(e“),:cg(e"))p dm.
T

One may define an operator U on L%(T,D) by setting
(2.1) (Uz)(e*) = e*a(e), z € L¥T,D), €T,

and it is easily seen that U is an absolutely continuous unitary operator in
L(L?(T,D)) which is, in fact, a bilateral shift of multiplicity dim(D). For @ and y
in L2(T, D), we denote by = ¢ y the function in L!(T) defined by

(z " y)(e") = (z(e*), ("))

and by [z * y] the projection of z  y into the quotient space (L*/HE)(T). Note
also that if z € L%(T,D) and I is a Borel subset of T, then xrz (defined pointwise
in the obvious way) is another function in L%(T, D).

It is well known that if 7" is any absolutely continuous contraction in L(%),
then one may choose D to be a separable Hilbert space of sufficiently large di-
mension in order that T will have a unitary dilation of the form (2.1}. In other
words, up to unitary equivalence, we may regard H as a subspace of £ = L¥(T,D)
which is semi-invariant under the unitary operator U (defined in (2.1)) and T" as
the compression of U to the semi-invariant subspace H. (Of course, U may not be
the minimal unitary dilation of T, but this will cause no problems.)

2.1. NoTATIONAL CONVENTIONS. Throughout the remainder of this paper, when-
ever an absolutely continuous contraction 7" in £(H) is under consideration, we
shall assume that a space D and a unitary operator U of the form (2.1) acting on
K = L*(T, D) have been fixed such that H is a subspace of K, semi-invariant under
U, and T is the compression of U to H. Moreover, suppose {Tj € £L{H;)};ecs is
some finite or countably infinite sequence of absolutely continuous contractions,

and the direct sum 7' = @ Tj acting on H=@ H; is under consideration. Then,
jeJ jeJ
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by what has just been said, we may and do suppose that for cach j € J, a space D;
and a unitary dilation U; € L(L%(T,D;)) of T} of the form (2.1) have been fixed,
and furthermore we suppose that the unitary dilation U of T of the form (2.1)
that is fixed is U = @ Uj, which of course may be identified with the operator
jeJ
z(e') = ez (e') on L2 (T, 4 Dj).
jed

Returning now to the situation in which a single absolutely continuous con-
traction 7' in L£(H) is under consideration with unitary dilation U acting on
K = L*T,D) D H, we remark that it is well known that the compression of
U to the semi-invariant subspace K- = \/ U™H is the minimal coisometric

nNo—-00

extension (m.c.e.) of T (cf. [21]), which will be denoted consistently by B.. Using
the Wold decomposition, we may write X = S @ R. and B, = S* & R, relative
to this decomposition, where S* is a backward unilateral shift of some multiplicity
(not exceeding dim(P)), and R, is a unitary operator. (Of course, either of the
spaces S or R, may be the space (0).) If R. # (0), then one knows that R. is
an absolutely continuous unitary operator, and thus there exists a Borel subset
¥. = Z.{T) (unique up to sets of measure zero) such that m|X, is a scalar spectral
measure for R.. We shall denote the projections in £(K_) onto S and R. by Ps
and Pp, respectively. Similarly, the restriction of the unitary dilation U to the

o3
invariant subspace Ky = \/ U™H is the minimal isometric dilation (m.i.d.) B of

T, and (via Wold), we mg,;owrite Ky =8 ®R and B = S, @ R relative to this
decomposition, where S, is a (forward) unilateral shift of some multiplicity (not
exceeding dim(D)) and R is an absolutely continuous unitary operator. (Again,
cither summand 8. or R may be (0).) We write £ = E(7") for the Borel subset
of T (again, unique up to sets of measure zero) such that m|X is a scalar spectral
measure for R. We also write Ps, and Px for the projections in £(K;) whose
ranges are S, and R, respectively, and Py for the projection in £{K) whose range
is H. (Please note that we have thus far introduced projections with three different
domains: K_, K4, and K.)

NOTE. We alert the reader who has read [11] or [9] that we have made a
shight change of notation. In those papers the m.i.d. of an absolutely continuous
contraction T did not appear, and what we are denoting as R, and X, herein
was denoted in those earlier papers by R and T, respectively. We have made this
change to conform to the standard notation concerning residual and *-residual
parts of T' appearing in [21].

The following summarizes some known results that we shall need relating
the various [z - y] and [z ® ).
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ProrosiTioN 2.2. Suppose T' is an absolulely continuous coniraction in
L(M), U 1s its unitary dilation in L(K) = L(L*(T,D)), B. is the minimal coiso-
metric extension of T in L(K_), and B is the minimal isometric dilation of T' in
L(K).

() IfzeK_ andye Ky, then |z o y] = [Pnz ¢ Pryl-

(i1) For any f in LY(T), let {cn(f)}nez be the sequence of Fourier coefficients

of f. Then forz,y € H,

con(z Y y) = (Tz,y), calz " y) =(T""2,y), n€No.

(iii) For z,y € K, [I[z * 9]l| < [l= * wlls < lf=l} {loll
(iv) The following identities hold:
er(z@yr)=[="4, zyeH,
ep.(z®ys.)=[=" 4, zyek.,
ep(z®ls) = [+ " 4], z,yeKy,
eu(lz®@yu) =z "y}, z,y€k.
(V) If {T; € L(M;)}jes is some finite or countably infinite sequence of
absolutely continuous contractions and T = @IT, with unitary dilation U = @J Uj
j€ jE

as in Subsection 2.1, then for any veclorsT = P z; andyy= P y; in H,
jEJ jel

@2 [E%9= er(E@7) = ¢z (Z[xj ® yj]) = [Z z; 7

jel jed ]pmg

(vi) If T € A(H) and z,y € H, then

iz @ vzl =z @ ys.ll = lllz @ ¥lsll = lllz ® Jull-

Proof. We mention only that (i) is [2], Lemma 3.1, and (i) and (iii) are
essentially contained in [5], Proposition 9.3. The conclusions (iv) and (v) are
elementary, and (vi) follows from (iv).

Remark that in this setting (i) above shows that, for fixed T in L(H) and =,
y in H, the sequence of Fourier coefficients of z * y is independent of the particular
choice of U of the form (2.1). 1

The following definition introduces a very useful analog of the sets Xp(Ar)
of [5], Definition 2.7.
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DeFINITION 2.3, If T is an absolutely continuous contraction in £(H) and
0 € 8 < 1, we denote by Xy(Ap) the subset of (L!/H})(T) consisting of those
cosets [f] for which there exist sequences {z,} and {y.} in the (closed) unit ball
of H satisfying

() limsup [[£] = pr(2n ® Iz < 0, and

(b) ez ([zn ® wlr)ll + [l ((w @ yalr)ll — 0, w € K.

Observe that since g7 is contractive, it is sufficient for (b) to have

llzn @ wlr|| +ll[w @ yalrl] - 0, weH.

Observe also that by Proposition 2.2, if U is the unitary dilation of 7" in
L(L*(T, D)), then (a) and (b) are equivalent to

(') limsup [|[f] = [&n - ynlll € 8, and

() llfzn * Wl + [lfw ? yalll = 0, w € H.

PRroPOSITION 2.4. If T is any absolutely continuous contraction in L(H),
0 <8 <1, then pp(Xs(Ar)) C r?a(.AT) and r?g(.AT) s absolutely conver and
closed in (LY /H})(T). Furthermore the family {fg(AT)}gE[g 1) s decreasing (with
0) and if {8,172, is any sequence of clements of (0, 1) tending to 0, then Xo(Ar) =

Q} 2y, (A7),

Proof. That @r(Xe(Ap)) C fg(AT) 1s immediate from the definitions, and
that Xs(Ar) is absolutely convex and closed is proved in the same way as is Xy (Ar)
(see (5], Definition 2.8).

In the last assertion, the containment XO(AT) - ﬂ Xg (Ar) is immediate
j=1
from the definitions. For the reverse containment, let {6;}72, be such a sequence

and let [f] € ﬂ Xga (Az). To show [f] € Xo(Ar), it clearly suffices to produce

sequences {a:,,} and {yn} in the closed unit ball of H satisfying

(23) A1~ pr(za @udll < =, meEN,
and
(24) llza @ wlll + 11l @ 3ol 0, w e

To achieve (2.4) it suffices to fix a countable dense subset {wy} of H and arrange
the sequences {z,} and {y,} to satisfy

1
(2.5) Mzn @ welll + llwe @ gl < —, 1<k <n, neEN,
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as well as (2.3). We turn to the construction of the requisite sequences.

Let n € N be arbitrary, and choose some j € N such that §; < 1/n. Since
[f] € Xo,(Ar), there exist by definition sequences {z,}p=; and {y}%_, in the
unit ball of M satisfying

(2.6) limeup 7] — pr(h ®UADI < < 7.
and
@.7) tim(llz}, @ wll+ fwe il =0, we .

From (2.6) we conclude that there exists M; € N such that

(2.4) 1= er(led, ®UADI < 5, m > M.

Furthermore, since n is fixed it follows from (2.7) that there exists M> € N such
that

.- , 1
29 b owl+lmewll<-, 1<k<n m> M,

Set mg = max(M;, M;) and let z, = x,{ln and y, = y,:’,;u. It is immediate from
(2.8) and (2.9) that z, and y, are as needed to satisfy (2.3) and (2.5), and the
proof is complete. 1

3. THE SET X1

The following proposition introduces the central new construct of this paper.
Throughout the paper, expressions such as maximality, uniqueness, and equal-
ity of Borel subsets of T are to be interpreted as pertaining to the equivalence
classes arising from the relation “equal a.e. (m}”.

PROPOSITION 3.1. If T is any absolutely continuous contraction in L(H),
then there exists a (unigue) mazimal Borel subset X of T such that

{(Florym = £ € LX), Ifll < 1) € Zo(Ar).
Proof. Let F denote the collection of all Borel subsets ' C T such that
{IA1: £ € ZX(F), Ifll: € 1} € Xo(Ar),

ordered by inclusion. To obtain a maximal element, we show first that F is closed
under countable disjoint unions. If F, F' € F, FN F’ = §, and f belongs to the
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unit ball of L}(F U F’), then it is straightforward to check that the set Xo(Ar)
is absolutely convex and then, since [f] is an absolute convex combination of the
elements [f|F/||fIF|l1] and [f|F'/||fIF']], that [f] € j.;o(AT). The result for
countable disjoint unions {F,}5%; follows in an analogous way from the fact that
= [ 1fl dm = [|flly < +oo for [ in L (U Fn). Now let {F,}%., in F be an
incigasing sequence such that m(F,) — 512; m(F). From the above we ecasily

deduce that | J F, is a maximal element in F. 8
n

NoTE. We observe for future use that if ' € A, so that ¢p is a surjective
isometry, then the set X7 can be identified as the maximal Borel subset Y of T
such that

{ez'(IF]) : £ € LX), |IFlh < 13 € Xo(Ar).
(Condition 2a in the definition of Xo(.Ar) in [5], Definition 2.7, was subsequently
seen to be unnecessarily complicated and replaced by
Nz:®@ A+ llz@ull -0, z€K)

We now begin to study various properties of the set X introduced above.
For this purpose we need some auxiliary operators.

DEFINITION 3.2. If T is any Borel subset of T (satisfying 0 < m(I') < 1),
we denote by My the absolutely continuous unitary operator on L?(T') defined by

(er)(eit) = eitm(eit)’ z € LZ(F), eit c T,

and by Mr the direct sum of Rq copies of Mr acting on the Hilbert space LX) =

@ LAT). If z € L*(T) we denote by &(n) the vector in L2(I') given by
neN

#(n) = (0,...,0,2,0,..),
N s

n—1

i.e., the = occurs as the n-th component of #Z(n) and is the only nonzero component

of Z(n).

Our first result will be a useful tool in what follows.
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PROPOSITION 3.3. Let T be an absolutely continuous contraction in L(H)
and set T' = T\Xp. Then T is the (unique) minimal Borel subset of T such that
T'r 2 T® Il’:fp € Ay, -

Proof. For brevity let us write T=Trand H=H® EZ(F). Suppose [irst
that f € L'(T) and ||f[ly € 1. We wish to show that [f]r:,5:1 € ‘f@(Af), and to
this end we write f = f| X7 @ f|T. By Proposition 3.1, [f|X7] € /fg(AT), and if
we can show that [f|T'] € Xo(A i#.)» then a computation like that alluded to in the
proof of Proposition 3.1 will show that [f] € .fg(.A,F). To see that, [f|I'} € (?Q(.Aﬁr),
note that we can write f|T' = gh, where g, h € L%(T) and {|g||2 = {|R[)3 = ||/l < 1.
We define the sequences {&,} and {fn} in the unit ball of L(T) by %, = g(n)
and ¥, = I~z(n), n € N. An easy calculation shows that Z, o un = fIT and also
that ||Z, o wlj; + ||w o ¥n|l1 — 0 for any fixed w in L2(T), where U, is the
canonical unitary dilation of Mp given by Subsection 2.1. Thus {f|T] € Xo(A i)
and [f] € fo(Af). Therefore, cp%l(Ball(Ll/Hé)) = Xo(Az) and, to complete
the proof, it suffices to show T € A. To that end, let [L] be in the unit ball of
L} /H}; then there exist sequences {z,} and {yn} in the unit ball of H such that
[L] = lim[zn - yu). Thus | < A,[L] > | = lim |(A(D)n, ya)| € IL(T)||. Since this
holds for each [L] we have ||h(T)|| 2 ||A]], so @~ is an isometry and 7 € A. Hence

'O(Af) is the unit ball of Qf, from which 1t follows that A? has property Xy,
(cf. [5], Definition 2.8) and thus that, at least, Tt € Ay, ([5], Proposition 6.1).

To see that T' is the smallest Borel set F' such that 'f’p € Ayg,, we now
suppose the contrary, i.e., we suppose that there exists a Borel set F' C I such
that m(T\ F) > 0 and Tp = T ® Mp € Ay, (H), where H £ H ® L(F). (We
shall show that this leads to a contradiction.) Since ’fp € Ag,, one knows that

- oo
Tr € () An ([5], Theorem 6.3), and thus, as in the proof of {5], Proposition 6.1,
n=1

for cach A in D, there is a sequence {Z, 1}5%; of unit vectors in H such that

A _ ~ ~
(3.1) [C\5, = ¢z (Palpymy) = [Bax ® Zn g,
and
(32) Enr ® Bz, [1 + |[B® Znnlz I = 0, BEH.

For each A € D and n € N, write Z,» = Znx ® Zn,x where 4\ € H and
Ina € Zz(F). By dropping to subsequences if necessary, we may suppose that, for
each X € D, there exists vy in [0, 1] such that ||, A||2 = ya. For each # in (0,1),
define

Ag={reD:y <6}
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It is easy to see that for any fixed A in Ay, we have [Px]i/m: € Xg(Ar). Indeed,
since [[£,A]|* — 7a, we have

(3.3) limsu.p“[(()@in,)\)@(O@:T:n,)\)]i;pﬂ < 7,

and since

() ®Enn) @ (Tnn & i'n,/\)]fp

(-4 = [(#n 2 ®0)® (22,2 © 0)]5, +[(0® 2n,3) ® (0 ® Fn,0)]5,

it follows from (3.1), (3.3), and the fact that {7, is an isometry that
limsup (|[Palpi/mz — %:F([(xn,)\ ®0)® (zn,x ®0)]]| < 7.
Furthermore, it follows from Proposition 2.2 (iv) and (v) that
limsup [Pl s — (22 © 2]l <72 <0,
and from (3.2) we obtain easily by taking w € H and @ = w @ 0 that
Iznx ® wlp| + |[w® zn ]|l = 0, weH.

Thus, by definition, []J)\]Ll/Hé’ € X, (Ar).

We show next that for each # in (0, 1), the set Ay is dominating for T'\ F'. To
see this, suppose that for some 6y € (0, 1), Ay, is not dominating for T\ F. Then
there exists a Borel subset I'g of I'\ ¥ with m(T'g) > 0 such that ToNNTL(A,,) = 0.
Trivially then, I'c C NTL(D \ Ag,). But for A in D\ Ay, we have using 7, = g,
(3.3), and (3.4), that

(3.5) limsup (|[Ca]z, ~ (0@ &, 0) @ (0@ En )5 I S 1= <110

by an argument analogous to the one just used, and since Pz is an isometry, we
have from (3.5) and Proposition 2.2 (iv) that

limsup (|[Pa]s/my — @7, ([Ena @ Zna)l| <1 =60, A €D\ Ag,.
Thus for any such A, and for any f in H*(T),

1£1Flloo > IFOTR > [{FWTr), on s @ 2],
= (. 047, B ® Eu o))
= (£, 1B = (£, [P] = (37, (B r @ Bn )]
> O = (1= 60)l1 oo
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Since NTL(D \ Ag,) D ', we obtain from this inequality that

(1 =60)ll flleo + If1Flleo Z If|Tolleo, f € H=(T),

which is an absurdity since FNTy = @ and g > 0. Thus A4 is dominating for I'\ F
for each @ in (0,1), and one knows from above that for each X in Ay, [Px]Ly, H €
Xg(AT) It follows 1mmed1ately from Lemma 4 of [15] and Proposition 2.4, that
for each # in (0,1), Ag(AT) contains the image of the unit ball of L}(T'\ F) in
(L/HE)(T). Thus (by Proposition 2.4 again),

W(Ar)= [ Xo(Ar)2{[fl€ L'/H} : f € LN\ F),||fllh < 1}.
0<B;<1
Thus ['\ F belongs to the set F of Proposition 3.1, and this contradiction completes
the proof. &

It will be convenient in what follows to record some consequences of the
above proposition and the techniques of its proof.

CoroLLARY 3.4. Let T be an absolutely continuous contraction in L(H).
Then

() T €Ay, ifand only if X0 =T, and

(i1) X is essential for T

Proof. The first result is immediate from Proposition 3.3, so we concentrate
on the second. Let W be an absolutely continuous unitary operator, and recall
that there exists a Borel subset £ of T (unique up to sets of measure zero) such
that m|Z is a scalar spectral measure for W. It is also well known that W € A
if and only if £ = T, and recall that W € A if and only if T is essential for
W. A little work with direct sums of unitary operators then establishes that £
is the maximal essential set for W. A further computation with the direct sum
T ® My\x, shows that X7 is essential for T. u

We single out as well an argument vital to the proof of Proposition 3.3 which
will be used again. Suppose given some direct sum T @ S on H @ H', some
(Calros = ¢rs([Paliryiy), and some sequence {3y = (£ )2, such
that

{Cilres = [z?f@’f Q@ zTOH ]T@S’ n=12....

One may argue, as in that proof, that if for some 8 > 0 the squares of the norms
of the {z7¢}2%, are bounded below by ¢ (equivalently, the squares of the norms of
the {z%'}2%, are bounded above by 1 — §), then [Py] € Xy(Ar). Henceforth we
shall refer to this argument as the splitting argument.

The next proposition establishes some elementary properties of the sets Xp.
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ProrosiTioN 3.5. Lel T and 1" be absolulely continuvous coniraclions in

L(H). Then
(i) Xr- = X7 2{€:6 € Xp};

(ii) XT@TI = Xr U Xy,

(iii) Xeiep = eigXT, e T;

(iv) if W is any absoluiely conlinuous unitary operator in L{H) then Xw is
the largest Borel subset of T on which W has infinite (spectral) multiplicity;

(v) f T and T" are similar, then Xp = Xpi:

(vi) for any set {X;}52; € D, if D is a normal operator with a diagonal
matriz Diag(};) relative to some orthonormal basis for H, then Xp = NTL({};});

(vii) of S is a unilateral shift of multiplicity one, then Xg = 0;

(viil) if T is an absolutely continuous contraction in L(H & H) having «a
matriz of the form

(3.6) T:(g ;),

then X’T 2 Xp U Xy,

Proof. Statements (i), (ii}, and (iii} can be given routine proofs hased on
Proposition 3.3 and well known properties of the class Ay, (cf. [5]). Moreover,
again using Proposition 3.3, (iv) and (vi) follow from [14]. Furthermore, (iv) and
(viii), applied to a bilateral shift of multiplicity one, together yield (vii), so we
content ourselves with the proofs of (v) and (viii).

Regarding (v) it will be useful to note that from (iv) and the definition
of Mr for any Borel subset I' of T we have X i = I'. Also, recall from [5],
Remark 2.1 that property (Ay,) is preserved under similarity. Since 7" is similar
to T, T=Ta MT\XT is clearly similar to T =T & MV\XT. Furthermore, T
is in Ay,, where we have used Proposition 3.3. Therefore Az has property {Axy}s
and so does Az, .

Since 1'is in Ay, , we know that for each A in D, there exist vectors z and y in
H such that [Cilr = [z®y]r. Suppose S implements the similarity between T" and
1", 50 ST'S™ =T it is straightforward to check that [Ch]z, = [Sz & (S”l»)y]i;,,
and it follows that @ is an isometry and 7’ € A. Since Az, also has property
(Rx,), we have T" € Ay,. Using Corollary 3.4 again, we have X~ = T. Then using
(ii) we obtain X7/ U X gy Xp U(T\X7) = Xz, = T. By Corollary 3.4 we
have T\ (T\ X7) C X7/, s0 X7 C X7+. Since the roles of T and 7" are symmetric,
we have the desired equality.
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To prove (viii}, recall first that if 7 € Ay, is the compression of an absolutely
continuous contraction T5 to a semi-invariant subspace, then 7> € Ay,. Now
observe from (3.6) that T & M(T\XT) has a matrix of the form

My, 0 0
T® Mer\xr) = 0 T =
0 0 T

Since A?(-I\XT)@T € Ay, using (ii), we conclude that T M(T\,\'T) & Ay, by using
the above fact about compressions. From an argument like that in the proof of
(v) it follows that Xz 2 T\ (T \ X7) = X7. The containment X7+ C Xz follows
similarly. @

We remark that, a priori, one could consider sets Xg7 C Tfor 0 < 8 < 1
maximal with respect to {[f]zi/m3 : f € (LY(Xer)N} € Xy(Ar). In this notation
X7 as defined above is Xp 7. But clearly 0 € ¢ < ¢’ < 1 implies Xp r C Xg/,p and
a moment’s calculation with Proposition 3.3 shows that in fact Xg7 = Xor = Xo
forall0g< @< 1.

Recall also that, for some ' C T, the set

((Aegy : £ € LT, IAIL < 1}

is used in the definition of the set Xr. One might consider instead

S = {[flymy £ € L) N Meaymy < 1)

in some definition analogous to that of Xo. However, as the following result shows,
for many I this set is surprisingly large {in fact, too large to be useful).

PROPOSITION 3.6. Let I' C T be any measurable set containing a nonempiy
open set. Then aeo{(f]s/m < £ € LX) A< 1} = (/D).

Proof. Let T be such a set. To prove the claim, it suffices to show that for
each A €D, [P,] is the limit of elements of {flevym - f € Ly, ANz <1},
so let A be arbitrary. Choose I/, an open interval contained in T', to be such that
0 < ||Paxrefhh < €/2. Since T\ T is closed and does not separate the plane, we
may use Runge’s Theorem to approximate Pyxy\r+ by some polynomial function
p of z,22,... so that
€

(3.7) [1PaxT\r — pxv\r+|)1 < min (_2, 1- HP,\XT\F'Hl)-

Then surely
€

IPaxnr = pxwrvellpym: < 5
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Also, since ||Paxm\rv — Pal] = [|Paxr|] < §, we have
NP = Iexwr\r oy < e
Note also that since p € Hy,
[pxm\r] = [pxmr = pl = ~[pxr],
so
(3.8) IPA) = [=pxr]llLo/m: <e

Also,
l=px ]Il = lpxr]llLey g
< llexmrlh
< lpxmvry = Paxnedls + 1IPaxredh

<1
using (3.7). Thus since I'" C I,

(~oxr] € {(floym: - f e MO ULy mp < 11,

and thus, using (3.8), we have approximated [P,] as desired. ¥

In the past decade of resecarch on dual algebras, the collections of A in D for
which [PA]L;/H& IS /?9(./{7’) for some 0 € § < 1 and some T" in A have played a
large role. We now investigate briefly these sets and their relationship to X for
an arbitrary absolutely continuous contraction T

DeFINITION 3.7. If T is an absolutely continuous contraction in L(M), we
denote by Ag{Ap) the set
Ao(Ar) E{AED: [Py € Xo(Ar)}, 030
PrOPOSITION 3.8. If T is any absolulely continuous contraction in L(H),

then {Ag(Ar)}oeo,1) is a nested family of seis such that

(3.9) ﬂ Ag(Ar) = Ao(AT),

[E¢ L !

and for cach 0 < 6 < 1, Xp = NTL(A4(A7)). However, for each Borel set T C T
such that m(T\T) > 0, there exists T' € L(H) such that Xp =T but Ao{Ar) = @.
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Proof. The result in (3.9) is immediate from the definitions. For the next
assertion, pick 8 strictly between 0 and 1. That NTL(Ap) C X follows from a con-
struction almost identical to the last construction in the proof of Proposition 3.3.
For the reverse containment, observe that 7' @ M—r\ xpr € Ay,. A repetition of the
splitting argument, slightly simplified by Proposition 3.5 (iv), yields the result.

To establish the last claim, let T be a Borel subset of T such that m(I') <
m(T). Let T = Mr & My\r acting on K = H' @ H? and write vectors with
respect to the obvious decomposition. Observe first that T € A and Xp = I' by
Proposition 3.5 (iv). Since 7" € A via the Note after Proposition 3.1 we may, and
do, place our argunients in Q7 instead of L!/H}.

Pick A € D, and suppose that A € Ag(A7). That is, there exist sequences
{2,122, and {y.}32, in the unit hall of K satisfying

“[C)\]T - [13,, ® yn]T“ 4 0,

and
(Ilzn ® wlrll + {Ifw @ yalr]l = 0, weK.

A brief calculation using {Ixc, [Ca]) = 1 and the {z,}5%; and {y»}5%, in the unit
ball of K shows that in fact

l[Cxlr = [zn ® zul7|| — 0,

and
I[zn ® wlr|| + [I[w @ zn)r|| — 0, weEK.

We first claim that with z, = z! @® 22 we have lim|[z2|| = 0. If not, by
dropping to a subsequence {z,,} we may assume that lim|jz2 [|> > § > 0. A
repetition of the splitting argument then shows that A € A&(AMT\F)- It follows
easily that A € As(Ag), where B is the bilateral shift of multiplicity one. But if
¢, is any Mobius transform it is well known that ¢,(B) is unitarily equivalent to
B, and an argument as in (5], Chapter VI, shows that D C As;(Ag). But then
B € Ay,, which is absurd. Thus l)m||:cn|[ =0, or equivalently, lim||z}|| = 1.

Consider next B = T'® ]an = MFGBMr\r @MT\F acting on H! @ H @ H3;
note first that B € Ay,. It follows easily from the above that

ICxlz — (27 ® 0 0) ® (z, ® 0 0)]5]| — 0.

Since B € Ay,, we may solve equations in Qg from initial data and with a good
control on the norms of the resulting vectors (cf. [5], Chapter III). It follows that
we may find sequences {v,}5%; and {w,}3%, in H! ® H? & H3 such that

[CAlg =vn ®wn]g, nEN,
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and

|lon — (z5, @ 0B 0)|| — 0

(3.10) -
[|wn — (z} & 0@ D) — 0.

In fact, by a standard device used in the proof of [5], Theorem 4.12, we may
actually find a sequence {un}2%; in H' ® H% & H® such that

(3.11) [CAlg = [un ®ual, mEN,
and
(3.12) llun — (25 & 0 & 0)]| — 0.

From (3.11) it follows that
(3.13) Py =up-un, nEN,

by a calculation of Fourier coefficients. (A general definition of “-” is found in
Section 1, but in this case u, may clearly be viewed as a “tuple” of functions
in L?(T). In this case “-” corresponds to the sum of coordinatewise function
multiplications.)

From (3.12) and (3.13) we obtain a contradiction, since {z} ® 0 & 0} is
a sequence of functions each with support on I', and the support of Py is not
contained in T'. Thus A & Ag{Ar), and we have Ag(Ar) is empty, as desired. 1§

We may now obtain the beginnings of some mapping theorems for Xr.

PROPOSITION 3.9. Let T be an absolutcly continuous coniraction. Then

(i) (X7)™ C Xpm, m €N, and

(ii) if ¢, is any Mébius transformation, then ¢,(X1) = Xo, (1)

Proof. We only prove (i) since the proof of (ii) is similar. Let 0 < 6 < 1 be
arbitrary, and note that by Proposition 3.8 it suffices to show that (Ag(Ar))™ C
Ag(Apm). Suppose first that 7 € A(K). If X € Ag( A7), let {z.}3%; and {yn )7L,
be sequences in the unit ball of H satisfying

limsup ||[Calr — [2n @ ynlri € 6,

and
llzn ® wlr|l +|[w @ yalrl| = 0, weH.
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A routine computation using

llz®yrll= sup  KAT)[z@ulr)l
seH= |I7lIs1

and the analogous fact in Q= shows that {2,}52, and {yn}5%, are satisfactory
sequences to put A™ in Ag(Agm). Thus the result holds for T € A.

For T merely an absolutely continuous contraction an analogous argument,
now of necessity in L'/H} instead of Qr, works cqually well. Alternatively, one
can use Proposition 3.3 and for T =TeMr acting on H@H’ define some auxiliary
sets A} (Az) to consist of those A for which there exist sequences {z,}5%; and
{yn}32, in the unit ball of H so that kmsup {|[Ci)z — [(zn ©0) ® (va ® 0)]5]| < 0

and [|[(zn @ 0) ® (w @ 0))| + [|[(w @ 0)% (4o ®0)]z| = 0, forallweH. 8

The matter of the reverse containment to that of (i) will be discussed at
length in Section 5.

4, OTHER BOUNDARY SETS FOR A CONTRACTION

We turn next to a consideration of some other subsets of T associated with an
absolutely continuous contraction T. Recently, various authors have used the sets
.(T) and (T (defined in Section 1) to settle some fundamental questions in
the theory of singly generated dual operator algebras (see, for example, (2], (8],
and [9]). We use these sets along with Xr to give, among other results, a new
characterization of the class Aj x,.

The papers [1], [3], and [2], as well as the parallel work in [8] (each of which
culminated in the proof that A = A;) contain results fundamental for work “on T”
for operators in the class A. We assemble some of these resulis here, preparatory to
their use in conjunction with the set Xp. The following is from [3]. The rcader is
referred to Section 2 for our notation and conventions concerning unitary dilations.

THEOREM 4.1. Suppose T € A(H) has o unilary diation U acting on
LT, D). Given f € LY(T), € > 0, and vectors wy,ws,...,ws in L*(T,D),
there exist vectors z and y in H such that

() ll=ll < A2 sl < LA,

(it) (z,wj)eaer,py = (v ws)rr,p) =0, 1 <j < m, and

(i) If =z “ gl <&

The following is the vanishing lemma in [2], Lemma 3.3 (see also [11], Lem-
ma 3.8).
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LEMMA 4.2. Let T, U, and L*(T,D) be as in the previous theorem.

(1) If {zn}3%; C & is a sequence weakly convergent to zero and w € K_,
then ||[zn © w]|] — 0.

(1) If {yn}3%1 C S. is a sequence weakly convergeni to zero and w € Ky,
then (|[w * ynlll ~ 0.

We now give the characterization of the absolutely continuous contractions
in the class A which is implicit in [2] and [8], Lemma 5.1.

THEOREM 4.3. Let T be an absolutely conlinuous contraction. Then T € A
if and only if T = Xp U T (T) U E(T) (where this equelity is interpreted as up to
a set of measure zero).

Proof. It is straightforward to show that if T = Xp UZ.(T)UE(T) then T
is essential for 7" using the techniques in [11} and [2], and thus 7" € A.

For the reverse direction, let T' = T\ (E,(T) UZ(T)). If m(I') = 0 there
is nothing to prove, so suppose not and let f in L*(T) be of norm one. Using
Theorem 4.1 it is easy to comstruct sequences {z,}5%; and {yn}5%; in the unit
ball of H each weakly convergent to zero and satisfying '

(4.1) 1f = ®n = yalls = 0.

Since f = f|T" has norm one and {z,}5%, and {y,}32, are in the unit ball it is
clear that

ixT\rzall = 0, and |xm\rymll — 0.

So clearly

(4.2) lIxz.(myzall = 0, and {Ixse)vall — 0.
dbserve that for all z in M

(4.3) Xz.ryPr.2 = Pr,z, and xgr)Pre = Prz.
From (4.2) and (4.3) we have

(44) I1Pr,zall = 0, and ||Pryall - 0.

Since £, = Pstn @ Pr,zn and yn = Ps,yn ® Prin, and using (4.1) and (4.4), it
follows that

(4.5) If = Pszn * Ps,ynll = 0.
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Certainly {Psz,}5%, and {Ps,ya}S2, are weakly convergent to zero. Thus since
HC Ky NK_ we may cite Lemma 4.2 to conclude

(46) IlPszn = wlll+(llw " Ps.walll =0, we.
Finally, transferring (4.5) into L'/H} and using Proposition 2.2 (i), we obtain

N} = [PrPszn © PrPs.yalll — 0,

and
N[PxPszn * wll| + |I[w " PuPs,yulll =0, weH.

By the remark following the definition of Xy(Az) we have [f] € Xo(Ar) and hence
F=T\(E.(TYUZ(T)) C Xg as desired. &

The following corollary extends this result to T assumed only to be an abso-
lutely continuous contraction, and the next proposition to operators in the classes
Clo, C.1, and so on. Recall that for such a T, ess(T) denotes the maximal subset
of T essential for 7T

COROLLARY 4.4. Lel T be an absolulely continuous coniraction. Then
ess(T) = X UZ.(T) U E(T).

Proof. Tt suffices to consider T My\ess(ry- 1

PROPOSITION 4.5. Let T be an absolutely continuous coniraction. Then
(i) T € Co tmplies ess(T) = Xqp UL (T);

(ii) T € Cy. implies ess(T) = X7 U(T);

(iii) T € Cqo tmplies ess(T) = X7;

(iv) T € Cy. implies ess(T) = X7 U S.(T),; and

(v) T € C; implies ess(T') = X7 U Z(T).

Proof. We prove only (i) and (iv), since the others follow easily. For (i)
we begin with the case T € AN Cy. From [10}, Lemma 2.7, we have that if
{zn}sZ1 € H is any (bounded) sequence converging weakly to zero then

(4.7) lza @ wlrll = 0, weH.

For some f € L!(T) of unit norm supported on T\ E.(T) a construction as in the
proof of Theorem 4.3 yields a sequence of vectors {z,}3, and {PyPs, yn}52, in
the unit ball of H such that

If = 20 PuPs,yalli — 0.
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Now use (4.7) and Lemma 4.2.

For an absolutely continuous contraction T in C. but not in A, choose
{An}i; € D such that NTL({An}22,) = T \ ess(7"). Form 7' & Diag(),) and
combine the result just proved with Proposition 3.5 (vi).

The result (iv) follows from the proof of [9], Theorem 7.2 or from [8], Corol-
lary 7.4. 1

Recall that with the class A; y, there arc associated sets £ (see [11] and [9]):
for T'€ A(H) and 0 € @ < 1 the set & is defined to be the set of all [L] € Q7 for
which there exist sequences {z,}5%, and {yn}3%, in the unit ball of H such that

limsup ||[L] ~ [z, @ w))|| < 8,

72—t OO

and
llzn ® wlr(l =0, weH.

Similarly, associated with Ay, ; there is a set £ defined to be the set of all [L] € Q¢
for which there exist sequences {z,}32, and {y,}32; in the unit ball of H such
that

limsup {|{Z] - [zn @ yu])I| < 6,

11 =+ OQ
and
Hlwulrll—0, weH.

{These sets were originally defined with further condition, later seen to be super-
fluous, namely that {y,}3%, [respectively, {z,}52,] tends weakly to zero.) The
reader may be impelled to embark upon the definition of yet another subset of T
as follows: define, for 7" an absolutely continuous contraction, the set E; (A7) to
be the set of [f] in L!/H} for which there exist sequences {£,}3%; and {wm}3%,
in the unit ball of M satisfying

limsup ||[f] — er([zn @ y])]| € 8,

n—00

and
Her([zn ® wlp)|| — 0, weH.

Then find a set Fr maximal in T for which {{f]L./my : f € LY (Fr),[Iflli €1} C
& (Ar).

An impediment is that £5(Az) is not known to be convex, so the “well-
definition” of Fr is unclear (indeed, even in the case T' € A it is not known in
general whether £5(Ar) C Q7 is convex). The following shows this scheme to
associate a boundary set with gg (Ar) is in fact unnecessary.



368 BERNARD CHEVREAU, GEORGE R. EXNER AND CARL M. PEARCY

THEOREM 4.6. Lei T be an absoluiely continuous contraction. Then T €
Ry n, [respectively, T € An, 1] if and only if T = Xqp UZ.(T) [respectively, T =
Xp UZ(T)).

Proof. 1t follows easily from the techniques of [9] that if T = XpUZX,(T") then

T € A and in fact T € Ay x,, so we concentrate on the reverse implication. From

[9], Theorem 5.4 we know that 7" has a “full analytic invariant subspace” M. It

suffices for our purposes to note that M = \/ ker(T|M—X)* so T|M € C.o by [10]
AED

and that o(T|M) = D so T|M € A. It then follows from [9] that T'|M € Ay x,. By
Proposition 4.5 we have Xp s UE,(T'[M) = T. Since any coisometric extension of
T is a coisometric extension of T'|M, we have L, (T|M) C L.(T), and Xpjpm € X7
from Proposition 3.5, and the result follows. The other statement follows from this
one upon taking adjoints and using £,(T*) = L(T). &

Before considering the extension of the last result to absolutely continuous
contractions we need the following.

PRrROPOSITION 4.7. Let T be an absoluiely continuous contraction. Then for
each0 <8 <1,

{IA]: f € LMS.(TY)n} C & (Ar).

Proof. Consider first the case in which T € A. A modification of the argu-
ment in [11], Theorem 3.11, allows one to construct the requisite sequences. The
key is to use the fact that if B is the bilateral shift on K and z, y are in K then
I[B*x®y]g|l — 0. The case T merely an absolutely continuous contraction follows
from a consideration of T'® My\x, () and the usual splitting argument. &

We remark that for the case T € A we may actually get
{(: f € LNET)H)N) € E(Ar)

and this provides a direct proof that the properties Ef ; and Fg, of [9] are equiv-
alent.
The following proposition now gives us a boundary set associated with

E(Ar).
ProPOSITION 4.8. Let T be an absolutely continuous contraction. Set Ep =
Xt UZ.(T) and B4 = Xp UZ(T). Then

{(f1: f € (L' (BRI} € &5(Ar)

and EY is a mazimal subset of T with respect to this property. Similarly,

{{f]: f € (B (BE))) C E&(Ar)
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and E} ts mazimal with respect to this property.

Proof. By duality it suffices to prove the first claim. To show the contain-
ment, write f in (L'(B}))1 as fls.cr) + flxr\s.(r)- Then use Proposition 4.7,
the sequences of vectors available for each summand, and the two-sided vanishing
conditions arising from .i;g(AT) on the sequence for f{x,\z,(r) to get a sequence
for [f].

For the maximality, suppose that I is a Borel subset of T such that Ef C I',
m(T' \ E3) > 0, and

{l7]: f € (LX(T)1) C &G (Ar).

It follows easily that T=Ta® My\r CA1n, and thus T = XzU E,(Tv). But this
requires T = Xp U Z,(T) U (T \I'), which contradicts the choice of I'. &

We observe in passing that the following, first noticed in [19], is immediate
from Proposition 4.8 and Theorem 4.6.

COROLLARY 4.9. LetT be an element of Ry x,. Then £5(Ar) = (Qr)1, and
15, 1 particular, conves.

The techniques of [9] and the proof of Proposition 4.8 yield as well the fol-
lowing, where o.(1") denotes the right spectrum of 7.

CoRroLLARY 4.10. Lel T be an absolutely coniinuous contraction. Then
NTL(o.(T) N D) C Ef = Xr UZ.(T).

The result of Proposition 4.8 shows that ET. is the appropriate subset of T
to associate with fg (Ar). We leave to the reader the results for this set analogous
to those for X7 contained in Proposition 3.5.

The following may be deduced from Theorem 4.3 and elementary considera-
tions. For ease of notation, we leave to the interested reader some generalizations
from T" in A to T merely assumed an absolutely continuous contraction.

CoroLLAry 4.11. If T € A and T, (TYNE(T*) C Xo U Xp» then TOT" €
A],No nANo,L

COROLLARY 4.12. Forn € N, denote by S, the unilateral shift of multiplic-
iy n. If T s an absolutely continuous contraction then T & Sy € A; n, implies
T €Ay x,.

CoROLLARY 4.13. Let T € ANC. For any subspace M semi-invariant for
T, ess(Ta) \ X C Zu(Taa).

We close this section by sharpening somewhai some results of Saina and
Ouannasser. They consider in [20] and [18] respectively the multiplicity on X, (7')
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and £(T') of the operators R, and R; in particular, Ouannasser uses this to answer
the long standing question “If T € A, is T(*) € A,?" in the affirmative. The
machinery of X sets developed above allows one to see that the crucial sets for
consideration of multiplicity are in fact £.(7")\ X7 and Z(T)\ Xr. This approach
yields the following modest generalizations of the main results of [20] and [18]
respectively.

THEOREM 4.14. Let T € Ay, and let B, = 5* & R, be ils minimal coiso-
metric extension. Suppose that on £,(T)\ Xr the operator R, has uniform maul-
tiplicity al least n. Then T € A, .

THEOREM 4.15. Let T € A(H) and let

o f{To =
r= ( 0 Tl)
be ils triangularization with respect to Ho®H,, where Hg = {z € H : ||T"z|| — 0}.
Denote the minimal isometric dilation of Ty by So @ Ro and let £° denote the
Borel set such that m|Z° is a scalar spectral measure for Ro. Denote the minimal
coisometric extension of Ty by S} @ Ry and let &L denote the Borel set such that
m|Ll is a scalar speciral measure for Ry. If Ry [respectively, R;] has uniform
multiplicity at least n on'£%\ Xp [respectively, TL \ X7] then T € A,;.

In general, the question of when membership in some class Ay, » yields in-
formation about multiplicity is open; see [14], [12], and [13] for positive results for
normal operators and C.g or C1; operators with finite defect indices.

5. MAPPING THEOREMS FOR X

In this section we return to the question raised at the end of Section 3 regarding
the relationship between (X7)" and Xz». While the containment (X7)" C Xpn
is straightforward, the reverse containment is not so easy but potentially more
important. Suppose one has an operator T whose norm equals its spectral radius,
and one is looking for invariant subspaces; there is clearly no harm in assuming T is
a contraction. The techniques of [16] and [17] allow one to exchange a contraction
T satisfying merely o(T) N T # @ for another contraction A(T) with o(A(T))ND
dominating on a large subset of T and also satisfying Lat(h(T)) = Lat(T). If one
knows how to deduce from S? € Ay, the existence of a non-trivial invariant sub-
space for S, an application of this to h(7") (plus elementary arguments) produces
a non-trivial invariant subspace for T. (See [17] for a full discussion of this and
related approaches.)
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The passage from information about 72 to information about T appears to
be hard. Therefore the containment Xp2 C (X7)? and its analogies for £} and
E% are a start, allowing one to deduce something about 7" from information about
T?. We begin with some preliminary lemmas.

LemMMa 5.1, Let N be a positive inleger. Any h in H® can be writien
(5.1) h(z) = ho(zN) 4+ zhi(ZN) + - 4 2V TRy _a (27),

where hy € H*, 0 < j < N — 1; morcover, the {h;} may be taken to satisfy as
well
[1Bslloo < {lPlleoy 0<F< N -1

Proof. Given N and h as above, it is clearly possible to write h as in (5.1)
with analytic Aj, so it merely remains to check the norm conditions. Let p denote
some N-th root of unity so that 1,p,..., p?¥~! are the N-th roots of 1. Assuming

his written as in (5.1) we have

N-1
(5.2) h(p*z) =Y M 2ihi(2N), 0Kk N -1
j=0

Obhserve that

2

-1
prHEM =0 0K mESN -1, m#£L
0

B
It

Using this, and adding the N equalities in (5.2), we obtain
N-1
Nho(z") = Y h(p*2),
k=0
from which the norm condition on Ay follows easily. Similarly,
N-1
> pHh(pkz) = N2tho(N), 0<e< N -1,
k=0

from which the condition follows for the other h;. &

The next two lemmas are preparatory to mapping theorems for Xr under

powers, and we omit their computational proofs.
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LEMMA 5.2. Let I’ be a Borel subsel of T, N a positive integer, and p an
N-th root of unily as in the preof of Lemma 5.1. There ezists a Borel subsel v of
T such that YN =T and p*vyNply =0, 0 < k,j < N~ 1, k # j. Further, let

¥= U p*v; then for any h in H*, fh(z) dm(z) = fho(w) dm(w), where
0Lk<N~1
hg ts defined as in Lemma 5.1 and m ts Lebesgue measure on 1. Note also that

m(3) = m(T), and that 5 = {s € T: sV €T}

LEMMA 5.3. Let T in L(H) be an absolutely continuous contraction, N a
positive integer, and p an N-th root of unity as in the proof of Lemma 5.1. Lei
T=T®pT® - ®p"-'T, and foru in N let ii = ﬁ-(u@u&)---@u) in HIV),
Then (with hy defined for h in H*® as in Lemma 5.1),

(R(T)a, D) pemy = (ho(TN)u, v)n, u,v EH,h€ H®,
We may now give a theorem which includes a mapping theorem for Xr.

THEOREM 5.4. Suppose T is an absolutely conlinuous coniraction and N «a
positive integer such that TN € Ay,. Then T=TopT® - @p" T (where
L,p,...,pN~1 are the N-th roots of unity) belongs io Ax,. It follows that for any
T and N, Xpn = (X7)V.

Proof. For any Borel subset F of T, denote by ¥r the normalized charac-
teristic function of F. Now let I’ be a subset of Xp~. There exist sequences of

vectors {zn}5%, and {y.}33, in the unit ball of H satisfying

”[irl - ‘PTN([xn @ yn])ﬂumé — 0, and

{5.3)
Hzn @ wlllg,w +llw® wnllle,n =0, weH.
Equivalently,
sup l—j—/fz(s) dm(s) — (M(TM)zn, yn)| — 0
st m(l)
r
and

llzn ® willopn + Ilw @ valllew — 0. wEH.

Let ¥ be associated with I as in' Lemma 5.2. We will show that [¥5] is in 20(.»4?).
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First,

1665) = 5 @ 5eDlcsp = o | / 5) dm(s) — (9(F)n, )

ltsll<t

sup
lalist

_”7(1%_) / go(s) dm(s) = (90(T™ )n, vn)
T

< Der] = ern([zn © yallrr/as,

where we have used the previous lemmas in the calculations. Hence |[|[¥s] —
9957([5'31'1 ® gn])”bl/ﬂg — 0. R

To complete the proof that [¥5] is in Xo(Az), we need to check the vanishing
conditions. So let w = (w1 & w2 ® - - - § wy) be arbitrary in HW) . Then

les ({ﬂ'n®w])H‘Hitulp (o(T)n, )|

< sup Z IN_](gj(TN);cm(T*)jwj.g.l)1

H9H<1

where the {g;} are associated with g as in Lemma 5.1. But since the {zn}3%,
satisfy the vanishing condition (5.3) in Qpw, it is easy to show that this latter
sum goes to zero with n. The other part of the vanishing condition is proved
similarly.

The final claim follows easily from Proposition 3.9 and the proof of the first
claim, and we arc done. 8

We may obtain next, afier a proposition about minimal coisometric exten-
sions and powers, a result about the powers of an operator in A, y,. To ease the
notation in what follows we will denote by By = S5 @ Ry actingon K =S O R
the minimal co-isometric extension of 7.

PRrOPOSITION 5.5. Let T' be an absolutely continuous coniraction in L(H),
and let n be a positive inleger. Then Ripny is unitarily equivelent to (Rp)™.

Proof. We give only the proof for the case n = 2. Obviously B% = (53)? &
(Rr)? acting on K is some co-isometric extension of T2, so we may assume that
there exists K1 C K, reducing for B2, such that B%|K; is the minimal co-isometric
extension of 72 (see [11]). It is enough to show that R C K; or equivalently that
Ki C S. Equivalently, since By is a co-isometry, we may show

o
(5.4) Ki € | Ker(BF"®

n=1
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To prove (5.4) we use some facts about the minimal coisometric extension
from [21]. Since By is minimal, we have that \/ (Bj)"H = K. Also, there is a

nz0
subspace £ of K defined by
(5.5) £={(By-THh:heH}
so that
(5.6) K=HeleBrled --&(B)Le -
Because K is reducing for B, we have
(5.7) (Br=1K1)" = (BF)IK1)" = ((BF)" K1} = (B7)"IKs.

Let £y be the space for Bpz= analogous to £, defined by

(5.8) La={(Bh:—(TH)h:heH} .
Clearly from (5.7)

(5.9) La={((B})? -T2 :heH} .

Using (5.7) again, we have the decomposition

(5.10) Ki=H®Ly®(BF)L2®---® (B Ly - .

It is easy to show that £» C £ @ B3L and that for any v and » in £ such
that Bju@v L L, we have Bju @ v € Ker(BZ). Similarly one may compute
((B#)’L & (B3)3L) © (B3)2L2 C Ker(B3}), and so on. Then (5.4) follows from
the decompositions given by (5.6) and (5.10). 1

THEOREM 5.6. Suppose T is in Ay x,. Then for any posilive integer N,
™™ € AN,No .

Proof. It suffices to use Theorem 5.4 and Theorem 4.14, counting multiplic-
ities on the complement of Xy~ using Proposition 5.5. &

A combination of Theorem 5.4 and Proposition 5.5 shows that the set X7U
¥.(T) also maps perfectly under powers, with additional multiplicity information
on X7 \E,(T™). Also, if T is an absolutely continuous contraction, then ess(T) =
ess(TM0)) = Xpmg). It is then straightforward to combine this with Theorem 5.4
to deduce a mapping theorem about essential sets. We leave these and allied
results to the interested reader.
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6. TRIANGULAR FORMS

In this section we consider the containment reverse to that of Proposition 3.5 (viii),
namely, how is the X set of an operator in upper triangular form related to the X
sets of the operators on its diagonal? We begin with an easy observation whose
proof is omitted.

LEMMA 6.1. Let T € A, M ¢ subspace semi-invariant for T, 0 € # < 1,
and [L] in Qr be given. Suppose there ezist sequences {2}, and {y,}°%, in
the unit ball of M such that

limsup ||[L]7 — [zn ® ya]r(] < 6,

n—o

and
I[zn ® wlz|] + lw R gnlrll = 0, we M.

Then or([L]) € i’\g(ATM).

We may now give a theorem on triangular forms which provides a partial
answer to the general question.

THEOREM 6.2. Let T be an absolutely continvous contraction in L(H1DH2)
having a matriz of the form

(6.1) T = (7(;1 ;2)

Suppose T € Ay, and either Ty € Cq. or T2 € Co.. Then T = Xp = Xp, U X7,.

Proof. Tt clearly suffices to prove the containment T C Xp, U Xy, in light
of Proposition 3.5 (viii) and T' € Ag,. For each A € D, there exists a sequence
{z,)2, = {z}}22, of unit vectors in H such that

[Cilr = [za ® zn]7

and

zr @ wirll + [[w @ za]rll = 0, weH.
Write cach z, = u, v, relative to the decomposition H = H; ®H,. By dropping
to a subsequence if necessary, we may assume that, for some vy with 0 € v, € 1,

lepll> = 7a-

It follows that
lopll® — 1= 7.
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From these we get easily, as in the proof of Proposition 3.3, that
(62) limsup |[P3] - g7, (vn ® nDllssyg < 75
and

lim sup NP = r (fun © wa))llzayay < (1= )3
Moreover, we have
llvn ® 2lr,|| = lilzn ® 27|l = 0, z€H2, and
w® un)ny |l = |w @ zalzll = 0, w e Hy.

From standard facts, if T3 € Co., we have also

(6.3)

[z®un]r, =0, z€Ha

In the case T} € Cy., we may reach the same conclusion with a little more work:
we may write [[[z® valz,[| = [z @ valz|| = |[2®@ zn)r — [z @ unlr|| € ll[z@ za]rl| +
[z ® unlr|l, and, since [z ® za}r — O, it is enough to show that [z @ ua]r — 0.
But observe that the sequence {u,}$%; C H; must be contained in the backward
shift space § of the minimal coisometric extension B, of T, because HI™unl| =
[TMup|| — 0 as m — 0, since 73 € Cp.. It is then a standard computation to

show that {|[z ® un]zl] = |[Psz ® ua)s.|] — 0, since $* € Cp.. Thus, under the
hypotheses of the theorem in either case, we have
(6.4) {z®@ vy, — 0, z€&Ha

By combining (6.2), (6.3), and (6.4), we have that
[PAlpiym: € ’i;_r%(ATz)’ AeD.
A

Foreach0< a<1,let D ={A&€D: vy <a},and D, = {A €Dy > a}.
It is clear from the definition that the sets /?,9(./17*2) increase with 8. 1t then follows
from the above computations and Lemma 6.1 that, under the hypotheses of the
theorem,

[(PAlpym: € r{;a%(ﬁn), A €D,
From Proposition 3.8 we have
NTL(D,) € X7,, 0<€a <l
Let F = T\ X7,, and A some subset of D such that NTL(A) = F". Then for each
@, 0 < a< 1, NTL(AND,) = 0 and consequently
NTLAND,)=F, 0<a<l,

where as usual we interpret these equalities as up to sels of Lebesgue measure
zZero.

We now turn to a fundamental lemma.
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LemMMA 6.3, Assume the hypotheses as in the theorem, and let f € (LY(F)),,
{wi,...,wp} CHy, and € > 0 be given. Then there exist s and t in the unit ball
of Hy such that

ez (D = s @ tllr < ¢,

and
lls@welll, lfwe @ ¢)[l <6, 1<k<p.

Before proving this lemma, note that by a standard procedure (give yourself
a dense sequence {wy }§2; in H1 and a sequence {£; }$2, decreasing to 0) we obtain
by repeated applications of it the following result: for any f € (L}(F)); there exist
sequences {5, }5%; and {t,}3, in the unit ball of H; such that

] = er(lsn @ taliLsjzg — 0,

and
llsn @ wlil, llw®ta]ll — 0, we M.

This result, by virtue of Lemma 6.1, shows that

[Ales/ms € Xo(Ar,),  f € (LHF).

Consequently F C Xr,, so X, U Xy, = T, and, modulo the proof of Lemma 6.3,
the theorem is proved.

Proof of Lemma 6.3. Select o < 1 but sufficiently close to 1 so that

(6.5) (1-a)i<

o]

and
ﬂ—aﬁmuﬂm“%:,uqﬂ<§.

Since NTL(AND,) = F we can find sequences {5;}}L, C C and {}:}}L, C AND,
such that

(6.6) ez - zfjﬂi{axé]“ <%

and

N
DoBl<1,

1=zl
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For each of these ); there exists a sequence {z; n}3; = {tin ® vi,n}3%, of unit
vectors in H satisfying

[Cr] = [zin®zin], nEN,

llzin ® wir|l + [w @ zipnlzl| = 0, weH,

ufall® = a0 > @,

and
fodal? = 1= 72, €1 — .

For any N-tuple v = (nq,...,nyn) set

N o
Sy = E :ﬁ.’:zi,m:
i=1

N
t, = Eﬂ?‘xi.n.‘s
i=1

and write 5, = s. @ s2 and t, = . @ t2 with respect to the decomposition
H = H1®H2. Following the “classical” procedure (see the proof of [5], Lemma 2.9)
it is easy to select v so as to satisfy

llsvlb litoll < 1,

et o]

i=1

<&

Qr 3
£

oo @ will ek ®LIN < 5, E=1,..p,

(6.7) N
lis2])? (z Z |ﬁi|l|vi,n.~||2) €(1—a), and
i=1

N
NE202 (2 3 1Billvs ncll?) < (1= ).
$=1

From the inequalities (6.6), (6.7), (6.5), and
lfse @] = [s3 @ 11l = [lfs? @ ]Il < lls2ll < (1 = @)%,
we obtain
ler () - sy @ Ll < e
We have also, for k =1,...,p,
st @ walll = ll[se ® wi] — [s7 ® wlll
< llsy ® walll + llls) ® willl
€

<5+~ )i

£.

A
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Similar computations yield
Nwe®Gli<e, k=1,...,p.

This completes the construction of the vectors required for Lemma 6.3 and thus
its proof, which in turn completes the proof of Theorem 6.2. 8

We have the following generalization, to T assurned merely an absolutely
continuous contraction, as a corollary.

COROLLARY 6.4. Let T be an absolutely continuous contraction in L(H, ®
H3) having a matriz of the form

(6.8) T:(]g T”;)

Suppose either Ty € Co. or Ty € Cy.. Then Xp = Xp, U Xp,.

Proof. If T' € Ay, the conclusion follows from the theorem. If not, let i =
T\ X7 and let D be some strictly contractive diagonal normal operator such that
F = NTL(¢(D) N D). It is routine that D € Cqq, and F = Xp from Proposition
3.5 (vi). The result follows from the theorem npon consideration of ' = D & T
and a little work with Proposition 3.5 (ii). n

We leave the obvious corollary for an upper triangular form with some diag-
onal entry in C.g to the reader, and note also that we know of no counterexample
to the theorem with these various Cap hypotheses deleted.
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