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ABSTRACT. We illustrate new and elementary proofs of two results concern-
ing quasidiagonality of tensor products with normal operators and quasidi-
agonal dilations. The proofs here are based upon a generalization due to
I.D. Berg and K.R. Davidson of Berg’s Technique for weighted shifts.
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1. INTRODUCTION

Let B(M) denote the set of bounded, linear operators acting on a complex, infinite
dimensional, separable Hilbert space. By K(H) we denote the set of compact
operators. An element T of B(H) is said to be block-diagonal (resp. quasidiagonal)
and we write T' € (BD) (resp. T € (QD)) if there exists an increasing sequence
{Pa}3%, of finite rank orthogonal projections tending strongly to the identity
operator I such that PaT = TP, for all n > 1 (resp. lim [|PaT—TPal| = 0). It is

well-known ([8]) that (QD) = (BD), and that T' € (QD) if and only if T = B + K
for some B € (BD) and K € K(H). In fact, given € > 0, B and K may be chosen
in such a way that || K|} < e.

In [1], W. Arveson demonstrates how the existence of quasicentral approxi-
mate units implies that every T € B(H) is a direct summand of a quasidiagonal
operator. That is, there exists S € (QD) and B € B(H) such that S =T & B.
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In (9], D.A. Herrero gives a separate proof of this fact, and demonstrates
the existence of a universal quasidiagonal operator @ with the property that if
T € B(H) and ||T + K(H)|| € 1 in B(H)/K(H), there exists a compact operator
K such that @+ Ky is unitarly equivalent to Q@ & 7". Herrero’s argument is based
upon ([7], Theorem 5.1). It is also deducible from Hadwin’s characterization of
closures of unitary orbits ([6]), based upon D. Voiculescu’s non-commutative Weyl-
von Neumann Theorem ([14]).

One of the objects of this paper is to exhibit yet another proof of this re-
sult. The present proof is motivated by the fact that it is single-operator theoretic
(without recourse to C"-algebra techniques nor Voiculescu’s Theorein) and rela-
tively elementary. In essence, it relies only upon Lemma 3.2 of [4]. That lemma
is an extension to general operators of a technique developed in the study of
weighted shifts by I.D. Berg ([2]). Berg’s original technique was slightly modified
by D.A. Herrero [10] (cf. also [5]) and has proven to be of immense value in the
study of weighted shifts {10], [12], [13].

Qur hope is to show that this technique as generalized in [4] may be used to
great advantage in more general approximation problems in Hilbert space. Indeed,
before proving the above mentioned result, we shall use this technique to provide
an elementary proof of a result easily derived from other works of D. Voiculescu.

In [15], Voiculescu shows that if a quasidiagonal C*-algebra B homotopically
dominales a C*-algebra 2 (i.e. there are x-homomorphisms f : 2% — B and
g : B — U such that g o f is homotopic to idy), then 2 is also quasidiagonal. In
[16), he uses this theorem to show that if D is a diagonal operator with eigenvalues
QN[0, 1), and if T € B(H) is arbitrary then D®T is quasidiagonal. As he points out,
this follows easily from the fact that C*(D ® T') is isomorphic to Co(0,1]® C*(7T),
which is contractible. The same argument implies that M @ T € (QD) whenever
M is a normal operator with simply connected spectrum containing {0}. If N is
any normal operator such that 0 € o(N) and o(N) is connected, then N can be
approximated in norm by operators M as above, since the spectrum of N can
be approximated in the Hausdorfl metric using simply connected sets containing
{0}. Since IN®T — M @T|| = ||N — M||||T|| and (QD) is closed, it follows that
N®T € (QD) as well.

Thus our second objective is to provide an elementary proof of this fact,
again, based only upon Lemma 3.2 of [4]. We also include a couple of new results
regarding approximation by block-diagonal nilpotents.
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2. QUASIDIAGONALITY OF THE TENSOR PRCODUCT

Our main tool is Lemma 2.3 below, and deals with block-tridiagonal operators.

DeriNITION 2.1. T € B(H) is iridiagonal with respect to a decomposition

H = D Hn if its corresponding operator matrix (73;) where 7} = P(H;)T|H;
nel
satisfies T;; = 0 when |7 — j| > 1.

REMARK 2.2. Suppose H is separable with orthonormal basis {e, },31. Let
T € B(M), and let My be an arbitrary finite dimensional subspace of H. Define,
for n 2 0,

n n
Hn+1 = span{@] Ht‘, THn, T*Hn) (’,n+1} e @)Hz
= 1=

o8]
It is easily verified that 7" is tridiagonal with respect to €5 Hy,.

n=0

LEMMA 2. 3 (Lemma 3.2 of [4]) Let A = (Ai;) and B = (B;;) be tridiagonal
weth respect to Q)’H, and suppose that A;; = By; ezcepl for i = j = 0 and

i=j=N. LeiC and D be tridiagonal with Cij = Dy; = Ayj for1 < i+j < 2N-1,
Coo = Aoo, Doo = Boo, Cnn = Byn, and Dy = Ann. Then there is a unitary
operator U such that

|A® B - U*(C & DY < %HAH.

In matrix notation, we have

T Ao Ao ]
Ao A Ap
A= . .
An_i N
L ANN-1  Anny
"Boo Ao ]
Ao A Aj
B |- . .
AN-1N
L ANN-1  Bnn
f Ao Aoy ]
Ao A Ap
C= .
AN-1N
L Ann-1  Byn
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Boo Aot
Ao A A

An_i N
ANnN-1  AnN
The present use of the Berg-Davidson Technique applied to tridiagonal operators
mimicks the use of Berg’s Technique for weighted shift operators. The reader is
referred to [2], [3), [9], [12], [13] for the description of as well as examples of the
use of Berg’s Technique.

In particular, it may be useful to view this technique as a “splicing” of
two sequences. Berg ([2]) provides the following diagram to illustrate the effect.
The longer the sequence over which we slice, the “less abrupt” the slice is, which
corresponds to a perturbation of small norm.

N
REMARK 2.4. If we think of A as acting upon @ Hi(A) and B as acting
i=0

N
upon P Hi(B), then it is implicit in the construction of U that U|Ho(4) = 1.
i=0

Moreover, when H; is finite dimensional for 1 € 7 £ N — 1, the perturbation
involved in Lemma 2.3 is induced by a finite rank operator.

LEmMMA 2.5. Let T € B(H). Suppose € > 0 and {d,},,-, C C satisfies:
() dr =0, lda| €1, 1< r;
<

.. €
(11) |dn—dn+1| < Z, 1<n

[+=]
Suppose T = (T3;) is tridiagonal with respect fo the decomposition H = P Hi.

i=1
Then for all M > 0 there exists a fintie rank orthogonal projection P satisfying:
M

r— 1.

(a) P 2> Pu, the orthogonal projection onto @ M;; and

i=1

o I[7.( 7)) <.

Proof. Let T(n) = dp,T, 1 < n € r. T(n) is assumed to act upon the
Hilbert space H(n) = H, and T(n) = (Ti;(n)) (with Tij(n) = du.T;; for all 4, j,n)
is tridiagonal with respect to the decomposition H(n) = é% H;:(n). Of course,
Hin) =H;, 1< n<ri> L. =
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Using Berg’s diagram, we illustrate the principle behind our proof.

4,7

&7 Ped
dsT >

S

dr—lT “'><k

4o >

The idea is to successively perform “splices” that will take us from d;T to d; 1T,

1€ i€ r—1. Here we use the fact that |d; — d;11]| is small, combined with the
fact that we perform the “splice” over long sequences to control the norm of the
individual perturbations. Then, as is the case with Berg’s Technique applied to
weighted shifts, the fact that the individual perturbations occur on orthogonal
subspaces implies that the norms do not add up.

Choose N large enough so that N > M and QFW < % Consider the operators
X(n), 1€ n<r—1, where

Tij(n+1) if{,7}n{2nN+1,...,2nN+ (N 4+ 1)} #0
T;i(n) otherwise.

Xij(n) = {
Since
. £
IT(n) = T(n+ DIl = [|da T ~ dar T|| = |dn = drya | [IT1] < 21T,

we conclude that ||T(n) — X(n)|| < §|]T|] We define X(») =T(r) = 0.
We are now in a position to apply Lemma 2.3 simultaneously to the pairs
X(n) and X(n+1),1 < n €7 — 1. For each such pair we have

Xij(n) = Xii(n+1) if {{,7}N{2nN +1,2nN +2,...,2nN + (N + 1)} £ 0.

Moreover, since the underlying spaces upon which we shall apply the perturbations
arising from Lemma 2.3 are mutually orthogonal, the norms of the perturbations
do not add up. As such, we can find a unitary operator U and operators C and
D such that

n@lX(n) —~ U*(C@D)UH < %

@ x| < Tl +9).
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o

Now C = (Cj;) is tridiagonal with respect to @ J; where J; = H;, 7 2 1. Further-

i=1
more,

Xiu(1) i {s,53n{1,2,...,2N} #0

J Xij(n) if (4,5}n{2nN+1,... 2(n+ 1)N} #0,
l1€ngr-1

0 ifi>2rNorj>2rN.

1 o
D acts upon the space M = ( ) ’H(n)) o (@ J;), but the structure of D will
n=1 i=1

r 2rN
be irrelevant here. Let @ be the orthogonal projection of ( &) H(n)) onto @ J,.
n=1 n=1

Then @ commutes with (C & D). Let P = UQU*. Since

N
Ul Ha(l) =1,

n=1

we have J, = Ha(1), 1 £ n < N. Thus P 2 Pps. Finally,
I~ ( ﬁ}l 4.7)]| <2171 n@l x(m) = 7(n)| + [P, §1X(,z)] ||
<2(1) (1) + 21711 | @ X () - U (C o DY |

+IP.U*(C @ DY)
< SITll+ 22T + [10*1Q.(C @ DY

€ €
< STl + ST + 0
= ¢l|Tl.
This concludes the proof. &

THEOREM 2.6. Let T € B(H) and suppose that N € B(M) ts a non-invertible
normal operator with connected spectrum. Then N ® T € (QD).

Proof. The case where T' = 0 is trivial. Otherwise, by scaling if necessary,
INl| € |IT|| = 1. By the Weyl-von Neumann-Berg/Sikonia Theorem, given € > 0
we can find V a unitary operator and D a diagonal operator with ¢(D) = ¢(IV),
and 0 an eigenvalue of infinite multiplicity of D such that ||N — V*DV|| < e.
Clearly V*DV @ T = (V* @ I}(D ® T)(V ® I) is quasidiagonal if and only if
D ®T € (QD). Since (QD) is closed, it suffices to prove the theorem in the case
where N = D is a diagonal as above.

o0
If D = diag{d,}3%, then D® T = @ d.T. To see that D@ T € (QD), we
n=1
need only find a sequence { P}, of finite rank orthogonal projections increasing

strongly to the identity such that lim |[[P,, D® T]|| = 0.
1~ 00
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As in the previous lemma, we let T(n) = d,T, and suppose that T(n) acts
on H(n) and is tridiagonal with respect to @ H;(n). Either (D) = {0}, in which

case D®T =0 € (QD), or ¢(D) is 1nﬁ111te (belng connected and containing {0}).
In the latter case we use the following argument.

Let £ > 0 and M > 0 be an integer. Set Rps to be the orthogonal projection
of é H(n) onto g} ég Hi(n). We shall produce a finite rank projection P such

n=1 n=14i=1

that P > Ry and ||[P,D® T]|| < €. Once this is done, set ey = —Al? and let M
tend to infinity to produce the desired sequence.

To this end, we observe that with rg = 0, for each 1 £ k¥ € M we can choose
rr > 0 and a finite subsequence {d,,}7% , satisfying

( ) Nrp_14+1 = ka dﬂrk =0;

(i) nj > max{M, {n}E1'}, 1 +2< i<, L<k S M, ny > Mif
k= ] 2 < 71,

(lll) |dﬂj_ nj+1!<4 re_1+ 1< 7 7.

Then for each 1 < & € M, we can now apply Lemma 2.3 with the sequence

J=rR-1+

{d,,J}J_,.‘c ,+1 to obtain a finite rank projection Pp with support contained in

EB H(n;) satisfying
j=rr-1+1

M
(a) Pr 2 Qu(k), the orthogonal projection onto € Hi(k);
. i=1

J=re—1+1
Since the n;’s were chosen such that {n;};L, ., is disjoint from

dan] “ <e|T| <e.

{ni}it,,_ 41 Tk # £ the underlymg spaces indexed by the n;’s and the k’s

are orthogonal. Letting P = EB Py, we find P 2 Ry = GB Q@ (k). Furthermore
k=

[e 0] Tk
e e Til=[[7 @ dT]| = max [P & d7]|<e

REMARK 2.7. The above proof is based upon Lemma 2.5, which in turn
relies only upon Lemma 2.3. As such, we need not consider only multiples of
a fixed operator T, so long as the operators T(n) are in some generalized sense
“block-balanced” — i.e. a finite subsequence of the tridiagonal operator weights
“almost pairs up” as required for Lemma 2.3, and one of the T(n)’s is 0.

Using this, one can easily construct a wide variety of sets of operators, none
of whose elements are quasidiagonal, although their direct sum is. At this point,
however, it seems rather doubtful that one could hope to describe when two oper-
ators are “block-balanced” in this generalized sense.
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DEFINITION 2.8. We define the set of block-diagonal nilpotent operators as

(BDN) = {R € (BD) : R* = 0 for some k > 1}.

REMARK 2.9. It is an interesting open problem to characterize (BDN). What
we shall use below is a result of D.A. Herrero ([9), Theorem 5.4) that says that a
normal operator N is in (BDN) if and only if o(V) is connected and contains the

origin.
ProrosiTioN 2.10. Let T € (QD) and R € (BDN). Then R® T € (BDN).

Proof. First note that is suffices to prove the proposition in the case T €
(BD). Indeed, suppose R® X € (BDN) for all X € (BD). Then we may choose a
sequence {T,}3%, C (BD) with T = lim 7,,. Then R®T, € (BDN) by hypothesis,

1—00

and RQT = lim R®T,, implying R® T € (BDN).

n—0o
Thus we assume T' € (BD), say T' = € T(n), where each T(n) is a finite
n=1

— o0

dimensional matrix. Since R € (BDN), for all € > 0 there exists R, = @ R.(n) €

n=1
(BDN) (again, we assume each R.(n) is a matrix) such that ||R — R.|| < €. Let
p(e) be the order of nilpotence of R.. Now

RoT=( °°1 Re(n)) ® (é T(k))

n=

X kezal (Rz(n) ® T(k)).

But R.(n), T(k) are matrices, implying R.(n) ® T(k) is also a matrix, and so
R, ® T € (BD). Furthermore, (R, ® T)?©) = R?*) @ T#(£) = 0 @ T7(9) = 0. Thus
R, ® T € (BDN). Since |R,® T - R®T|| = ||R. — R||||T]| < [|T|, letting € tend
to zero yields R® T € (BDN). 1

CoRroOLLARY 2.11. Let T € B(H) and N be a normal operator such that
o(N)y=D={z€C: |z|<1}. Then N®T € (BDN).

Proof. First observe that N is approximately unitarily equivalent to N @ N,
since both are normal operators with spectrum equal to D (Weyl-von Neumann-
Berg/Sikonia Theorem). Thus N ® T is approximately unitarily equivalent to
(N®N)QT = N®(N®T). By Theorem 2.6, N®T € (QD), and as pointed out
in Remark 2.9, N € (BDN). It follows from Proposition 2.10 that N® (N ®T) €
m, and hence N ® T € (BDN). 1
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ReEMARK 2.12. In [9], Herrero defines the following “universal quasidiago-

nal” operator @ of norm 1 and proves:

ProprosITION. ([9], Corollary 4.2) Let Q = € Dpi, where {Dn}32, is
n,k=1

a dense subset of the unit ball of B(C?), n 2 1. If T' € B(H) and ||T|| < 1, then Q
15 approzimately unitarily equivalent 1o Q& T

(Notk. while this is not the precise statement of that result, it follows easily
from the result and the techniques of that paper. The next section contains a
different proof of this fact.)

CoroLLARY 2.13. Let Q be the operator defined above. Then @ € (BDN).

Proof. 1t is relatively easy to see that @) 1s approximately unitarily equivalent
to N ® @, where N is a normal operator with a(N) = D. (The skeptical reader
may apply the result of Hadwin ([6])). The corollary now follows immediately
from Corollary 2.11. 1

3. QUASIDIAGONAL DILATIONS

We now prove the result promised in Section 1, namely,

THEOREM 3.1. Let H be a separable Hilbert space and T € B(H). Then there
exists S € (QD) and D € B(MH) such thal S=T & D.

Proof. The proof is very similar to that of Lemma 2.5. Indced, suppose
T = (Tj;) is tridiagonal as before.

Consider the operators X(n), n 2 1, where

N - . n41
Xij(n):{T' ifi+j <2t 42
0 otherwise,
In matrix form, we have
[Too To1 1
Tvo T T

Ty Ty Tas
Xij(n) = S @0,

Tgn'zn Tgn,2n+1

Tong1,2e Tongr onsq |
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which we rewrite as

Tzn—l’ 2n=141
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Ton-141,2n-141

Tgn_l, an
T2n|2n_1 Tzn’zn T2n)2n+1
Tongt,2n Azngy, 2np1(n) |
Tn
T 12

Tzn—]._ll 2n-1

TZ"—l,Z"_‘—l Tzn—llzn—l

0 0

Ton n 0
A2n+1'2n+]_(n) = [ n41,20 41 :| .

(3.1)
[ Aoo(n)
Tzn—1+l’2n—l
Xij(n) =
where
Too
T1o
Aoo(‘n) =
and
We may also write
(3.2)
X.‘j (n + 1)
Boo(n)
T21\—l+1’ 2“—]
where
and

Bani1,2n41(n)
Torgr, 2041
Tyng2, 2m41

Tzn-—l, 2n—l+1
T2“_1+1, 2n-1+1

Tong1,2n42
Tongo, 2042

Tan_q, 20
Ton,ono1 Tom 2n Tpm, 2041
Tong1,2n  Banygy 2nga(n)

ng(n) = Ago(n)

Tony2 2n43
@ 0.
T2n+1’ 2n+1+1

T2n+1+1|2n+1 T2n+1+112n+1+1
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In particular, X;;(n) = Xj5(n4+ 1) =T f 2+ 1 < i+ 7 € 2" 4+ 1. We
can therefore apply Lemma 2.3 simultaneously to each pair X(n) and X(n + 1),
using the matrices (3.1) and (3.2). For each application of Lemma 2.3, the under-
lying spaces are orthogonal. As such, the norms of the perturbations required by
Lemma 2.3 do not add up. Rather, since the individual perturbations are induced
by finite rank operators, and since the norms of the individual perturbations are
on the order of 575+ {|T’|| which tends to 0 as n tends to oo, the total perturbation
due to the simultaneous application of Lemma 2.3 to each pair must be induced
by a compact operator.

In this case, the Berg-style diagram looks essentially the same as that for
Lemma 2.5, with the exception that there is no longer a “bottom row”. This in
turn is due to the fact that we are performing the splices on infinitely many pairs.

The end result is that we can find a unitary operator U and operators C and
D such that

- (oD < né X(m)| < Tl

Here,
C”_{Xl‘j(n) if2"+1€i4+5 2!
Y X,'_,'(l) ifi47<2

Since X;j(n) = T;; when i+j < 2" 4 2, we get Cy; = 7i; for all i and j.
Thus C = T. Let Sy = ( @ X n)) U* to obtain ||Sy — (C @ D)|| < »||T|], and

So—(C® D) € K(H). Smce So is clearly quasidiagonal (as each X(n) is finite
rank),sois S =Sy — K =C@® D=T @D, as claimed. 1§

It is worth pointing out that one can even control the norm of the perturba-
tion K above, simply by applying Lemma 2.3 to the pairs X(n) and X(n+ 1), for
nz=N.

Then the perturbation is on the order of zF=¢||7||, so that by choosing N
large, the perturbation can be made to have small norm.

If one attempts to apply Lemma 2.3 recursively to the pairs X(n) and
X(n + 1) rather than simultaneously to all such pairs, then at the Nth stage,

the perturbed system can be seen to be unitarily equivalent to é X(n), the orig-
inal system! "

One could appeal to the results of Hadwin on closures of unitary orbits ([6])
to obtain the conclusion, however this defeats the purpose of the present article,

which is to obtain a direct and elementary proof of this result.
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REMARK 3.2. If @ is Herrero’s universal quasidiagonal operator (cf. Corol-

lary 2.11), then it follows essentially by inspection that S, is an approximate direct

su

as

10.

11.

12.

13.

14.

15.

mmand of @, and hence from above, so is 7.
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