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ABSTRACT. Sarason proved that weak compactness of a holomorphic coni-
position operator on H! of the unit disc is equivalent to nerm compactness.
The purpose of this paper is to obtain a result similar to Sarason’s theorem
for Berginan spaces over strongly pseudoconvex domains.
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1. INTRODUCTION

Let @ be a bounded domain in C*. Let ¢ = (¢1,92,...,%n) be a holomorphic
mapping from Q into Q. Then we define the composition operator €, as follows:
Colu)(z) = u(e(z)) for all z € Q and functions u on .

The study of composition operators in one variable has been active since
the carly 1970’s. Most questions on composition operators were concerned with
cotnpactuess, the boundedness being automatic. For the unit disk D C C, Shapiro
and Taylor ({16]) proved that the composition operator C, : HF (D) — H?(D) is
cotupact for one p € (0, 00) if and only if it is compact on HP (D) for all p € (0, 00).
Shapiro ([15]) discussed a characterization of compactness for C, : HP(D) —
‘H?(D) in terins of the Nevanlinna counting function. For Bergman spaces on D
and B,,, see the paper by MacCluer and Shapiro ([12]). Recently, Sarason ([14])
proved that weak comnpactness and norm compaciness for a composition operator

on the Hardy space H'(D) are equivalent.
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In the case of several complex variables, many results on compactness have
been provided by various authors in the last decade. For example, MacCluer
({11]) gave a characterization of compactness of C,, : HP(B,,) — HP(B,,) in terms
of a Carleson measure condition for the pullback measure dp,. And Jafari ([5],
(6]) obtained the characterization for C\, on the weighted Bergman spaces of the
polydisc D" and of bounded symmetric domains. More recently, corresponding to
Sarason and Shapiro’s work in one variable, Li and Russo ([10]) extended their
results from the unit disc to strongly pseudoconvex domains in C™.

The purpose of this paper is to consider the analogue of Sarason’s theorem
for composition operators on the Bergman space A'(2), where Q is a strongly
pseudoconvex domain with C*! boundary or a bounded symmetric domain of tube
type.

Our proof will use the following duality theorems. Let §2 be a strongly
pseudoconvex domain or a bounded symmetric domain. There are Banach spaces
B(2), Bo(2) of holomorphic functions on Q such that

(1.1) (Bo)* = Al, (A)) =B

The space B(2) was constructed by Krantz and Ma in [9] for strongly pseu-
doconvex domains and by Yan ([17]) for bounded symunetric domains. Although
their definitions differ, both of these spaces are called Bloch spaces of . Yan also
defines a little Bloch space By which satisfies (1.1) for bounded symmetric domains
of tube type. We show in this paper that for strongly pseudoconvex domains, the
little Bloch space By corresponding to the definition of 8 in Krantz and Ma’s paper
([9]) also satisfies (1.1).

This paper is organized in the following way. In Section 2, we introduce the
properties of Bergman kernel on strongly pseudoconvex domains and present soime
facts for the Bergman projection on function spaces of strongly pseudoconvex do-
mains. In Section 3 we give some proofs for duality theorems for Bergman spaces
on strongly pseudoconvex domains. Then in Section 4, we prove the main theo-
rem on compactness of composition operators on strongly pseudoconvex domains.
Finally in the same section, by using Yan’s duality theorems, we show that our

main result is also true in the case of bounded symmetric domains of tube type.
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2. PRELIMINARIES ON STRONCGLY PSEUDQCONVEX DOMAINS

Let © be a bounded strongly pseudoconvex domain in €™ with C* boundary. Let

p be a €% pluri-subharmonic defining function for €2:
Q={zeC":p<0}.
Let dV be the Lebesgue volume measure in €. For v > —1, we let

AV, (2) = |p(2)|"dV (2),
and
L2 = L3(Q,dV,).

Write H(Q) as the set of holomorphic functions on €. Let A*(£2) be the
Bergman space H(Q) N L2(Q). P denotes the Bergman projection from L*()
onto A%(Q), i.e

Pf(z) /f VK (2, w) dV(w), f € L*Q),

where K (z,w) is the Berginan kernel. We also consider the weighted Bergman
spaces A2(Q) = H(Q) N L2(N). The orthogonal projection of L2 onto A; will be
denoted by P,

(2.1) P, f(z) :/K,,(z,w)f(w) dv, (w), felL?
)

where K, (z,w) is called the weighted Bergman kernel. If v = 0, then Ko(z,w) =
K(z,w) becomes the usual Bergman kernel.

For more discussions on Bergman kernel and weighted Bergman kernel, see
[4], [7] and [13]. We list some useful results here for our purpose. First, let p be
the defining function for Q, L,(w) denote the Levi form. For z,w € 2, we set

o(z,w) = |z —wl* + 'Z ()w — w;j)|-

Rs = {(z,w) €T x T+ |p(=)] + lp(w)] + |z — w] < 6}.

The following lemma is due to Peloso and Fefleriman.
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LEMMA 2.1. Let Q be a smoothly bounded sirongly pseudoconver domain in
C* vibca posi{ive nicger, then
(i) Ku(z,w) = Ca|yp(w)]* det L, (w)X =¥ (=, w)+1 Z(z, w), where | Xz, w)| ~
e(Jo(2)] + |p(w)| + o(z, )} for (z,w) € Rs, K € C®(Q1 x Q\ D), A being the di-
agonal of O x IQ and satisfies the estimate

1K (2, w)] ~ |X{z, w) —(v+3 |]og| X(z,w)||-
(i) Ny (z,z) = ®(2)|pfz )] (1) 4 () log |p(=)] for = near 99, where &(z),
(’I;(z) are functions in C™(D), @(z) £ 0 for z € I
The following can be easily derived from the above:

REMARK 2.2. For any w,z € {2,
(i) Ku(z,0) = Ko (w, 2);

(i) K,(z,w) € O™ x Q);

(i) Ny (-, w) € L=(Q).

Also we will use the Peloso’s estimation, see Lemma 2.7 in {13].

Lemma 2.3, [l . Ku{z,w)|dV(w) ~ C

)7, where  is a smoothly

1
bounded strongly pseudoconver domain and p is a defining function.

Notice that if d(z) is the distance between the z and the boundary of the

domaiu, then the following function s a defimng function:

L [dzy el
o) = {d(:) zeC"\ Q.

It is obvious that the Bergman projection F is the identity map on A%(Q).
The following 1s also true.
LEMMA 2.4. P is the identily map on AY(Q).

Proof. From Beatrous paper, we know that A*(Q) is dense in A'(Q) in norm,
see [1]. Let g € AY(Q), there exists {gn} € A*(Q) such that g, — g in AY(),

since W (-, z) is hounded for each z € Q. it is elementary that

/g"(w).’\"(z, wydV{w) — /y(w)h’(;,w) dV(w), =€
Q o
On the other hand,
gn (W) R (2, w) dV{w) = gn(z).

0
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Since ¢ and each g, are holomorphic functions on bounded domain 2, the well-
known inequality |gn —¢| € C[|gn—g| dV implies that g,, — ¢ pointwise. Thercfore
e}

we must have
/g(w)]ﬁ'(z, wydV(w) =g(z).
I}

DEFINITION 2.5. Let  be a strongly pseudoconvex domain in C", we define
the space of Ioch functions on £ to be

B(Q) = {f € H(®): sup | v (2)id(z) < oo}
z€0

where d(z) is the distance between the z and the boundary of @ and ¢f =
7 g.f_)
Gaq? " B )

This definition is equivalent to the definition of Bloch functions in Krantz

and Ma’s paper, sec [9]. We can also show that if the Bloch functions are equipped

with the norm ||f||s = |f(0)| +sup | v f(2)|d(z) for f € B(£2), then B(£2) becomes
z€0

a Banach space.
We also define the litile Bloch space to be

Bo = {f € B(2) : lim |V f(2)ld(z) = 0}*

It is casy to see that the polynomials are contained in Byp.

The following lemma is well-known and is important to the proofs of duality
theorems. For completeness, we give a proof parallel to that presented in Krantz
and Li’s paper, see [8].

LEMMA 2.6. Let Q be a strongly pscudoconvez domain, let P be the Bergman
projection, then

(2.2) PL(Q) = B(S).
Proof. First, let f € L*(2), we try to show that | 7 Pf(#)[d(z) < co. By

Lemnna. 2.3

| TPHEIA(E) = do)| [ ) 9 K(z,w)aV (w)
o

< A2l flloo ¢ - d(2)7
= C”f“oo < o0,
Next, let f € B(R), we demonstrate that there exists g € L™(Q) such

that f = Pg. We can construct a partition of unity by choosing an open cover
Us, Uy, ..., U, of Q so that Uy is telatively compact in Q and U; N 9Q # 8 for
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i # 0. There are functions x;, 0 € i € m, with x; being characteristic function

m —
of Us, such that 5 xi = 1 on Q. Let p(z) be the defining function for Q, we may
i=0

choose a local holomorphic coordinates {z,} so that 0 < ¢ < |%p;%)| < C < oo for
all z € U; and some 1 < k; < n. Then, since B(Q) C A*(R),
(2.3)

f(z) = /f(w)[((z w) dV (w)

/ (w)K(z,w)dV(w)
Iy 1=0

/Xof(w)]&(z w)dV(w)-E—Z/X fw)K (= 3p /

zln

dv(w)

dwn,

Here, xo has compact support, so xof is bounded. Let us now look at the
second term of the last expression in {2.3). Understand that Uy can be chosen so
that the z in (2.3) is contained in Up. Therefore yi{(z) = 0fori=1,...,m. Using
integration by parts, we can get

> [xssem 200 ay )

lln

- Z/ Fun, <d;}dw IR “”) plw) dV ()
_Z/();/(dt),, daj;(,:))K(zaw)p(w)dV(w)

- Z / ( " (d:/‘ djj}n )) Fw) K (2, w) p(w) dV ().

Note that %—{}%M(w) is bounded, since f is a Bloch function. And ﬁ%}:.—

is also bounded, since %—l is chosen to be bounded below and above. We let

= Yllpiz) (2
(25)  g(z) = xof(z Z ( ap/dz,f + 63,1, (a;/(dz)n) f(z)p(::)) .

(2.4)

Then g(z) € L= (), and by (2.3), f(z) = Pg(z). &

Recall that Co(€2) is the set of continuous functions that vanish at the bound-
ary 2. We have an analogue for the little Bloch space. The result is well-know
for the domain of the unit ball.
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LEMMA 2.7. Lel Q be o smoothly bounded sirongly pscudoconvez domain,
then

PCo() = By(),
where P is the Berginan projeciion.

Proof. We first show that PCo(Q) C Bo(f2). Let v € Co(©2), we shall prove
that | 7(Py)| - d(z) — 0 as z — 6Q.

Counsider the region
Qs ={z€Q: |p(2)] > 6}
Then

|9 (Po)] z)_|v/ w)K(z,w) 4V - d(2)

‘d(z)/ w) UK (z,w) dV + d(2) / o(w) 7K (2, w) dV

0-81s
<d(z) e low)l [ 175G W)V
+ d(2) /go(w) vK(z,w)dV'.
Qs

By Lermma 2.3,
d(z)|™"

/| K (z,w)|dV £ )
5}

Now given € > 0, there exists § such that Irg%\x w(w) < e. Then the lirst
weE
termn of the above expression becomes C1e. Then we let z go close enough to the

boundary so that z is ontside of Q5. Since now | [ e(w) TR (z,w)dV| < Cy for
05

some constant Cy by Remark 2.2, the second termn becomes less than Che. This
shows that | 7(P)| d(z) — 0 as z — 9.
To prove that By(2) C PCy(R?), we horrow the idea in the proof for Lem-

ma 2.6. Letting f € By, we choose a function g as in equation (2.5):

xi(z )a_{;(,,il (2) & xi{z)
9(2) = x0f(2) - Z( TS (ap/azn')f(Z)p(Z) :

i=1
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By (2.3), f(z) = Pg(z). We must show that y € Co(2). In fact, xo has
compact support in Q, if z is very close to dQ, then xo{2)f(z) = 0. Also since
f(z) is a little Bloch function, there exists §, such that if d(z) < §, then

5>

At last, since fisin B(Q), |f(2)| < clog Ilz-)-, therefore

1 (z)p(z)] = 0 if = — aQ.

Sumrmarize the above, we see that g € Co(€2). This completes the proof of
Theorem 2.7. 1

3. DUALITY FOR BERGMAN SPACES ON STRONGLY PSEUDOCONVEX DOMAINS

In this section we present some dualities for Bergman spaces on strongly pseu-
doconvex domains. These results are well-known for Bergman spaces on the unit

ball, but not on the strongly pseudoconvex domains.

THEOREM 3.1. Let @ be a strongly pscudoconvez domain, then Bo(f2)* =
ANR), AHQ)* = B(Q).

Proof. The second duality is well known. For completeness, we give a proof
due to Krantz and Li, see [8].

For g € B C A%(Q), by Lemma 2.6, we know that there exits ¢ € L, such
that ¢ = Py. Define a bounded functional on A(Q2) by

£,(f) :/fadv feAlQ).
Q
For f € A%(Q), we have

£y(f) :Jf?dv :h/Pfg?dV :f[fﬁdv.

The last integral is not defined for all f € A'(R), but it dose exist for f in A%(2),
which is a dense subset in A'(€2), therefore the last integral determines a bounded

linear functional on A'(). Hence g € B corresponds to an element in (A')*.
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On the other hand, if £ € A'(Q)*, then by Hahn-Banach and Riesz represen-
tation theorem, there exists b € L () such that, for cach f € AY(Q),

() = /fﬂdv.
0
For [ € A%(Q), we have

af) = /Pfﬁdv =h/fﬂdv.

9]

Since A? is dense in A’ the last integral actually determines a linear functional
on A'. By Lewuna 2.7, Ph is in B, therefore each ¢ in AYQ)* corresponds to an
clement in B(Q2). This proves that AY(Q)* = B(Q).

Now we want to prove that (Bg)* = A', under the pairing

(0, f) = / 9()FE) AV (2),

Q

where [ in A'(Q2). The above integral is not defined for all ¢ € By(Q), but it does
exist, for g € H°(§2), which is a dense subset of By, see [1].
To show A' C By*, notice that By C B = (A!)*. Thus

Al C (Al)** C BO*'

If I" € (Bo)*, we try to find f € A such that F(g) = fg—f—dV for all g € H™{Q).
Q

The Tollowing mecthod can be found in Zhu’s book for the unit disk, see [I8],
pp. 87-88. Consider the Hilbert space adjoint £ of P, as in equation (2.1), that

15
<I)Vf)(/):<f1]):g) f)geLlZ/

Then

/(/_I'(w)lx',,(z, w)|p(w)]” clV(u;))f(i(:) dV, (w)

[OR Y

= /f(w)/K,,(w, 2)g(2)|p(w)|* dV (2} AV u(w).
) 9!
Thercfore .
Po() = IV [ o), (2, w) V().

Now, letting V = P, |, we have the following lernina.
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LEMMA 3.2, V is an embedding from Bo(Q) inle Co(Q).

Proof. Given g € Bo(§1), by Theoremn 2.7, there exists ¢ € Co(£2), such that
g = Py. Therefore

Va(z) = |p(z)" / Pp() K 41(z, ) dV ()

]
= |P(~’)|"+1//<p(u)l\’(w,u) AV{(u) K g1 (2, w) dV (w)
o n

= |p(z)|”+1/(,p(u)/]{n+1(w, 2)K (u, w)dV(w) dV(u)
Q

o

= [ () 4V ().

o

To prove Vg is in Co(R), let Q5 = {z € Q : d(z) > §}. Then

V() = o)™ [ o) K (2,0) 4V )

n
= o)™+ / () Koy (2, u) dV (i)
Qs
A [ sz 0) V().

O\

Given € > 0, there exists § such that

< E.
JDax. [o(w)

Then we choose 2 be in 2\ 25 and |p(z)] < £, by Remark 2.2,
lp(u)Kny1(z,u)| < 00, ue€E Q.

Hence the first term of last expression is less than Ce for some €. On the other
hand, by Lemma 2.1, |Kn41(z, u)| is comparable to |p(2)|**! for z,u € Q\ Q4, so
the second term is less than Cse for some Cy.

To show V is an embedding, we first show that ¥ is bounded on By(2). We
notice that P4, is bounded on L), so V is bounded on L%, therefore there
exists ¢ € Co(f?), such that, for g € By

IValleo = [[Velles < Cliello-
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Again, we can choose ¢ such that || P¢|| = ||Pel|, and [|¢||le € C1|g|ls. Thus
IVl = [[Vello < Cllelleo < Callglls-

Now we try to show that ||g|ls € C||V¢lles
We first show PVy(z) = g(z) for y € Bg and z € Q,

PVy(z) = /1&'(2,11))]{)(11))]"‘“ (/ K {w, wWg(u) dV(u)) dV (w)

23 0

- / o(x) / K (=, w) | p(w) " Koyt (w, ) 4V (w) dV (1)
£l 0

= /q(u)l\( z) dV (u)
1

= g(2).

Then [lglls < by boundedness of the Bergimman projection P. 1
g

Since V is an embedding, X = V By is a closed subspace of Co(Q). £ -V ~!
15 a bounded functional on X. By Hahn-Banach extension theorem, there exists

a bounded complex measure g, such that
vy = V//L dp(z), he ().
Q
Now let ¢ € By. Then
Flg)y=F V7' V()
/ V(=) duc2)

Il

/ () / ) K1 (2, w) AV (w) dyu(2)
:/ (w) /|p Wt K1 (2, w) dp(2) dV (w).

Ifwe let f(z) = [|p(w)" ! Ky 41 (2, w) di(w), then
0

Pls) = [9TE v ().

0
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[ is analytic since N, 41(2,w) 1s for each w € Q. f is also in L'(Q) since

/If(-':)ldv(:) < /_/'f’(w)|"+l|h'n+1[:,w)[(ll/r.(w)|dV(z)
Q

00

= / / ()" [ K (2, w) AV (=) d|pe(w)|

a0

< (_}'/(H;x(m)l < 09,

9]

This show that (B9)* = A' under the pairing {g, f) = [¢(z)f(z)dV(z).
Q

4. MAIN RESULT

Now we are ready to state our main result.

THEorEM 4.1, Let Q be a bounded strongly pseudeconvex domain in C* with
smooth boundary. Let ¢ - Q2 — Q be a holomorphic mapping. Then the following
statements are equivalent:

(1) Cp : AHQ) — AN(Q) is compact;
(i1) Cyp : AY(Q) — AYQ) is weakly compact;
(i) €7 B(Q) — Bo(Q) is bounded.

Proof. It is obvious that (i} unplies (ii). Now we want to show that (ii)
imnplies (iii). First we need a theorem in [2], which states that a linear operator T
on a Banach space X is weakly compact if and only if either 7" is weakly compact

on X" or T* : X* — X is bounded. We also need the following lemma.

LEMMA 4.2. Let Cy, be a composition operalor on AY(Q), then

C(Bo(R)) C Bo(R).

Proof. Let u € By(Q). Then Chu is in B(§2}, hence in A*(Q), and can be

written as:

Cou(z) = /C’;u(w)k(:, w) dV(w)
Q

= /u(w)()'wl\”(w,::)([V(w), zeq
Q
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Since Bo(2) = PCy(Q), there exists ug € Co(2) such that w = Pug. The above
equation becotnes
Cou(z) = /IJUQ(w)waf(w,z) dV{w)
Q
= /uo(w)PCEpK(w, z)dV{w)
Q

= /uo(w)C’,pK(w,z)dV(w).
Q
Now let 5 = {z €  : |d(z)| > 6} and consider the following:

| Coua) 1) = 1) | @ [ o)oK T2V )
2

< Jd(2)| [ o ()] | 77 Co K (w, 2)] 4V ()
0

= |d(2)| / luo(w)] | 7= Cp K (1w, 2)] dV (w)
Qg

@] [ w97 Co (w, )14V ()
O\

<) [ tua(w)] |97 Co(w, )| 8V (w)
Qs

) max ((uo(w)l) [ 192 CoK (w, 2] 4V (w)
o\

Given ¢ > 0, there exists § such that

max Ut W < €.
wend\ml o{w)]

Then we choose z close to 32 so that d(z) < ¢ and z € 2\ ¢(Q5). Since
K(w,z) € C™(0 x Q),

therefore 7K ((w), z) is bounded. Hence the first term goes to zero. For the

second term, consider

J19Ceictw, 1 avw) = 16, 95 (w2 av(w)
N N

<Gl [ 197 K (w,2)| 4V (w)
0

< Cld(z)| 2.
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Hence the second term is less than Ce. This shows that |7 Cu(z)| |d(2)] — 0
as z — 0Q, therefore Couisin By. 8

To show (ii) implies (ii1), let C, : AY(R2) — AY(Q) be weakly compact. We
want to write C,, as a dual of some linear operator T,,. By Remark 4.2, C; maps
Bo($2) into Bo(€), we can define T, to be C3|Bp(R). And we can show that
(To) = Cyp. In fact, let h be in the lowest level, i.e., the By. Every functional in
(Bo)* is of the form £,(h) = [hgdV for some g in A'. Now we want to show that

1

C%)* acting on €, 1s represented by C., acting on ¢, i.e.
) g g P v g g,

((CL) &) (h) = Le,q(h).

Consider the following

(€Y ,)(R) = /(cw)*hgdv _ /c;,,gﬁdv = /hmdv = te_o(h).
N

9} 1

This shows that (T,)* = Cl.

We know that A1(Q) = (Bo(22))" and B(Q) = (AY(R))", so the weak com-
pactness of ', implies the weak compactness of T,. Therefore CJ,, which is (1,)"",
maps B() into Be(Q).

Now we complete the proof by showing that (ii1) inplies (i). Assume C, :
B(§2) — Bo(£2). To prove C,, is compact, it suffices to show that for each bounded
sequence {u,} in A’(Q) which converges to 0 in w*-topology, Cy(u., ) converges to
0in ANQ).

Now let{u,} be a bounded sequence in A'(Q) that converges to 0 in weak
star topology, 1.e.

{u,, fy =0, forevery f € Bo(QR).

Since N;(:) = K(:,z) € C®(Q) for z € Q, therefore | ¥ K. (w)| |{p(w)] — 0

as w — 0, l.e. K, 1s1in By. Hence
U (2) = (u,, &K;) = 0
which means u, — 0 for every z € 2. So we get
(4.2) Colu.)(z) = u,(p(z)} = 0, zef

That is, Cy(u,) converges to 0 point-wise. Therefore Cy(u,) converges to 0 in
V-measure.



WEAK COMPACTNESS OF COMPOSITION OPERATORS 81

Secondly, for every g € B(Q1),
{Colun), 9) = (un, Cpg) = (un, f} =0,
where f = Cg is in By. This says that
(4.3) {Colu)} =0, weakly.

By a theorem in (2] on page 295, (4.2) and (4.3) imply that Cy(u,) — 0 in
AU norm. This shows that C, is compact, which completes the proof for the main
theorem. 1

If Q is a bounded symmetric domain of tube type in C*, the main result is
still true provided the Bloch and little Bloch spaces are replaced by Yan’s “Bloch”
and “little Bloch” spaces. First, let us state Yan’s result, see [17].

TuroreM 4.3. [Yan] Let 7 be the rank of 2, p = 2n/r and s be a positive
mleger. Lel

(i) B (Q) = {f € A%Q) : sup K(z,2)"F (D" )(2)] < oo)
and
(ii) B3(Q) = {f € A%(Q): lim K(z,2)7F|(D°f)(2)| = 0}

where D is a differential operator on §1 such that
DK (z,w) = ¢ K (z,w)' 75,
then, for all s > (n/r) =1,
AN = B(Q), By(Q)* = ANQ).
Furthermore, if P is the Bergman projeclion, then
PLo(Q) - B(Q), P:Co(Q) — B3(Q)

are both bounded and onto.

Using Yan’s theorem, we are able to use similar proofs to obtain a result
similar to our main theorem. We provide a proof for the analogue of Lemma 4.2
for bounded symmetric domains of tube type.
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LEmMMA 4.4. If Q 15 a bounded symmetric domain of tube lype and C,, is a
composition operator on A'(S2), then

C(B3(Q)) C By(9).

Proof. Let u € By(), then Cpu isin A*(2) and can be written as:
Cou(z) = /C,';u(w)k(z, w}dV(w)
Q

- /u(w)C(pK(w,z)dV(w), ceq.

o

Since B3(Q) = PCo(), there exists ug € Co(£2) such that © = Pug. The above
equation becomes

Cou(z) = /Pug(w)(.fw[((w, 2)dV(w) = /ug(w)fx"(zp(w), z)dV{w).
Q '

£

Now consider

h(z,2)*(D*Cyu)(z) = csh(z, :)‘[D’(uoc",,f{(z, w)) dV (w)
0

= o h(z, 2)’ f wo(w) D3 K (2, p(w)) dV (w)
0

=csh(z,2)° /‘ug(w)(];h(z, w)_(”’“) dV{w)
s

+coh(z, 2)° / ‘uo(w)C;h(:,w)“(”“)dV(w)
[23%17]

where Q5 = {z € Q : d(z) < é§}. Use a similar argument to the last part of the
proof for Lemma 4.2 and by Theorem 4.1 in Faraut and Koranyi’s paper [3}, we
see that h(z,z)*(D*Clu)(z) is in Cp(2). Hence Chu is in BF(Q).

Now we state our main result in the case of bounded symimetric domains.

THEOREM 4.5. Let Q be a bounded symmetric domain of tube {ype in C".

Let ¢ : @ — Q be a holomorphic mapping. Then the following slatemenis are
equivalent:

(i) Cp : AH(Q) — AY(R) is compact;
(ii) Cp : AY(Q) — AY(Q) is weakly compact;
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(iii) €2 B*(Q) — B5(Q) is bounded.
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