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ABSTRACT. In this note we generalize a theorem of J.A. Ball and W.J. Helton
on commutant lifting with finite defect to a Krefn space setting. The proof
of the generalization is based on an invariant subspace theorem.
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1. INTRODUCTION

Let T € L{H) be a contraction in the Krein space H. In this paper an operator
W € L(G) in the Krein space G will be called a dilation of T if H is a Krein
subspace of G and PW = TP, where P is the orthogonal projection in G onto X,
or equivalently, if we write G = H @ (G © H), then

=02 (ean) = (n)
T \x x) \GoH GoH /)’
If the dilation W s minimal, that is,

span{W"h |h e H,n e NU{0}} =4,

and isometric then G © H is a Hilbert space. A minimal isometric dilation of a
contraction on a Krein space M always exists and is unique up to an isomorphism
which coincides with the identity operator on H; see, for example [10]. We recall
that the negative index h_(H) of a selfadjoint operator # € L(H) in a Krein space
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(M,{-,]) is defined as the supremum of all » € N such that there exists a negative

matrix of the form

([kaifj]);:,kzlw Hhy-. fr eH,

and h_(H) = 0 if no such r exists. If # is a Hilbert space then h_(H) < oo if
and only if the negative specirum of the operator H consists of a finite number of
eigenvalues counted according to multiplicity and this pumber is fi_ (/).
Consider two contractions 7; € L{H;) and corresponding two minimal iso-
metric dilations W; € L(G;), and denote by P; the orthogonal projection from G;
onto M;, 7 =1,2. Let A € L(M;,H>) be an operator such that AT} = TyA. For
£ € NU {0} we define LIF.(A) as the set of all contractions A € L(£,G,) where

£ is a closed W,-invariant subspace of G; with codim& = « such that
(1.1) AW |E=WyA and PyA= AP |E.

Here £ is endowed with the inner product of G; and may be degenerate; we say
that 4 € L(£,G>) is a contraction if [Z:z‘, ,Zz]g < [=,2]), z € £ We call A alifting
of A with finite defect k. LIF(A) depends on the choice of the nmininal isometric
dilations but is unique up to isomorphism.

In this paper we look for conditions under which LIF . (A) is not empty. For

example, we prove the following theorem (see Remark 3.4).

THEOREM 1.1, Assumc thal Hy and Hy are Hilbert spaces.
() If ho(I — A*A) = &, then LIF(A) #0.
(ii) IfLIF (A) # @ then h_(J — A"A) € .

Theorem 1.1 is a slight generalization of the Ball-Helton lifting theorem in
[4). If & = 0, then the theorem reduces to the Sz.-Nagy-lFoiag-Sarason lifting
theorem; see [13] and [14]. We prove Theorem .1 using an invariant subspace
theoretn aud the lifiing theorem of Sz.-Nagy-Folag-Sarason. In this way we avoid
the approximnation argument used by Ball and Helton. We show that Theorewm 1.1
remains valid if we assume that H; and H, are Krein spaces and that T3 € L{H,)
is a bicontraction; sce Corollary 4.3 and Remark 3.4.

We assume farniliarity with operator theory in Pontryagin and Krein spaces
and the results in the books [2], [5] and [12] and the paper [10].
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2. AN INVARIANT SUBSPACE THEOREM

If G € L(H) is a selfadjoint operator in a Hilbert space (K, (-, -)) then a subspace
L of H is called G-nonnegative if (Gz,2) 2 0, ¢ € £, and an operator V &
L(H) is called G-expansive if V*GV 2 G. Our main result in this section is the
following theorem. It is a slight generalization of a theorem of 1.S. Iokhvidov; see
[2], Theorem 3.9, and the references at the end of [2], Chapter 3. Our proof seems
simpler than the proof of a similar result in [15].

THEOREM 2.1. Lel G € L{H) be a selfadjoint operalor in a Hilbert space H
with h_(G) = & < 0o, Let V € L(H) be a G-expansive operator and let L be @
G-nonnegative subspace of H such that VL = L. Then there czists a V -invariant
G-nonnegative subspace L of H with £ C L and codim £ = «.

Since i ((7) = k& < oo, a G-nonnegative subspace £ is maximal G-nonnega-
tive if and only If codim £ = «.

Proof of Theorem 2.1. The properties of G imply that H and G can be
decomposed as H = Hy HH_ and
(%+ )
b]
H_

=(% 2 )()
Tl -G )\ M

respectively, where M4 is a subspace of H, dimH_ = &, Gx € L{H4) is a nonneg-
ative operator, and (. is injective. We denote by P, the orthogonal projection
in H onto H4. For each G-nonnegative subspace £ in H there exists a contraction
K :Hy — Ho withdom K = m(?i/zP_F]C such that

£={(U+GIiKGE)e | w € PiL).

The operator K, called the angular operator, is uniquely associated with £ and
will be denoted by K. The subspace £ is maximal G-nonnegative if and only if
P L = H,; the proof is the same as the proof of [2], Chapter I, Proposition 8.18,
where it is assumed that (in our notation) (74 is injective and (G_ = I, but these
assminptions are not essential. We denote by 9M* the collection of all maximal
(i-nonnegative subspaces of X and for a G-nonnegative subspace £ of H we set

MLy ={LeMmt|LCL)

Assume L is a G-nonnegative subspace such that V£ = £. Then for every N €
MM+(L), there exists an M € IMT(L) such that VN C M: simply extend the
G-nonnegative subspace VAN to a maximal G-nonnegative subspace; M need not
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be unique. Using the angular operator notation we have obtained a set valued
mapping
O Ky {Kp | MeMH(L), VN C M}

defined on the set dom® = {Ky | N € M*(£)}. This mapping satisfies the
hypotheses of a theorem of Glicksberg ([L1]), which in the original formulation
reads as follows: Given a closed point to convez sel mapping ® : S — S of
convez compact subset S of a conver Hausdorff linear topological space info iiself,
there exists a fized point z € ®(x).

The convex Hausdorff linear topological space we consider here is the space
L(H4,H_) equipped with the weak topology. Since dim H_ < co, the weak
topology coincides with the strong topology. The set

S=dom®={K e L(Hy,H_) | ||K] € 1, K extends K.}

is convex and also compact since it is a closed subset of the unit ball in L{H 4, H-),
which is {weakly) compact. Evidently, for each K € dom®, ®{[\') is a convex set.
It remains to show that ®(K') is closed, that is, in terms of nets,

Kn— K, K| € ®(K,), K, — K’ inply K'e ®(K).

V:(V“ VIZ).<H+>___+(H+>
Vi Vao)  \H- H_ )

If N and M are maximal G-nonnegative subspaces then VA C M if and only if

We write

1
2z

1 1 -1 1 — 1
(2.1) Var + VaaGZ? Kp G2 = G2 K G2 (Vay + VigGL P K pGE).

By assuinption, this equality holds for /', instead of K and K/, instead of K aq.
Taking limnits we see that (2.1) also holds for & and K mnstead of W and Kag,
respectively, and this implies that K'e ${K}.

Thus, by Glicksberg’s theorem, there exists an £ € MT(L) with £ € &(L),
that is, L has the desired properties, 1

ReEmMark 2.2, Theorem 2.1 remains true if the condition that L_(G) =
# < oo 1s replaced by the conditions that, in the notation of the proof, G'_ is
houndedly invertible and the operator Gj,/zvu 1s compact. The first condition

itplies that every maximal G-nonnegative subspace £ in H has the form
1 1
L= {(1 +GIINGI)x |z € 'H+},

and the second condition implies that the set valued mapping & is closed, so we

can again invoke Glicksherg’s theorem.
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3. THREE EQUIVALENT THEOREMS

In this section we prove the following three theorems.

TueoreM 3.1. Let T; € L(H;) be a contraction in the Hilbert space H; and
let W; € L(G;) be an isomelric dilation of T; in the Hilbert space G;, j = 1,2.
Let A € L(H1,Hy) be such that ATy = ToA and £ = h_(I — A*A) < co. Then
there exist a W, -invariant subspace £ of G with codim& = & and an operalor
A € L(£,Gy) such that |A||<1 and

AW, |E = WhA, PyA = APIE.

THEOREM 3.2. Let T3 € L(H;) be a contraction in a Hilbert space H;,
j=1,2, and lel W, € L(G;) be an isometric dilation of Ty in a Hilbert space G;.
Let A € L(Hy, Ha) be such that ATy = ToA and x = h_(I — A*A) < co. Then
there exists a Wy-invarianl subspace £ of Gy with codim& = « and ||AP|E]] < 1.

THEOREM 3.3. Let G € L(H) be a selfadjoint operator in a Hilbert space 'H
such that h_(Q) = k < oo, and let V € L(H) be a G-ezpansive 1somelry. Then
there cxists a V-invariand G-nonnegative subspace £ of H with codim& = k.

Theorem 3.3 is a special case of Theorem 2.1. Hence to prove Theorems 3.1~
3.3 we only have to show, that these theorems are equivalent.

Evidently, Theorem 3.1 = Theorem 3.2.

Theorem 3.2 = Theorem 3.1: The operators in Theoremn 3.1 satisly the
hypotheses of Theorem 3.2. Hence there exists a Wj-invariant subspace & in G,
with codim& =k and ||AP €| € 1. Set Hy, =&, T} = Wh|E, GL =G, Wi =W,
and A’ = AP |E. Then A'T{ = T, A’ and A’ is a contraction. Hence we may apply
the Sz.-Nagy-Foiag-Sarason lifting theorem and we obtain an operator A which
has the properties mentioned in Theorem 3.1.

Theorem 3.2 = Theoren 3.3: Consider the operators in the hypothesis of
Theorem 3.3. Set Hy = Hy = H, Ty = V, Gy = H; and Wy = V. Without
loss of generality we may assume that [|G]] € 1. Take A = (I — G)/?, then
for all h € H, ||AVhH|| € ||Ah]] and ThAh = AV h defines an operator on ran A
that can be extended to a contraction 75 € L(H) such that 75A = AV. Clearly
h_(f — A*A) = h_(G). It follows that there exists a subspace £ in H as in
Theoretn 3.2. 1t is V-invariant and for h € H, (Gh, k) = ||h||* — ||4h||* 2 0, since
NAIEN < 1.

Theorem 3.3 = Theorem 3.2: Consider the operators in Theorem 3.2 and set
H=0qG, A= APy e L(G,Hy), G=1—-A"A"=(I - A" AP+ (I = P). Since
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Gi @ H, is a Hilbert space, h_(G) = h_(I — A”A) = k. Wesel V =W, then V
is G-expansive. Indeed, from
AW, = APLW, = AT\P, = TH AP, = ThA'
it follows that
VGV -G =W (I - A"AYW, — (1 — A" A")
= A"A - Wy A" AW,
=A"A — ATTS T A
= A"(I -T3T)A 2 0.
Let £ be as in Theorem 3.3. It is Wj-invariant, codim& = &, and for h € £,
AP = [|AB[2 = (7 - G)h, h) < (18]
because £ is G-nonnegative.
REMARK 3.4. Theorem 3.1 implies Theorem 1.1 (1) in the Introduction. To
sce (ii), assume that A € L(&,Ga) belongs to LIF(A). Then A is an exten-
sion of the contraction P,AP) | £€NH,y. The inequalities dim(H; & (6 NHy)) <

codim& < & imply h_(f — A*A) < . This argument also shows that Theorem 1.1
(i1) remains true in case H; and M, are Kreln spaces.

4. ALMOST COMMUTANT LIFTING IN KREIN SPACES

In this section we assume that H; and Ho are Krein spaces, 73 € L(H,) and
Ty € L(H3) are contractions, Wy € L(G,) and Wy € L(G2) are minimal isometric
dilations of 7y and T, respectively, and A € L{H,, Hz) satisfies AT} = T3 A and
ho(I — A*A) = k < c0. We set A’ = AP, : G — Ha, where P; is the orthogonal
projection in G, onto H;. Let J be a fundamental symmetry in the Krein space
(G1,[-,-h) and set G = J(I — A™A’). Then & € L(G,) is a selfadjoint operator in
the Hilbert space (Gy, (-, )1), where for z,y € Gy, (2,y)1 = [Jz,¥]. and

(Ge,y)y = [({ — A"A) Pz, Pyly, + [ — Pz, (I — P)Yleen, -
Since Gy © H; is a Hilbert space, h_{G) = h_(I — AA) = k. Moreover, W) is
G-expansive in the Hilbert space (Gy,(-,-)1) :
(Wi GWiz,y) = (GWiz, Wiy,

= Wiz, Wiy]y — [AP1Wz, AP1 Wiy,
= [z,y)1 — [T2AP1z, TaAP1y)2
2 [z,yh - [A'z, A",
= (Gx,y)1-
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On account of Theorem 2.1, there is a Wi-invariant G-nounegalive subspace £ of
G, with codim & = . In this section we fix such an £ and set £, = ENEL, where
L stands for the orthogonal complement in the Krein space (Gy, [, ];). Note that
&y s finite dirmensional:
diméy € codim & = k.

We are now able to formulate the main theorem of this paper.

THurorEM 4.1. If W & = &, then L{E,Gy) NLIF, (A) # 0.

if £ =0, then & = Gy, & = {0}, and Theorem 4.1 implies that LIFy(A) # 0.
This is a result of M.A. Dritschel (see [10], Theorem 3.2.1; for an alternative proof,
see [9]) and this result will be used in the proof of Theorem 4.1. Some variants of
commutant lifting for bicontractions and contractions in indefinite inner product
spaces were proved carlier by T. Constantinescu and A. Gheondea in [6] and [7].

Weset B = A"|£ = AP | €. Then B is a contraction on &, BW, |€ =T, B,
BE&y 1s a nonpositive subspace of Ha, and the equality W1& = & nnphes

(41) Tg]fg() = TQAIJ]S() = AT[ P| S() = /‘P] W]Sg - Aplf:() = Hg().
So the hypothesis of Theorem 4.1 implies an invariant subspace condition on 13
as well. In the proof of this theorem we use the following lenuna.

LEMMA 4.2, Let K = Ko+Kq, direct sum, be a degenerate space (with some
Hithert majorant) in which Ko C K NALY and dimKo < oo, lel F be a Krein
space and {et B 1 K — F be an operaior such that BKgy is a ncgelive subspace
of . Denote by @ the orthogonal projection in F onto (BKo)t. Then B is a
conlraction on K if and only if QBIK, is « contraction on Ay.

Proof. Write F as F = BKgy -+ (BKg)*t, then B has a matrix representation

of the form: , _ . R
5= By Ba ) ) (A'n . BKq )
N 0 11 ) K1 (B,CO)J- .

Hilbert space inner products ou A and F can be obtained from fundamental sym-

0 0 -1 0
. and ,
0 & 0 H
and then B is a contractive operator if and only if

< B By Bj Boy )
BYBo G+ By Boy— BTHB,

_(o 0)_ By B\ [—1 0 (Bo BuY 5,
“\u o 0 B 0 HJ)\0 B )T

metries of the form
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where the adjoints are taken in the Hilbert spaces. This inequality holds if and

only if

(i) X = B{Bo > 0,

(ii) Y =Gy + B} Boy — BIHB; >0,
(iii) BBy = X3KY3

for some contraction K: fanY — ran X; see [2], Chapter 2, Lemma 3.21. Since
By is injective, By = |Bg|U for some isometry U : BKy — Kg. From (iii) we see
that | Ho|U Boy = |Bo| KY'/2, hence

UBoi = KY* and Bg Boy = By U UBoy = YK KY% V.

[t follows from (ii) that Gy — B{HB;, 2 0, that is, B; is a contraction. Con-
versely, if By is a contraction then (i) and (ii) are valid and B§, Bo; < Y. Hence
there is a contraction K| : (BKo)t — BKg such that By, = K, ¥Y? and
UBgy = KYY?% K = UK,. It follows that B Boy = |Bo|lUBoy = |Bo|KY/? =
XY2KYY? that is, (iii) is also valid. Hence B is a contraction. 8

Proof of Theorem 4.1. We consider 4 cases and in each of tliese we show that
the theorem holds.

Case L. Assume that Dy = B&y is neulral. We write £ as £ = £,+&;, direct
sumn, where £ is a Krein subspace, and we write Hy = (Do b H3)+J2Dy, where J,
is a fundamental symmetry in H, and H} is a Krein subspace. Then W) | & and
B have matrix representations of the form

. Woa Woy &y c‘:o)
W, 18 = : —_
| ( 0 Wn) (ﬂ) (51

and
Boo  Bo Dg
, £ :
B=| 0 By):(J)—]| m
0 B b J2Dq

We claimn that B> = 0. To sce this we note that the quadratic form
[z, ], — [Bz, Bz]»

is nonnegative for & € £ and zero for 2 € &. The Cauchy-Schwarz-Bunyakowskii
inequality implies that for 2 € & and y € £,

[133:: -By]z = "([J:: 3‘/}1 - {B'J:, By]!) = Ov
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that is, B& C BEN(BEYL. This implies that ran 8 C Dy & H and proves the
clatm. Since /3 is a contraction on £ and Dy is neutral, By; is a contraction on &

with values in ‘Hi. In the space Hs the operator Ty has the matrix representation:

Too Tor Toz Dy Dq
TQ = 0 Tu T[z | 'H% — ’Hé
0 0 T JoDyg J2Dy

The zeros in the first column of Ty are due to formula (4.1). The zero in the
middle column also cornes frow formula (4.1) as it implies that T acts as a unitary
operator on the neutral space Dy (see [3]): Ty Do = Ty T2 Dy = Dy. This argument
also implies that Wy € L(G,) has the matrix representation:

Too Tor 0 T Dy Dy
S T T T T Y O I
0 Wa Wy Wi | | GaoH, G2 & Ho
0 0 0 Ty J2Dy JoDy

Evidently, 77, is a contraction in ‘H3 and

e ) () — (o)
2 Wy War ) \G2&Ho Ga &My

is an isometric dilation of T;. So we have two contractions Wy € L(&1) and T €
L(H}) with minimal isometric dilations Wy € L(€)) and Wy € L(HL & (G20Hz))
and a contraction By € L(&),H}) with the property: By Wiy = T4 By, which
follows from BW, | £ =T, B. Now [10], Theorem 3.2.1, implics that there exists a
contraction /3 of the form

~ B“> ( 'HL )
B = (P SO ——
<321 ! Gy ©Hy

such that BW,, = Wzlg It is easy to check that if
Byo By

D

- 0 By & S

A= . — Hz
0 By & 1D
0 0 20

then A € L(E,G3) NLIF(A).

Case II. Assume that Dy = BE; is ¢ nondegenerale (hence negative) sub-
space and that o (15 | Do) > 1. We decompose & and W, | £ as in Case [. We now
have that Hy = Dy &)H% and we write B, Ty and W, as

o= (% ) (5) = ()
LU0 Bn/) \& C\HY )
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T__(Too Tor} (Do) (Do
2T 0 T/ \HY) T \mL)

and
Too  Tor 0 Dy Dy
2) Wwa={ 0o 7, o |:| m |—|
Wao Way Was Gy ©H> G20 Ho

Then |o(Tpe)| > 1. We define
Ko =span{W;Dg | n € NU {0}}.

Then Dy C Ko C Do & (G2 © Ha), Ko is a me,-space with kg = dimDyp, and
W) = W, | Ko is a dilation of Typ € L(Do). It follows that there is a #o- dimensional
nonpositive subspace Lo of Ko which is W;}-invariant. We claim that

U(VVZI lﬁo) = U(Tog).

To prove this we denote by Ry (5) the root subspace of the operator S correspond-
ing to the eigenvalue A of 5. Evidently,

Lo = span{Ra(W} | Lo) | A € o(W} | Lo))}

and
Do = span{Rx(Too) | } € o(To0)}-

We denote by Py the orthogonal projection in Ko onto Py. Then, as Wy is a
dilation of Ty, PoRa (W] | L) C Ra(Too). Since Lo is a noupositive subspace and
Ko & Dg is a Hilbert space, the restriction Pg| Lo is an injection on L. From
dimDy = dim Lo it follows that PeMA(¥) | Lo) = Ra(Toe), and hence the claim
is true. Consequently,

lo(Wy | Lo)| > 1.

W) is isometric, and therefore £y is a neutral subspace of Ko. We denote the

angular operator of Lo by U:
(4.3) Lo={z+Uz|z €Dy}

The operator U is an isometry from |Dg| to Ko © Dg, where the first space stands
for the anti space of Dy which here means that |Dg| is a Hilbert space. We may
write Gy as Gy = Do @ H) & U|Do| & G4, where G) is a subspace of Kq & Do C
Gy © Hy. We set §g =Dy & H) & |Do| b G} and define the operator U:Gy — Gy
by U = diagonal{l, I, U, I]. Then U is an isomorphisin which coincides with
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the identity on H» and so Wg = ﬁ*Wzﬁ is a rminimal isometric dilation of T3,
isomorphic to Wy, Let

Yoo do1 O 0 Dy Dy
S O T N 0 D
Wa Wo Wi Was | Dol Dol
Wiso Wi Wiy Wis G3 gs

be the matrix representation of /1/172‘ We show that
Way = Too — Wao, War=To1, Wz =0, Wsap=—-Wao.

Let £ = {(z,0,2,0) € Do & HL & Dol Gl | z € Do}. Then £ = U"Lo, and
so £ is Wz-invaria‘nt, This readily implies the first and fourth equalities. The
sccond equality follows from the first one, the surjectivity of Tpo and the fact
that Eg = ngz L Wz'Hé. The remaining one follows in a similar way from
the orthogonality of Eg and Q%. We now have a situation as in Case I: From
BW, | € = Ty B we have B'W, [£ = T3 B’ where

Bos Bun Do
B'= 0 B]] ! <£0> o 7‘(%
Boo  Boi 1 Dol

is a contraction and

Too Toy 0 Do Do
Tzl = 0 T 0 : 'H% — ’Hg
Wae Tor Too — Wap Do} Dol

is a contractive dilation of 1% : 74 = W, | Do & M5 & |Doland B'Ey = Lo is neutral.
The minimal dilations of ‘[/V1|£' and 7% are Wy and WQ, respectively. From Case |
we conclude that L(£,Gy) N LIF . (A’) # @ and hence L(£,G;) NLIF(A4) # 0.

Case III. Assume that Dy = BEy is a nondegenerate (hence negative) sub-
space. We decompose Dq as Dy = D§+D}, direct sum, such that

TPy =D), i=0,1, |o(T2|Dg)l =1, |o(T2|Dg)| > L.

Here

DY = span{Rx (T2 | Do) | A € o(T2 | Do), [A| =1},
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and it can be shown that 73 | D acts on DY as a unitary operator and R, (7% | Do) =
ker (T3 | Do — A). We write H, = DJ @ H}, where M3 = H © DY, and

(o ) () — ()

T = : 1] — L]

0 T]l HZ Hz

We claim that & can be decomposed as & = £ + £}, direct sum, such that
BE; =&, i=0,1, and W& =&

To prove the claim we choose subspaces F§ C & such that BFj = D} and ker BN
& C Fi,i=0,1. We define

£ = span{ Wl F| n e NU {0}}.

Since Wy is an isometry, Wi & = & and W &7 C &3, the subspace £§ is finite
dimensional and W £ = £7. Hence

Dy = TooD§ = T3BFS = BW, F§ = Too BW, F = BW2FO = ... = BWPFS,
and this implies that D§ = BEJ. Evidently, EINF} = ker BN&,, and therefore the

claim is true with £7 and £} = F§ © (ker BN &y). We decompose £ as £ = £0+&?,
direct sum, such that £ = £ N (EY)L. We write

: _ Woo Wy, ) 58 (88)
Wllg‘—( 0 W“)‘(gl - gy

(BOD Bm) (gg (Dg
B = : 1) 1)
0 Bll g HZ

and we note that BW, | € = T4 B implies By, W, = B1;Ty;. Since B is a contrac-

tion, on account of Lemma 4.2, By, also is a contraction. Moreover, B &y = D,

and

Dy is a nondegenerate subspace, and |o(7T1; | D§)l > 1. Thus we have a situation
as in Case IL. If W) € L(G}) is the minimal isometric dilation of T}y, then there
exists a contraction of the form

A = E —s
. (1312 GloMl
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such that A; Wiy |E = W) A;. The operator

B By Bos 0 2
A=| 0 Bu|: (5;) — | M
0 By Gs © "

belongs to L(£,Gz) N LIF (A).

Case IV. General case. Using arguments as in the beginning of Case I11 we
find that £ and Dy can be written as the direct sums

& = E3+E5, Do =Dy+D;

such that
DS =DoNDy, BE=Dh,i=01, W& =§&.

We consider direct sum decompositions of the form
E=E+E, & = EL4EY, My = DY+HL+IDY,

and observe that we can use the same notation as in Case I with Dy replaced
by ’D8. There are two differences with Case 1. In Case I we have that Dy = D}
and By, is an operator from the Kreln space & to the Krein space H3, and we
used [10], Theorem 3.2.1, to obtain a dilation of By;. In the general case Do # DY
and By, is an operator from the degenerate space & to the Krein space H}. Now
we invoke, instead of [10}, Theorem 3.2.1, Case III and oblain a dilation of B3
such that the operator A, defined at the end of the proof of Case I, belongs to
L(£,G2) NLIF (A). 1

REMARK. Returning to Case Il in the proof above, from the formula for B’
at the end of Case II we see that A € L(£,G2) NLIF (A) has the following matrix
representation:

_ Boy  Bw P Do
A= 0 By | (;) — Hs
UBU() Bz1 ! gz @HZx

for some operator By,. Using formula (4.2) for the dilation Wy and (1.1) we obtain
the equation for U Byo:

(4.4) U BooWoo — Waal Bog = Wao Bog.
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Since |o(Wyo)| > 1 and Wy is an isometry and therefore |o(Wa3)| < 1, there are

positive nuimnbers &g, pg and py such that
o(Woo) C{AEC | p2+e0 < |A < po} and o(Wa2) C{u€C||pul<p2},

and To N Ty = B, where ['p = {A = poe® |0 € o < 27} U {X = (p2 + €0)e™ ¥ |
0<p<2r}and Iy = {u=pse'® | 0 € ¢ < 27}. By, for example, [8], Chapter I,
Formula (3.10), these conditions imply the existence of a unique solution U Byg of

the equation (4.4):

-1 -t

UBoo=—412// (Waz — p1) W;‘ZDBfU(WOD A dedA,

- _
'y Ty !

where A € Ty and p € I'y. Using this formula for U, which is defined on ran By,

we can calculate the W, -invariant subspace £q ( see {4.3)).
CoroLLARY 4.3. If T\ € L(H;) is a bicontraction, then LIF(A) # 0.

We recall that a contraction in a Pontryagin space is a bicontraction. Hence
LIF,.(A) # 0 if H, is a Pontryagin space.

Proof of Corollary4.3. A contraction T on a Kreln space H is a bicontraction
if and only if 0 € p{P_TP_), where P_ stands for the orthogonal projection
in ‘H onto the negative subspace of a fundamental decomposition of H. The
hypothesis of the corollary implies that W) is a bicontraction. Also a contraction
1s a bicontraction if and only if it maps every maximal nonpositive subspace onto
a maximal nonpositive subspace. So W, has this property, and we claim that if £
is a maximal nonpositive subspace of £, then W)L also is a maximal nonpositive
subspace of £. To see this we write G; as the direct sum

G1 = (Eo+&Es+N1E) D F T b F,

where J; is a fundainental symmetry in G;, &) is a Krein space and F¥ & F~ isa
fundamental decomposition of Gy & (£0+&1+J41&). A nonpositive subspace £ of
£ 1s maximal nonpositive in £ if and only if £ ¢ F~ is maximal nonpositive in G;.
For the proof of the claim, assume that £ is a maximal nonpositive subspace of £.
Then Wy (L & F~) = Wi L+W, F~ is maximal nonpositive in G,. Since W1 £ C &
and dim Wy F~ = dim F~, we find that W, F ¢ F~ is maximal nonpositive in G;;
see, for example, [1], Lemma 2.11. Hence W)L is maximal nonpositive in £, and
this prove the claim.
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Note that if £ is a maximal nonpositive subspace of £ then necessarily

& C L. Consider the subspace £ = Eo-i-c‘,'l_ where £ is the negative sub-
space of a fundamental decomposition of £. Then £ is maximal nonpositive in
&, hence WL is also maximal nonpositive in £ and & € W, £ N (W1L)*. From
LNLY = & it follows that W, £ 0 W, L5 = W&, and hence & C W1 &. Since

bolh spaces must have the same finite dimension, equality prevails. The corollary

now follows from Theorem 4.1. 1
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