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ABSTRACT, We discuss quantum stopping times, quantum stochastic inter-
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1. INTRODUCTION

Many of the notions in the classical theory of probability and stochastic pro-
cesses can be extended or reformulated within a non-cormmutative context. In-
deed, Brownian motion, the superstar of the classical theory, can be considered as
a probabilistic realization of abstract (time-zero) boson quantum fields. One can
then ask to what extent, if any, can the concepts of classical stochastic analysis
be carried over into the realm of boson and even fermion quanturn creation and
annihilation operators and fields. It turns out that a remarkable amount of the
classical theory has a counterpart in the quantum context. For example, one can
construct conditional expeclations, martingales, stochastic integrals, 1sometry re-
lations, stochastic differential equations, and martingale representation theorems,
all within the non-commutative (i.e., “gquantum”} domain.

A further construct, very useful in the classical theory, is that of a stopping
thne. Indeed, most modern approaches to stochastic integration make substan-
tial use of stopping times right from the beginning. A classical stopping time
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is a random variable, taking values in the “time set” of the theory (usually N,
R* or [0,00]), and with certain adaptedness properties. It is these adaptledness
properties, suitably reformulated, which allow a definition of a “quantum stopping
time”. The idea is to replace events by their indicator functions which, i turn,
arc considered as projections given by multiplication opcrators.

Having constructed quantum stopping times, one can then discuss the stop-
ping of quantum processes. It turns cut that one can indeed set up a satisfactory
theory of stopping of various quantum processes including quantwmn L2-martingales
([21, (6], [7], [9], [10], [11}). (For convenience, we present a succinct version of some
of this analysis below.) In this note, we shall consider the stopping of certain
L'-processes. Specifically, we will show that it is possible to stop the squarc of
an L2-martingale and also the increasing part of its Doob-Meyer decomposition
(and hence also the L!'-martingale part). We examine the relationship between
the Doob-Meyer decornposition of the square of a stopped process and the stopped
Doob-Meyer decomposition of its square. For boson martingales these are equal,
but for fermion martingales equality only holds for even stopping times (the dif-
ference being due to an appearance of the fermion parity automorphisin).

We are primarily concerned with the (strictly non-Fock) quasifree boson and
fermion quantumn stochastic theories ([5]} but, to begin with, we consider an ab-
stract set-up comprising a standard filtration {[8]). We suppose that we are given
a family (2:)ie[0,00) of von Neumann algebras acting on a Hilbert space H such
that U, C 2, whenever s £ ¢, and where 2., 1s generated by the A, with ¢ < co.
We also suppose that there is a cyclic and separating unit vector Q for 2, in M,
and that there is a family (E:) of (normal) w-invariant conditional expectations
Ey Uy — Uy, where w is the vector state induced by Q. We will often write 2,
simply as 2. Then, if we denote the closure of 2;9 in 4 by H: and the orthogonal
projection H — H,; by P, we have

PizQ = Ey(z)Q

for any z € 2. Furthermore, since H; is invariant under 2, it follows that P, € ;.
This set-up includes the It6-Clifford (fermion) theory ([3]) and the quasi-free
CAR and CCR. theories ([5]). In the former case, w is a tracial state and the von

Neumann algebras 2; are type II; factors.
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DEFINITION 1.1. A gquantwm stopping time 7 is an increasing family of pro-
Jjections (p;), say, indexed by ¢ € [0, 0o] such that p, € U, for each ¢ and po = 1.

We use the term increasing synonymously with non-decreasing. Note that
since U has a separating vector it is o-finite and so any increasing family of pro-
jections such as (p) is strongly continuous except possibly for at most countably
many values in [0, 00].

Classically, a stopping time T over a probability space (X, X, P} is required
to satisfy {T < t} € £, where L, is the o-algebra supposed to contain the events
known up to time ¢. To each set {7 < ¢} there corresponds its characteristic (in-
dicator) function, which can be thought of as a multiplication projection operator
on L?(X,L,P). Furthermore, if s < ¢ then {T' < s} C {7 < t}. Accordingly, we
think of p; as corresponding to the “event” {r < t},for 0 £t € co.

Forany ¢ 2 0, {T+c¢ < s} = {7 € s~c}, and so for any quanturm stopping
time 7 = (p,) we define 7 + ¢ to be the time (g,) where ¢, = 0 for s € ¢ and
otherwise ¢, = ps... Since p,—c € U;_. C U, we see that 7 + ¢ really is a
guantum stopping time. Similarly, for any « 2 1, we define ot to be the quantum
stopping time (g;) where ¢, = py/o. (Note that Usjq C A if 2 1.)

For classical stopping times S and T, the inequality S < 7" holds if and only
if {T" <t} C {S < t} for each . We use this to define an order on guantum
stopping tirmes.

DerinerioN 1.2, Let 0 = (g} and 7 = (p;) be quantum stopping times. We
say that o £ 7 if and only if p, € ¢ for all ¢.

For quantum stopping times ¢ = (g;) and T = (p;), we define the quantum
stopping times e Vr = (g Ap) and o A7 = (g¢ V u)-

Evidently, ¢ V 7 and o A 7 really are quantum stopping times and
cAT=TAcR oS oNVTr=1Vo.
For classical stopping times S and T, and for any ¢ 2 0, we have that
{z:SvT(x) <t} ={S(z) <t} n{T(z) <t}

and

{z: SAT(z) €t} = {S(z) <t} U{T(z) <t}

In view of this, and our interpretation of sets in terms of projections, the above
definitions of the quantum stopping times o V 7 and ¢ A 7 seem to be reasonable.

Next we consider stopping a process via a quantum time. An H-valued
adapted process is, by definition, a family (¢;) satisfying {; € H, for each t € [0, o0}
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Similarly, an 2-valued adapted process is a family (a;) such that a; € 2, for each ¢.
Thus, if (a;) is an 2U-valued adapted process, the family (a,Q) is an H-valued
adapted process. Any quantum stopping time provides an example of an 2-valued
adapted process.

If (X,) is a classical stochastic process and T' a stopping time, then (Xi)
stopped by T is the random variable & — Xp(z)(z). Suppose that 7" assumes just
the values s; € - € 5, so that ¥ = {T = 51} U---U{T = s,n}. Then Xp(z) is
cqual to X, (z) on {T = s;} and we have

X1 = Xo, (71} + Xea (X(T<02) = X(7<o0}) o F X (X (T} — X (P mmr })-

This expresses X rather like a Stieltjes integral in terms of the events {T < s;}
and rmotivates our approach to quantum stopping.

Let (¢¢) be an H-valued process and let 7 = (p;) be a quantum stopping
tine. For each finite partition @ = {0 =ty < t; <+ < ip-1 < 1, = 00} of [0, o0,
we set

n
7 = polo + Z(Pz. = Puy )G
i=1
The collection @ of finite partitions of [0, co] forms a net when partially ordered
by refinement. If the net (¢?)seo converges in H we denote its limit by ¢, and
refer to it as the process ((;) stopped by 7.

If 7 is piecewise constant with values {pg < ps, < -+ - < ps,. = 1} (and right

continuous, so it assumes the value p,, on the interval [s;, si4+1)), then we see that

m

¢¢ = polo + Z(Ps. = P51 )G,

t=1]
whenever 6 is finer than {0 = sp < s; < -+ < 8Sm-1 < Sm = oo}. Hence

m
¢ = poCo + Y (Ps. — Ps._, )¢5, in this case.
i=1

For given r € [0, 0], let # denote the quantum stopping time given by the

_ [0, s<r
qs—‘ll, s2T.

family (g,), where

¥ corresponds to the “sure” time . We see that {7 = (.
If (¢;) is constant, {; = (, say, for all £, then

(7 = poGo + Z(Pt. = Ptis1 )Gt = Prale, = Po( =¢
i=1
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for any 0 and any 7. Hence (; = { in this case, as it should.
In preparation for a discussion of stopping of martingales, for any given
gquantum stopping time 7 = (p;), we set

M =poPy+ (P, = po)Pay 4+ + (Poo = Proy ) Poo

where 0 = {0 =ty <t €1y € - K 1po1 €1, = oo} is a given finite partition of
[0,00]. M¢ is an operator on ‘H. Those properties of M! we need follow from the
following resulf.

ProrosiTioN 1.3, Let H be any Hilbert space and let {ey) and (f;), t €
[0,00], be two familics of bounded operators on 'H such that
(i) e, = ¢ and fi = f} for allt;
(i1} es < ¢y and [; € f; whencver s £ ¢;
(111) es fo = fres for all s,t.
For any given finite partition @ = {0 =1ty < 1) <ty < -+ K lpoy < 1y = 00}
of [0, o0} let

K! = "6eif,
i=0

where bey = eg and be; = ¢y, —ey,_, fori> 0. (We have suppressed the dependence
of 8¢; on the partition 0.)

Then the following holds:

(a) K¢ = K&*;

(b) if 0" s a (finite) refinement of 8, then

KV < K¢

T T

Furthermore, the net (K2)seo converges strongly to o bounded self adjoint operator
Ky, say. If, in addition, cach e, and cach f; is a projection, then K¢ is a projection

for cach partition 0 and K, is also a projection.
Proof. {a) is an immediate consequence of the commmutativity of the two
families (e,) and (f¢) of self adjoint operators.
To prove (b), it is enough to suppose that 0 has just one more point than
0. So suppose that & = 0 U {s}, with {; < s < i;41. Then
(fl_. - Ct,)f.n; + (ﬂtuu - Ps).fhﬂ
L L 1 L
= ((35 - Ctl)zfs(es - {31.)2 + (C'l.:+1 - 63)2~fh+1(615+1 - 68)2
L L L L
g ({35 - C¢7)2ft’+1(65 - ﬁlu)z + (etn-(-L - e-‘)z.fli+1 (ct|‘+1 - 63)2
= (C\‘* - et.’)ftf-u + (eii-}-l - Cﬁ)fte.g-x

= (el--q-] - Ct.)fi;-u'
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Adding the terins eq fo and de; fy | j #7174+ 1, gives

KE <K

Now,
K =cafo+ Z bei fi, = eofo+ Z Sei® f,, bei

=1 =1
n ' )

2 cofo +z‘501‘§f05€:’5
i=1

=cofo+ Y bei fo = eco fo,
i=1

and so (KY) is a decreasing net which is bounded from below and therefore con-
verges strongly with self adjoint limit.
If the e; and f, are orthogonal projections, then ée;de; = 6;jde;, for any

partition #. Hence
Seifi,be; fu, = fi,deide; fi, = fi, bijeifr, = bij6eify,.
Summing over 7 and j (from 0 to n) gives
KRS = K
and we conclude that K¢ is a projection. The saie is then also true of the strong
hmit K. 0

As an immediate corollary, we have the following.

COROLLARY 1.4. For any quantum stopping time 7 = (p¢), the net (M)seo
converges strongly to a projection on H — denoted by M..

Proof. This follows immediately from the proposition by setting ¢; = p; and
fi=P 1

Another interesting application of the proposition is when e; = p¢, where
(p¢) = 7 is a quantum stopping time, and f; € A’ for all t. In particular, if w is a
central state (i.e., is tracial), then Q2 = ffQ = Jf,Q = Jf,J§, where, as usual,
J denotes the modular conjugation operator, so that

Kiq = i&pgﬁ'ﬂ = i:a‘p,th_m

i=0 i=0
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converges in M. This means that it is possible to stop any L?(2) process ((;) of
the form ((;) = (f;2), where f; = f} is any increasing family of elements of 2,
withoul the assumption that (¢;) be adapted.

Let o = (g,) and 7 = (ps) be quantum stopping times with o < 7, so that
ps € g5 for all s. Then

MIME = " 8piPLbgiPiy= > Piépibg; Py

ii=0 ij=0

If 7 2 ¢4 1, then pig;~1 = pi, since ¢ £ 7, and so §p;6g; = 0 whenever 7 2> i+ 1.

Hence
1 n
Mf M'g = Z Pz,ép,-ﬁqj]’tj = Z 529,;Ptj5qj' = Z(Z (5335) Ptj(SQj
s igi ioNzy
=D (pos = Pj=1)Pi;84; = Pos 3 P05 — 3 Prpi—184;
J 7 i

= poo M? (since pj—16q; = pi—1(gj — ¢5-1) = Pj—1 —Pj—1 =0)
= M¢

Notice that we have only used that po, = 1in the very last step of the computation.
In fact, the conclusion remains valid provided that pe, 2 ¢, for all 5.
This leads to the following.

PROPOSITION 1.5. If 0 and T are quanium stopping times such thal o £ 7,
then M, < M.

Proof. From the above argument, we see that M < M¢ for any . The
result now follows by taking the limit as 8 refines. 1

Setting 7 = §, we see that M, = M; = P,, so that M, is an extension of the
notion of conditional expectation.

Suppose now that (¢} is a bounded H-valued martingale. Then ({;) is closed
by some ¢, say, in H; that is, {; can be written as {; = 3¢, for all ¢ (see e.g., [8]).
I r = (p,) is a quantum stopping time, we see that

Cf = Z‘”h‘@; = 25292'1’“( = MfC

1t follows that ]ié]’) ¢! exists and, in fact, is equal to M,¢. In other words, we can
stop any bounded H-valued martingale.
If o € 7, then for any { € H, we have that

M, M,¢ = MyC.



92 CHRIS BARNETT, STANISLAW GOLDSTEIN AND IvaN F. WiLDE

This can be interpreted as saying that if we stop the H-valued martingale closed
by ¢ by 7 and then stop the H-valued martingale closed by this stopped “random
variable” by ¢, then we obtain the same result by stopping the martingale closed
by ¢ directly by o. This is an analogue of Doob’s optional stopping theorem.

Let 7 = (ps) be a quantum stopping time, and for any ¢ € {0, oo} let r=(gs)

~

be the quantum stopping time corresponding to the sure time ¢. Let ¢ = T Al =

(fs). Then
ps, s<t
- vV =
fa Ps V {4s { ﬂ; s>t

Let s <t begivenandlet § = {0 = 2o <ty €l €+ Ly €ty = 00} be any
finite partition of [0, co] containing both the points s and ¢. Then

ME=D"8fiPu= Y bR

{i:t, L1t}

since 8 f; = 0 whenever #; is such that £; > {. Suppose that 5 = t; and that £ = ¢,
with & < m. Then

PME =P 6fi P,

i€m
= P(foPo+8fiPyy + -+ 8P+ +8fmP)
= P(Pofo+ Pe,6f1+ -+ Psbfi + -+ P )
= Pofo+ P,6fi+ -+ Psbfi + Po(Poy 6 figr + -+ Pibfm)
= Pofo+ P6fi+ -+ Pbfi+ P 8feqr+- +6fm)

(1o —F1, )=(0=f1,)

=Pofo+ P ofi +---+ Pbfi + P(1 - fi,)
= Pofo+ Pi,(fe, — fo) + -+ P(l = fi,_,}
= M!

TAS"

Taking the limit along &, gives

P, M

rai = Mras .

In particular, this implies the following.

PROPOSITION 1.6. For any ¢ € H and t € [0,00], sct { = M, ;C. Then
(¢:) is an H-valued mariingale.
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2. QUANTUM STOCHASTIC INTERVALS

Suppose that S and 7" are classical stopping times with S € 7. The stochastic
interval (S, 77 is defined as

(S, 77={{,=): S(=z) <t <T(x)}
={S<t}n{? <t}

If we think of ¢ as a parameter, (5, 7] can be thought of as a process rather than

as a sel in a product space. As usual, we identify sets with their characteristic

functions which are, i turn, thought of as projections. In this way, we can think

of stochastic intervals in tertns of the families of projections associated with the

stopping times. Now, {5 < ¢} = |J {5 <€ s}, so we make the {ollowing definition.
s<1

DERINITION 2.1, Let 7 = (p;) be a quantuin stopping time. For each s €
(0,00) let ps— = supp, , and let 7_ be the quantum stopping time (p}), where
r<s

Py = ps— for s € (0,00), py = po and pl, = 1.

Note that 7_ 1s a quantuin stopping time and shice p;— £ p; for each », we
see that 7= 2 7. Let ¢ = (g¢;) be a quantwin stopping tirue with ¢ € 7. Then
§s 2 p, for any s so that

P < qr < s < /I
for any » € s < . Hence pyi < 4.

Now, iu the classical context, {or each ¢, we have

X{5<t}a{T<t}s = X{S<t} — X{S<t}X{T<t}>

which motivates the following definition.
Derinrrion 2.2. For quantum stopping times ¢ and 7 with ¢ < 7, the
quantum stochastic interval (o, 7] is the process
(0,7] = (9 — 4= Apic)
= (ge- — pe-)-

Sumlarly,

[9,7) = {(t, ) - $(2) <t < T(e)} = {5 <} N{T < 1}5,

[S,7)={(t,2): S{z) Lt < T(2)} = {5t} n{T £ 1},

(5, 7)={(t,z): S(z) <t < T(a)} = {5 <t} {T < 1}°,
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and so we define the other quantum stochastic intervals as follows:

lo,7)= (¢t = g Api=) = (g0 = pe=) (since g1 2 pe 2 mi—),
e, 7) = (g — ) (since g4 2 ),
(0,7) = qi— — qi— A py.
Note that g; 2 py and g,— 2 p— but it is not necessarily true that ¢, 2 py.
Suppose that X; 1s a classical inartingale, closed by X. Then

t

Xi=Xg+ /(L\',
o

where the integral is a stochastic integral. For any stopping time T, we have
T
Xr=XNo+ / dX,.
0

(o)
We can think of this last integral as [[0,77) d.X,.
0

If we translate this into the quantum case, we obtain the formula

o [N
o=+ [0 =6+ [A-p),
0 0

where ((;) = (P() is the H-valued martingale closed by ¢, and 7 is any quantum
stopping time. We have interpreted [0, 7) as the stochastic interval [6,7), where
0= (gs) with g, = B for all s. This is a formal argument in as much as we have not
actually defined what we mean by the stochastic integral on the right hand side.
In fact, we can use this formula to construct such a stochastic integral — that
is, to show that the usual [t6-type coustruction works in this case. Note that the
stochastic integral will be defined in terms of stopping and not by sowme form of
isometry relation, as is usually done. Of course, in the first instance, the integrands
are restricted to those formed from increasing, adapted families of projections —
but see the next remark below.

Let ¢ € M, and set ; = P,¢. We wish to investigate the meaning of the
stochastic integral

T (e8]

/dc‘. = 0/[0,7) A6 = b/(ll—p,)d(,.

0
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Let ¢ = {0 =1ty <1t <. <1, = oo} be a finite partition of [0, 0], as usual.
Then we have

n~-1

> (1=p )Gty = Cu)

i=0
= (Coo — C0) ~ PolCty = Co) = 21y (Cta = C1,) = =+ = Ptney (Cooy = Cruy)
=(~(~ (7’0(1):, = Po)+pi, (P, — P+ +p,_ (P, — an-x))c
= (= Go+ (poPo + (pt, = Po) Pey + Pty — poy ) Pry + -
-+ (Ptu - pin..;)Ptn)C ~ Poo Poo{
~Co + Z opiFrC (since poo Poo( = ()

=0

—Co + MEC.

The left hand side is an 1t6-type approxitnation to the quantum stochastic integral
T(]] —ps) dCs. 1t is not a priori clear whether this has a limit or not. However, we
((Eo know that the right hand side does have a limit as @ refines and so, therefore,
must the left hand side. We have therefore proved the following.
PROPOSITION 2.3. For any ¢ € H and any quantum stopping time, T = (p,),
the quantum stochastic integral, ofop, dq,, with ({;) = (Ps(), czists as a strong limil
0

n M of the usual Jto approzimations. Morcover, we have the formulae

T oo (o]

M&=@=®+]kg=@+/mﬁma=@+/ﬁwg=c—]may
0 0

0
This last equality can be rewritien as

ﬁﬁ(=/MdQ

o

]

[a5]
We have used the equality [ d( = ¢ ~ (o.
0

For quantum stopping times ¢ = (g;) and 7 = (p,) with ¢ < 7, we define

the quantum stochastic integral

!MEJMﬂM=!m—mNQ
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Then
/dC = /(Qs —ps)d( = /A(PsL _92[')("( = /pj‘d(—/qjd(: = M.( - M,(.
o 0 rd s "

REMARK 2.4. To allow more general integrands, we proceed as follows. Sup-
pose that f is a finite linear combination of increasing, adapted, projection-valued
maps and denote sup 1F(s)|] by . For any partition §, we have

C5|+1 (, s,)AP_,.C (where AP, = P, ,, — F;,)

[
= (Z AP, f(s:)C, > APy f(s) )C)
) [

= Z(APs.f(Si)C| AP f(s:)) (by orthogonality)
9

Y (s)aP gl
8
O LAY
8
w2 (Z AP AP,,c)
[ ¢

k2 (AP,(, ¢} (by orthogonality)
5

N

I

K2||(Pos — Po)CI*

H

oo
Thus we may define [ f(s)d¢, by taking the limit as § refines, and we have that

”71‘(3) a,
J

oo
This inequality allows us to define (by continuity) [ g(s)d¢, for any map g ob-

< sup {IF ()

i)
tained as a uniform norm limit of a sequence (f,) of maps of the above form.

oo [a ]
Indeed, (f [u(5)d¢s) is a Cauchy sequence in H, and so we define J y(s)d¢s as
0 0

(e ]
lim [ fu(s) d(s. (One readily checks that this does not. depend on the particular
n

0

sequence (f,;) converging to g.)
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3. STOPPING AND DOOB-MEYER DECOMPOSITIONS

We wish now to discuss the relationship between stopped martingale processes
and associated Doob-Meyer decompositions. This will necessitate a discussion
of stopping L'-processes. Let 7 = (g,) be a quantwin stopping time and (¢;) a
bounded H-valued martingale. We have seen that () stopped by 7 is the element

— i [ —_—n i
G = lim M (oo = lim > 64iPiCoo

i=0
in H, where 0 is the finite partition of [0,00] given by § = {0 =ty < t; < -+ <
lnoy < t, = co}. Now, we embed ¢; into L!'(2) = . according to [8]

(.T'_"W(, )—( QJCT);

where the conjugate linear isometry J is the wodular conjugation operator. Let
Gs = Jq.d € A. Then, for any x € ¥,

we. () = lign (a:Q, J Z 545 Ptigw) =lim (m J f‘_l 6q,~JJPtéCm)

$=0 =0

uu (.z Q, Z 5qid P, Cm> = hm Z(.I 882, J Py (o)

i=0

= h;n gwch(wéqi),

where we, (-) = (- ©,J¢,) is the embedding of (, into L*.

For elements 1, ¢ in H, their product (7€) is the element (- Jn, J¢) in L!
([8]). We sce that the embedding ( — w, above, corresponds to the product ().
Guided by this discussion, we make the following definition.

DirpiNrrionN 3.1, Let (o) and (¢) be H-valued processes and let 7 = {g,)
be a guantum stopping time. For any finite partition 8§ = {0 = ¢p < {; < -+ <
ly-1 < 1, = oo} of [0,00], we define (5¢)? to be the L'-process given by

TIC Z 6 (1, Cr,)

where 67; (1:,(i,) is the element of L'(A) = A, given by x w— (26 Jn,, J(i,) for
oz el

If this net of maps converges in L' {with respect to the weak topology), we
define the limit to be the stopped L'-process (3¢),.

The next proposition says that if two H-valued processes can be stopped
by 7, then go can their product. Moreover, the stopped product is equal to the
product of the stopped processes.
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ProrosiTION 3.2. Suppose that {(1,) and () ere H-valued processes such
1 nu
that both 3" bginye, and 5 8q:Ci, converge in 'H, to 1. and &y, say, «s 0 refines.
i=0 i=0
Then (nC)¢ converges weakly in L' to (33:¢r).

Proof. For any a € 2, we have

n

(O () = Y _(@8@idne, JC,) = D (@bfidn,, 63100,

=0 i=0
= ZZ(a:fsa.-th,,ar,“chi,)
i=0 j=0

since the increments ég; are mutually orthogonal projections
n i

= (J:Zﬁffi‘hh,: 25‘1’;"](‘}:)

=0 j=0

n rn
= (:ltJ Zﬁfiﬂh.; J z 6{;]{,1)
t=0 ji=0
= (ad9r, J(5)
= (4G M),
as required. 1

COROLLARY 3.3. For any bounded H-valued wmariingales (1), (C), the net
(1€)2 converges weakly in L' {0 (My1jas M1 (o).

Proof. Since 1, = Py and ¢ = oo, we have
D bgine, = > 64iPi oo
= M8y,
— M1,

Similarly, 3~ 6¢;C;, — M;¢, and the result now follows from the Proposition 3.2, 1
We recall that for any ¢ € M, |¢|* is defined to be the product (¢¢) € L',

COROLLARY 3.4. Suppose that ((.) is an H-valued martingale closed by C
, et Ny = |¢2 Then N,

and let 7 be a guantum siopping time. For each t

ezxists, and

Nopi = 1Gail*
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Proof. For fixed ¢, let o = Al = (fs). Then, by the preceding corollary, we

have
= (¢Q)%
™ —~
=Y (8£iJ G JGr)
i=0
= (I o)
= ‘Qolz "

Let (¢) = (F() be the H-valued martingale closed by ¢ and let 7 be a
quantutn stopping timme, We wish to counsider the Doob-Meyer d:z(:omposition of
the square of the H-valued martingale (¢, ;). To do this, we shall consider the
boson (CCR) and fermion (CAR) theories separately following the notation of [8]
and [9].

4. CCR THEORY

We consider the quasifree quantum stochastic caleulus corresponding to the gauge
tnvariant quasifree state w on the CCR over L*(R1) with two-poiut function

w(a™(f)a(g)) :/f s)q(s Yy(s)ds
0

where ¥ € L2, v > 0 almost everywhere (no Fock part) an f and g belong to
the domain of ¥/* as a multiplication operator on L¥*(R*). The creation and
annibilation operators ¢ and a are realized as (unbounded) operalot‘s on the
tensor product of two copies of the symunetric Fock space over L2(RT). The vou
Neumann algebra 2, is generated by the Weyl operators with test function with
support i the mterval [0,4], and the vector Q = £ 6o Qy, where Qg is the Fock
vacuu veetor, is cyelic and separating for 2L

The wartingale representation theorem ([12], [15]) says that for any H-valued
wmartingale (¢;), there exist unique o € € and adapted processes & € LiL (RY, (1 +
¥(s)) ds, H) and 5 € LE (R, v(s) ds, M) such that

i t

G=afd+ /dn: E(s)+ /das i(s)

0 0

for all + € [0,00). We write () « («, &, ) for notational convenience. I () is

bounded, then € and 7 are square-integrable and the formula is valid for £ = oc.
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The Doob-Meyer decomposition for the “square” of a inartingale was given
in [8]. The result is that for any H-valued martingale (¢;), there exists an L'-
mmartingale (Z;) and a unique (natural) increasing L'-process (A¢), null at ¢ = 0,

such that

lCt|2 =4+ Ay
for any ¢ > 0. The L'-process (A;) is given explicitly by

t

A = [CIE,IEN + 360 ds+ [ Inls)Ints) ds,
a

D

where (¢;) « («,&,n) as above.
Suppose that ((;} = (P() is an H-valued martingale, closed by . For any

finite partition 0 of [0, co] and quantum stopping time 7 = (g,), we define A% by
L
N o~
Af = L 6¢i A,
i=0

where §g; A;, denotes the functional z — A, (z6g;) for z € A.

ProprosiTiON 4.1. The limit A, = ]i;n A% cxists in L', with respect to the

weak lopology, and

AC) = [CIgHe(), Tae)(1 +s)) ds + f (- Jatn(s), Jatn(s))y(s) ds.
0 h]

Proof. Since Ug = C1, we may assume that gp = 0. Let z € 2 be given. By

resumiming, we see that

Al(z) = Z Ay, (z87:)

=0
= Ao(mao) + Aix(x(&x - aﬂ)) + At:(m(a’t: - a’h)) +--
ot A (2(g, - T,n,))
= A, (21,) — (A, — Ao)(Go) — - — (A, — A, )(201,,)

n—1

= Aeo(2) — .Z(At'“ — Au ) (=0, ).
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The surn for A%(2) consists of two separate parts, one invalving £ and the other
involving 5. The former is equal to

[teies), 600+ 1) ds = X [ (o se(), ST+ () 0
0 =0 g,
n—1 tid
= 3 [ GRIEE), T+ ) ds
=0 1

say, where qp is the piecewise constant projection-valued map

n—1

7s(s) = Z Tt X[t tegn)-
=0

We claim that, as # refines, Ag(z) converges to

o0

[t 76), 2661+ 45 85

0

To sce this, we may suppose that z 2 0. Then 23y (s) = @y (s)y = 0, where y
is the positive square root of z. But the net ygy (s)y decreases as ¢ refines and
converges strongly almost everywhere to y§ry = z§+. A dominated convergence
argurnent gives the required result.

The contribution involving 7 is dealt with in a similar way, and the proof is
complete. 8

CoRroLLARY 4.2, Lel ({;) be a bounded M-valued martingale closed by ¢,
and lel 7 be a quanium stopping time and let |(|? = Z, + A, be the Doob-Meyer
decomposition of |(;|2. Then both Z. and A, ezist and we have

(1612 = 2. + Ar.

Proof. We have seen that the Li-process (|¢:[?) = ((¢:¢:)) can be stopped
by 7, the result being [(-]*. Also, we have just seen that {(A,) can be stopped by 7
and so, therefore, can (Z;), by linearity. The formula (|(|%),; = Z, + A, {ollows,
again by linearity. 1
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COROLLARY 4.3. For any bounded H-valued martingale (G;) closed by ¢, say.
and any quanium stopping time 7, the Doob-Meyer decomposition of the “square”
of the stopped martingale ((, ;) s equal to the stopped Doeb-Meyer decomposition

of the “square” of the martingale ((;); that is,

ICTAflz = Zrl\f + ‘41‘/\1‘.-

is the Doob-Meyer decomposilion of {(, p:|%, where |G]* = Ze + A¢ is the decompo-

sition of |G;]?.

Proof. Fix t and let ¢ = 7 A L. We have
|Cu{2 = (IC;IQ}o =Zs+ As.

We shall show that (Ay) is the (natural) increasing part of the Doob-Meyer de-
cornposition of 1 = |(4{? = |¢, A7|* as given in [8].
Suppose that {¢;) « («,&,), as above, and suppose that o = 7 A= (1)

so that f; = ¢; for s < t, but otherwise f; = L. For & € %,

A () = Ag(w)

[ 55), 960 1 + 2 s + [ 0 Futs) Tn))ats) d
0 0

¢

- / (€, JEN + 20 s + [ (gt nl), na)(s) s
t i

= / (&g €(s), JuE (N + () ds + / (e datn(s), Jatu(s))v(s) ds.

0 Y

The result. now follows because ¢, ,; — (e, ¢*& g7) ([9]) and so the (natural)
increasing part of the Doob-Meyer decomposition of | ;) 1s precisely A_ ., as

calculated above. 1
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5. CAR THEORY

The discnssion for the quasifree stochastic theory of the CAR, parallels that for
the CCR, except that the parity automorphism now comes into play as it does, for
exatiple, in connection with Markov solutions to quantuin stochastic differential
equatious ([1], [4]).

We shall consider the uasifree guantum stochastic calculus corresponding
to the gauge invariant quasifree siate w on the CAR over L*(R*) with two-point

function

w(b"(1{(y)) = pls)ds

where 0 < p < | alinost everywhere (there is no Fock part) and f,¢ € L*(Rt).
The creation and annihilation operators * and b are realized as operators on
the teusor product of two copies of the antisymmetric Fock space over LZ2(R*).
The von Neurann algebra U, is generated by the operators {§(f)} where f runs
over those clements of LAH(R*) with support in the wterval [0,¢], and the vector
Q= Q¢ w8y, where Qg is the Fock vacuum vector, 1s cyclic and separating for %,

For fermions, the martingale representation theorem ([13], [14]) states that
for any H-valued wartingale (¢;), there exist unique o € € and adapted processes
E € LE(RY (1= p(s))ds, H) and y € L (R, p(s) ds, H) such that

1 t
(= afl+ /Ll(.',: &(s) + /dnr,g 7(s)
0 0
for all t € [0, c0). As before, we write ¢, < («v, &, %). If ({;) is bounded, then £ and
7y are square-mntegrable and the formula is valid for ¢ = oo.
The Doob-Meyer decomposition for the “square” of a ferinion martingale
is as follows [8]. For any H-valued martingale ({;), the “square”, |(;}?, can be

uniguely written as

|Ctlz - Zt +Ala

for & 2 0, where (Z,) is an L'-martingale and (A;) an increasing L'-process, null
al t = 0. The process (A¢) 1s given explicitly by

1

A) = /'( JE(s), JE())(L — pls)) ds + / (- In(s), Tu(s))p(s) ds
4] 4]

where ({;) < («,&,7) as above.
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Let (¢;) = (Pi{) be an H-valued martingale closed by ¢ and let 7 = (g5)
be a quantum stopping time. We will compute the increasing part of the Doob-
Meyer decomposition of |(, .;|*> and compare it with the increasing part of the
Doob-Meyer decomposition of ||? stopped by 7 A L.

Suppose that, according to the martingale representation theorem, ((;) is

given by
1

t
(= af) +/db: E(s) + /dbs n(s)
0

0
for & € C and processes £ € L2(R*, (1 — p(s)) ds, M) and n € LR, p(s) ds, H).
Then we know ([9]) that ({,,7) is given by

Coni = a0+ [ @63 8ad)e(s) + [ b, e G
0 0

where § denotes the parity automorphism on the CAR algebra 2. Hence, according
to [8], the increasing part of the Doob-Meyer decomposition of |(, 7], (A}) say, is

given by
¢

A = [CIBRIEE), T8 (1= o) ds

G
+ [ apa (o), I8 ) o) .
0

On the other hand, we can compute the increasing part of {[¢;|?) stopped by
T Af. Indeed, the increasing part of (|¢4]?), (4.) say, is given by

i

At(‘)=/('Jﬁ(-f),Jé(-9))(l —P(S))d-'=‘+/(-JU(S),JH(S))P(S)dS-

0 0

Then (A), stopped by 7 AL, is given by

Acni) = [CTIE6),TE6) O = ploh) st [CTEI(6), () o) ds
(1] 0
- / (TEIE), T 16(5)) (1 — p(s)) dst f (-GEIn(s), T Tn(s)) p(s) ds
0 0

- / (- Jg €(s), JgE(s)) (1 — p(s)) ds + / (- Jatn(s), Jabn(s)) p(s) ds.
Q
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We see that if 7 is an even quantum stopping time, that is, if #(g,) = ¢, for (almost
all) s € [0, 00), then

for all t > 0.
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