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Let (A, R%, a) be a C*-dynamical system, meaning that A4 is a C*-algebra, a : R% —
Aut(A) is a group homomorphism, and for each a € A4 the function y — ay(a)
(= a(y)(a)) is norm-continuous on R¢. Rieffel ([13]) has given a prescription
for constructing a “deformed” C*-dynamical system (A;,R% ) for any skew-
symmetric operator J on R?. The deformed C*-algebra Ay is constructed by
equipping the algebra A% of elements of A which are smooth for the action with
the “deformed” product

axgb= [/ agu(a)ay (b)e? ™ dudy,

and then completing. The construction is of particular interest as a way of creating
noncommutative C*-algebras from commutative ones. Examples of deformed C*-
algebras arising in this way include the Moyal plane and the quantum torus, along
with many others (see [13], Chapters 10-12).

Now let (M,R% &) be a W*-dynamical system, meaning that M is now a
von Neumann algebra and for each ¢ € M the function y — ay(a) is ultraweakly
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continuous. The goal of this paper is to define a deformed W*-dynamical system
(My,R4, &) (again, for J a skew-symmetric operator on R?) and to determine some
of its basic properties. Qur conclusions are perhaps relatively minor extensions of
the corresponding results in the comprehensive study ([13]).

The relation of the von Neumann algebra setting to the C*-algebra setting
is as follows. Let (M,R?, a) be a W*-dynamical system. By ([11], Lemma 7.5.1)
the set A of elements of M for which the action is norm-continuous, is itself an a-
invariant C*-algebra which is ultraweakly dense in M. In particular, (4, R, a4) is
a C"-dynamical system, and it can therefore be deformed as in [13]. The deformed
von Neumann algebra M can then be defined by taking the ultraweak closure —
in some sense — of Aj (see Section 1).

Our main motivation comes from noncommutative differential geometry ([2],
(3], [4], [16]), particularly the set-up introduced by Connes in [2]. Here one con-
structs differential geometric type data (specifically, an exterior algebra and exte-
rior derivative) from initial data consisting of a Lie group acting on a C”*-algebra.
In the present context this Lie group would simply be RY.

There are several reasons for pursuing this topic at the von Neumann algebra
level. First observe that the measurable point of view can certainly be taken in
the commutative case. Indeed, any differentiable manifold comes equipped with
a canonical measure class, locally lifted from Lebesgue measure on R%. Then the
exterior derivative can be regarded as an unbounded derivation of von Neumann
algebras. We find such derivations interesting because the natural requirement of
ultraweak closability of the graph has strong consequences, a point we discussed
at some length in [14]. (See also {15], where we show that the weak* closable
derivations of C[0,1] have a particulatly simple form.) The exterior derivative is
in fact ultraweakly closable in the most important commutative examples, and so
it is natural to work at the von Neumann algebra level in order to take advantage
of this.

In particular, the present paper (especially Corollary 3.7) furnishes several
new examples of noncommutative metrics along the lines discussed in [14] (i.e. C*-
derivations which extend to W*-derivations). The Moyal plane is such an example;
1t is similar to the noncommutative torus as considered in ({14], Theorem 22), but
harder to deal with because of the need to consider oscillatory integrals. Our
results on the noncommutative torus in [14] also follow from the results given
here.

In Section 1 we discuss Hilbert modules and define deformed W*-dynamical
systems. The bulk of the paper is taken up in Sections 2 and 3 in proving that the
smooth elements of a deformed von Neumann algebra are the same as the smooth
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elements of the original algebra (Theorem 3.6); this requires a Weyl’s lemma-type
result for Hilbert modules (Corollary 2.3), which we develop in Section 2. Finally,
in Section 4 we prove that deformation is a functor and that (M;)x = Miyk.
I wish to thank Akitaka Kishimoto for kindly allowing me to include a general
result of his which greatly simplifies the proof of this last statement.

Because of our heavy reliance on the constructions and results of [13], the
reader needs to be familiar with that reference.

1. HILBERT MODULES

Let (M,R?, o) be a W*-dynamical system, let A be its norm-continuous part,
and let J be a skew-symmetric operator on R¢. This notation will be maintained
throughout the paper. As we indicated in the introduction, we are going to con-
struct a deformed von Neumann algebra Mj; by taking the ultraweak closure of
the deformed C*-algebra A;. This is not quite trivial, because Ay is defined via
its action on the Hilbert A-module S# of A-valued Schwartz functions on R%. In
general the algebra of all bounded adjointable operators on a Hilbert C*-module
is a C*-algebra but not a von Neumann algebra, so Ay does not a priori sit inside
of a natural von Neumann algebra. (For general background on Hilbert modules
see [10] and [12].)

The best way to resolve this issue is to define an action of Ay on a self-dual
Hilbert W*-module, since the bounded operators on such a module do constitute
a von Neumnann algebra ([10], Proposition 3.10). That is, we want to enlarge
84 so that it becomes a self-dual Hilbert M-module. Algebraists call this sort
of process “extension of the base ring” and perform it by tensoring the original
module with the desired base ring. In the case of Hilbert modules the process has
been considered in detail ([10], Section 4); here it involves taking the algebraic
tensor product SA ®4 M, then factoring out null vectors and dualizing.

The same result is also achieved by simply taking the collection of all bounded
right A-module homomorphisms ¢ : S# — M (bounded with respect to the Hilbert
module norm |} fli2 = [I{f, f) 4|l on §). We denote this object by (§4). It is a
vector space by pointwise addition of maps and twisted scalar multiplication (i.e.
(Ae)(f) = Ap(f)), and a right M-module by the action (¢ - a)(f) = a*e(f). It
contains §4 by identifying f € $4 with the homomorphism

9= (000 = [ ) o(a)de,

and it has an M-valued inner product {,-),, which satisfies {, f},; = @(f)
for ¢ € (SAY and f € 84 (and hence {f,g)p; = (f,9)4 for fig € S4). Tt
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is a self-dual Hilbert M-module, hence the algebra B((S§#)') of all bounded M-
module operators on (§4) is a von Neumann algebra; the ultraweak topology is
given by T — T ultraweakly, for bounded nets (Tx) C B((S*)'), if and only if
(Tep, V) pr — (T, ¥}, ultraweakly in M for all p, 4 € (SA)'. Furthermore, the
C*-algebra B(S*) of all bounded adjointable A-module operators T : S4 — §4
is isometrically contained in the von Neumann algebra B((S4)'), by defining
To=@oT* for ¢ € (S*) and T € B(S4).

All of the preceding assertions are verified in ([10], Sections 3 and 4). (Note
that Theorem 4.2 of [10] holds since A is ultraweakly dense in M and has the same
unit; see [10] p. 462.) We also require the following facts.

LEMMA 1.1. (i) Let T € B((S2)'). Then T = 0 if and only if Tf = 0 for all
f € 8% if and only if (Tf,g)py = 0 for all f,g € §* if and only if (Tfagpe =0
for all scalar-valued f g € SA.

(i) Let T € B((8*)') and let (T}) be a bounded net in B((S*)). Then
Tx — T ultraweakly if and only if (Tif, g}y — (Tf,9) 5 ultraweakly in M for all
f,9 € SA if and only if (T, f, Da — (Tf,9)p vltraweskly in M for all scalar-
valued Schwartz functions f,g.

Proof. (i) That T = 0 implies T'f = 0 implies {T'f, g}, = 0 for f, g € $* im-
plies (T'f, g} 5y = 0 for scalar-valued f, ¢ is clear. Conversely, suppose (T'f, g}, = 0
for all scalar-valued Schwartz functions f,g. Then (T(af), b)), = a*(T'f, g} pb
for all a,b € A implies the same for any A-linear combination of scalar-valued
Schwartz functions. As the latter are clearly dense in §# in Hilbert module norm,
it follows that {(T'f, g}, = 0 for all f,g € S4.

Now for any f € 84, (Tf)(9) = (Tf,9)5s = 0 for all g € S implies that
Tf = 0. Thus, for any ¢ € (S4)

(T*0)(f) = (T, Fag = (@, T3y = 0

for all f € $#, hence T*p = 0. So T* = 0, and therefore T = 0.

(ii) The forward directions are again vacuous. For the reverse, suppose
(Tef,9)pr — (TS, 9)p for all scalar-valued f,g € S* and let T’ be any ultra-
weak cluster point of the net (7). Then {(T'— T")f, g} 5, = 0 for all scalar-valued
f,9, hence T — 7" = 0 by (i). This shows that T is the only possible ultraweak
cluster point of (Ty), so therefore T, — T ultraweakly. &

Since A is defined via its action on $# and we have an embedding of B(S4)
into B((5#)’), we may consider Ay as contained in B((S*)'). We can then make
the following definition.
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DEFINITION 1.2. Let (M,R% ) be a W*-dynamical system and let J be a
skew-symmetric operator on R?. Let A be the norm-continuous part of M for o
and define A; C B((S#)') as in ([13], Chapter 4) and using the above comment.
Then we define the deformed von Neumann algebra My to be the ultraweak closure
of Ay in B((8*)").

The first thing we want to do is to show that Mj still carries an ultraweakly
continuous action a of R%. Recall that we have a unitary action 7 of R? on (§4)
defined by 7, f(z) = f(z — y) for f € §* and y € R? (by the inclusion of B(S4)
in B((S4)') it is enough to define 7, on §#). Let A C A denote the subalgebra
of smooth vectors for o.

PROPOSITION 1.3. The action of @ on A (= A™, as sets) extends uniquely
to an ultraweakly continuous action on My.

Proof. First, we claim that the action 8 of R¢ on B((S#)’) defined by con-
jugation with 7 is ultraweakly continuous. To see this suppose yn — ¥ in R? and
note that for any f € $4 we have 7, (f) — 7, (f) in Hilbert module norm. Hence

By (TN, 9 pr = Ty f 1y )y — Ty 1, 99 = (By (TS, MM

for all f,g € §#, where the convergence is in norm in M. Lemma 1.1 (ii) now
implies that gy, (1) — By(T) ultraweakly, which proves the claim.

Now we want to check that the action of a on A agrees with the action
of 3 on AF°. Recall that a € A operates on S4 by La(f) = @ xs f where
a(z) = az(a); that is,

(Laf)(z) = / / tosru(@)f(2 + 967 dudv.

Thus for any y € R? and a € A%
(Lay(a)" f)(fb') = // az+.7u+y(a)f(:c + v)ez"i“‘”

= 571 ([[ cornn(@)m D) + o) dudv)
= (By(La)f)(z).

So a|g= = p|as, which together with the claim shows that on A, a is the
restriction of an ultraweakly continuous action on B((§4)'). Finally, since A% is
invariant for @ and M is the ultraweak closure of AT, it follows that My is also
invariant for 8. Uniqueness of the action is clear by nltraweak continuity. §

We will henceforth use the symbol o to denote the action on My given by
conjugation with 7. By the preceding proof, this is consistent with the original
use of a.
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2. SCHWARTZ FUNCTIONS

Unfortunately, we cannot assume that every element of (S4) is represented
by an M-valued function on R?. Indeed, Manuilov ([8]) has recently shown that
even completing the pre-Hilbert L0, 1]-module of simple L*[0, 1]-valued func-
tions on [0, 1] (with the standard inner product) gives rise to elements which take
values in L*[0, 1] almost nowhere.

However, we will presently need to recognize certain elements of (84) as A-
valued functions on R?. What we really need is a version of Weyl’s lemma which
will tell us that an element of (S4)' with sufficient smoothness properties actually
belongs to S4.

The main part of the proof of this involves proving an analogous statement
on the d-dimensional torus. This is accomplished by going over to Z¢ via the
Fourier transform, which does the trick because here every element of the dual
module actually is an M-valued function on Z¢ (cf. [7]).

Let T? denote the d-dimensional torus and let S# (respectively, SM ) denote
the A-module (resp. M-module) of continuous A-valued (resp. M-valued) functions
on T4 which are smooth for the action 7 (defined on T¢ = R4/Z¢ in the obvious
way). Also let (S¢')’ denote the M-module of right A-module homomorphisms of
8§ into M.

LEMMA 2.1. An element of (8§} belongs to S if and only if 1t is smooth
for r.

Proof. The forward direction is vacuous. For the reverse direction, observe
first that the functions e, : z «— e>*P* for p € Z¢ and z € T, generate the M-
module (Sg') in the sense that no ¢ € (S2) is orthogonal to all such functions.
This is because we can approximate any continuous scalar-valued function on the
torus by a finite linear combination of the e,’s, hence we can approximate any
continuous A-valued function on the torus by a finite A-linear combination of the
ep’s. So (@, ep) = p(ep) = 0 for all p € Z¢ implies that p(f) = 0 for all f € S&,
i.e. that o = 0.

Now let ¢ € (Sg')’ be smooth for 7 and define its Fourier series & : 29 —
M by 5(p) = (ep,p)p- Since ¢ is smooth its Fourier series decays rapidly in
norm (i.e. ||&(p)|| — O rapidly), using the fact that differentiation on T¢ transfers
to multiplication by the coordinate functions on Z¢ and every derivative of @ is
bounded in Hilbert module norm. Therefore the series 3" @(p)e, is uniformly
summable and the sum is evidently a smooth function ¢’ € S} whose Fourier
series is the same as that of . Thus ¢ = ¢’ by the last paragraph, which completes
the proof. 1



DEFORMATIONS OF VON NEUMANN ALGEBRAS 229

There is a slight ambiguity which we need to address here. When we speak
of a vector ¢ being smooth for 7, this means that its first derivative in the y
direction,

lim Tty(‘P) 4

t— 0 i ’

exists for all y € R?, as does every subsequent derivative. The question is whether
we mean that this limit exists in the uniform sense (as in the definition of $4
in [13]) or in the ostensibly weaker sense of Hilbert module norm. As we will be
applying Lemma 2.1 and the other results of this section for vectors which are
smooth in the weaker sense, we need to point out that this is all that is used in
the proof. However, the argument in fact establishes smoothness in the stronger
sense. Thus the two are equivalent.

We now want to prove an analogous result for A-valued functions on RY.
Supposing ¢ € (84) is smooth for T, we say ¢ decays rapidly if fyp € (S4)' for
any scalar polynomial f on R® and any derivative ¢ of . Here f4 is defined by
fi(g) = ¥(fg), and the issue is whether this defines a bounded function of g. Let
SM denote the M-module of those continuous M-valued functions in (§#)' which
are smooth for r and decay rapidly.

THEOREM 2.2. A rapidly decaying element of (S4)’ belongs to SM if and
only if it is smooth for 7.

Proof. The forward direction is vacuous. For the converse, suppose ¢ €
(84Y is rapidly decaying and smooth. We claim that fe is also smooth, for any
compactly supported scalar-valued C* function f on R?. To see this observe
first that the map g +— fg belongs to B(S*) and has norm ||f]lc; thus by the
isometric embedding of B(S4) in B((8§4)') it follows that fy» € ($#) and |}f¥||2 €
(| Flleo||®]]2 for all 3 € (S4)'. Now let y € R? and observe that

%Tw(ﬂ/’)Lzﬂ = lim _______Tty(ﬁpt) —Jy

= lim (Ttgf '_tf)('rtyY’) +lim f('rty(‘lto) —¢) )
The second term converges to fo' since (7 () ~ )/t converges to ', and this
also implies that 7y, (@) — ; together with the convergence of (7, f — f)/t to f’,
this then shows that the first term converges to f'ip. Thus we have verified the
Leibniz rule for derivatives and this implies the claim.

The point of the claim is that by taking f compactly supported but equal
to 1 on some compact subset X of R, we get a smooth function f¢ which agrees
with ¢ on X (in the sense that fo(g) = ¢(g) for all g € S* supported on X)
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and is compactly supported (in the sense that fy(g) = 0 for all g € 84 supported
away from f). If we can show that fy is a continuous M-valued function on R?,
the same will then be true of . In other words we have reduced to the case of
compactly supported smooth functions, or equivalently, smooth functions on the
torus. By the lemma such a function is in M, so we are done. 8

We already have one action, 7, of R? on (§4)’. Now define another action
o by (oyf)(z) = a_y(f(z)) for f € SA. This is not unitary but instead satisfies
{oyp, oy )y = ay((@, ¥) )

CoROLLARY 2.3. A rapidly decaying element of (S2)' belongs to S* if and
only if il is smooth for + and norm-continuous for o.

Proof. Suppose f € $; we must show that it is norm-continuous for . For
any € > 0 fix a compact subset X C R? such that

()| dz < e
Ri_X

By continuity f(X) is a norm-compact subset of A, and since o is norm-continuous,
on A there exists & > 0 such that |y| € 6 implies ||y (a) — al] € \/e/p(X) for all
a € f(X), where i denotes Lebesgue measure. Thus, Jy| € § implies

ot = 117 = | [(0y$@) = 1)) 0y 5(2) ~ 1(a) e
< [lloy56) - 1) d
< [ Qe T@+ 15N 82+ [ hay(5(a) - F)IP do
X

RI-X

< [ ew@n e+ [ (o5 e
R X X

% De.

Thus f is norm-continuous for o, as desired.

For the reverse direction, suppose ¢ € (§4)' decays rapidly and is smooth
for 7 and norm-continuous for o. Then ¢ € SM by the theorem. To see that ¢ is
actually an A-valued function, set gn(z) = n?h(nz) for some positive » € L}(R%)
with [h(z)dz = 1 (so that (gn) is a convolution approximate unit in L'(R%)).
Observe that

a—y({, Te(9n))ar) = (04 (9), 0y (T2(gn))) s = {0y (), T2 (9n)} s
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hence for any z € R, the element {p, 7z(gn)) s € M is norm-continuous for o and
therefore in A. But since ¢ is continuous on RY, (g, 1,(g, )}, converges in norm to
p(—z), so we conclude that p(—2) € A and hence that  is an A-valued function.
This completes the proof. 1

3. SMOOTH VECTORS

By Proposition 1.3 there is an action o of R? on M, which on AP agrees
with the original action o (hence our use of the same name for it). According to
Theorem 7.1 of [13], AF is precisely the part of Ay which is smooth for o. We
now wish to prove the same thing for AMj;, that A3 is precisely the part of M;
which is smooth for a.

This result is suggested in a comment on p. 39 of [13]; see also Theorem 1.2
of [6] for a related result involving the Heisenberg group and Theorem 22 of [14]
for the special case of the noncommutative torus. Its execution requires a fair
amount of preliminaries. We preserve the notation of the preceding sections, and
throughout this section let D denote the subalgebra of M; which is smooth for «,

and which we will eventually prove equals 4.

LEMMA 3.1. For any y € R? and T € M, we have ay(T) = T!;‘lTry =
oy Tay.

Proof. Recall that ay(T) = 7, T'r, by definition (see the comment following
Proposition 1.3). So the second equality is the one at issue.
Let y € R4, a € A®, and f € S#. Then

(07 La0) (@) = ay [ [ acssu(a)oy )l +0)e?* dudv)
= ay (// oprru{@)a—y(f(z + v))e?™ v dudv)
= [[ evruns@sa + o) audo

= oy(a) x; f(z)

= (Ty_lLaTy)f(.'E).

Thus 7, La7y = oy 1Lsoy holds for all a € A®. As A is ultraweakly dense in
Mj, it follows that the same equation holds for al T € My. &
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LEMMA 3.2. Let T € D and f € §4. Then for any coordinate function z;
on R? we have z;(Tf) € (S4) and

25(Tf) = T(z; ) + @ai) ™ 3 I (0TS,
k

where 8T denotes (e, (T))/dt|,_,, vi € R? being the kth basis vector.

Proof. For T' € A this is [13], Proposition 3.2. Thus for any 7 € M, we can
find a net (7) C AY which converges ultraweakly to T' and satisfies the desired
equation. For any g € §# we then have

(#5(Txf), 9V ps = (Te(zi £), 9) g — (2mi)” ZJk,((akT ), 9) -

Substituting tv; for y, dividing by ¢, and taking the limit of
Ty(Tef) = T f = (ry Tty Wy (F)) = T f = (0y(Te) — T )7y () + Ty () —

shows that (8:7x)f = 0¢(Txf) — Tx(Bx f), both partials on the right being differ-
entiation with respect to 7. Thus we can rewrite the preceding equation as

(Tets238)10 = (T2 0), hoe + ()™ 30Ty (Tt 0} ag + (Te(041), 9) -

(It is clear that if 8,y exists then it agrees with the distributional derivative
(Okp,9) = —(p,Og), hence the first term in the sum.) We can now take the
ultraweak limit and replace T with T in the above equation. Moving the partial
derivative back onto T' (we can do this since 7 € D) gives

(TS 2i9)pr = (T(25£),9)m — @m) ™D Tai{(OeT)f, 9) e
k

which implies that z;(Tf) € (§#) and yields the desired equation. &
LEMMA 3.3. Iff €84 and T € D then Tf € S4.

Proof. Suppose f € §4 and T € D. We wish to apply Corollary 2.3, and
therefore must show that T'f is smooth for r, is norm-continuous for o, and decays
rapidly. )

Differentiability of T'f for 7 was indicated in the proof of Lemma 3.2, and
an easy induction then implies that 7'f is smooth for . Similarly

0y(Tf) = Tf = (ay(T) - TYoy(FN) + T(oy(f) - f);
as the right side goes to zero in Hilbert module norm as y — 0, this implies that
Tf is norm-continuous for ¢.
The fact that (zf + --- + z2)"(Tf) is bounded follows inductively from

Lemma 3.2. The corresponding statement for derivatives of 7f then follows in-
ductively using the formula 8 (Tf) = (3:T)f + T (8 f). 0
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As in [13], p. 4, let {e, : p € Z9} be a collection of positive compactly-
supported scalar-valued C*° functions on R? with the property that ep = Tpeo and
Y ep = 1. Also, for n € N define
P

fn= Z ey.

lpl€n

Asin [13] let B4 denote the space of bounded, uniformly continuous A-valued
functions on R? which are smooth for 7, and for F € B2 define Ly € B(S4) C
B(($*)) by Lr(g9) = F xs g.

LEMMA 3.4. Let T € D and g,h € SA. Then

(LTfng: h)A - (Tg, h)A
in the norm of A.

Proof. Note first that

(Laf) xpg=daxs fxyg=La(f xs9)

for all f,g € 84 and a € A%, i.e. every element of AP commutes with right
multiplication by g. Therefore the same is true of any operator in My,
Now
(LTfng7h>A = ((Tfn) Xy g>h>A
={T(fn %1 9),h)4
= (fu xJ 9, T"h),.

By [13], Proposition 3.4, f, x; ¢ — 1 x ;g = g uniformly on compact subsets of R4,
and since T*h € 84 by Lemma 3.3, it follows that {fn xy g,T"h), — {g,T*h),
in the norm of A. Therefore

(Lrsogih) g — (9, T"h) 4 = (Tg, k) 5,
as desired. 1
Observe now that for any T € D and p € Z¢%, we have
Tep = Trpeq = 1p(7, ' T1p)ea = 1p(0; ' Top)eo = 1,0, H(Teq).

Therefore ||Tey{z)|| = ||Teo(z — p)||.- Since Teq € S* by Lemma 3.3, it follows
that 3 Te, converges uniformly on compact subsets of R? to a bounded, uniformly
P

continuous, smooth A-valued function, i.e. an element of B4. Denote this function
by F.
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LEMMA 3.5. LetT € D and define F € BA as above. Then for any g, h € S4
we have

(LTfng) h),/l - <LFg: h)A

tn the norm of A.

Proof. Let g,h € S4. Then (Tfn) x5 ¢ — F x; g uniformly on compact
subsets by [13], Lemma 3.8. Therefore

(LTjng;h)A = ((Tfn) x5 9, h}A
- (F XJ gvh>A
= <LFg:h)A

with convergence in the norm of A. &

THEOREM 3.6. Let (M,RY, &) be a W*-dynamical system, A% its subalgebra
of smooth vectors, and J a skew-symmeiric operator on R%. Then an operalor
T € M; is smooth for o if and only if T € AT.

Proof. Every element of A is smooth for & by {13], comment p. 50. Con-
versely, suppose T' € M is smooth for «. Define f, and F as above. Then by
Lemmas 3.4 and 3.5

(Tg, )4 = (Lrg, h),

for all g, h € §4, hence T = Lr by Lemma 1.1 (i).
For y € IRd define a function F, € BA by Fy(z) = ay(F(z — y)). Then
T =140, Toyr, " implies

- -1
Lp =10, leo'yTy =Lp

[

ie. Lp_p, = 0. Consideration of the formula

(F' x5 g)(z) = /F'(z + Ju)g(u)e™ 2" = dy

([13], Proposition 3.1) with F’ = F — F, and §supported on a small neighborhood
of the origin, shows that this implies F* = F,. Thus F(y) = Fy(y) = ay(F(0)), so
that F = & with a = F(0) € A. Then the fact that & € B implies that actually
a € A%. We conclude that T=L; € A?. 1

CoOROLLARY 3.7. The norm-continuous part of My for the action o is Ay.

Proof. By [1], Proposition 3.1.6, the smooth part is norm-dense in the norm-
continuous part. Thus the norm-continuous part is Z}E =A;. 1
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4. FURTHER PROFPERTIES OF M

Let (M,R%, &) and (N, R4, 8) be two W*-dynamical systems and let A and B
be their respective subalgebras of norm-continuous vectors. Then any equivariant
normal homomorphism ¢ : M — N restricts to a homomorphism from A% into
B®, and according to [13], Theorem 5.12, this restriction is also a homomorphism
from AP to B5® which extends to an equivariant homomorphism 8; : Ay — Bj.
Our first goal in this section is to show that 8; extends to an equivariant normal
homomorphism from My into Nj. The proof of this is fairly straightforward, if
slightly tedious.

LEMMA 4.1. Let (M,R% &) and (N,R?, 3) be W*-dynamical systems and let
(M & N,R%, a @ ) be the direct sum. Then for any skew-symmetric J we have a
canonical isomorphism My & N; = (M & N);.

Proof. Let A and B be the norm-continuous parts of the two systems; it is
easy to see that A@® B is the norm-continuous part of the direct sum system. Now
M;® Ny acts on (84)Y @(SP) while (M @ N); acts on (S*®FY, both of which are
Hilbert (M & N)-modules. It will suffice to show that (S4)' @ (S2)’ is canonically
isomorphic to (S4®B); having done this it is easy to check that the actions of
A% @ B> agree, hence their ultraweak closures M; ® Ny and (M @ N); are the
same.

Isomorphism of the Hilbert modules is achieved by checking

S48 2 54 o8P and (8% @ SB) = (S1) @ (SPY,

both of which are more or less trivial. 1

LEMMA 4.2. Let (M,R%, a) be a W*-dynamical system and let I be an ul-
traweakly closed ideal of M which is invariant for o. Then (M/I,R%, &) is also a

W*-dynamical system and for any skew-symmetric J we have a canonical isomor-
phism of My /I; with (M/I);.

Proof. First we must observe that the quotient action ay(a+I) = ay(a)+ I
is ultraweakly continuous on M/I. This is clear because the quotient map M —
M/I is ultraweakly continuous, hence y, — y (in R?) implies @y, (a) — ay(a)
(ultraweakly in M) implies oy, (a) + I — oy(a) + I (ultraweakly in M/I). So
(M/1,R%, &) is indeed a W*-dynamical system.

Now M is canonically isomorphic to I & (M/I), so by Lemma 4.1, My is
canonically isomorphic to Iy @ (M/I);. Thus M;/I; is canonically isomorphic to
(M/I);, which completes the proof. 1
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LemMa 4.3. Let (M,R% q) and (N,R%,B) be W*-dynamical systems and
suppose M C N and a = B|pr. Lei J be a skew-symmetric operator on RY. Then
M; 1is canonically isomorphic to the ullraweak closure of A% (the smooth part of
M)in Ny,

Proof. Let A and B be the norm-continuous parts of the two systems. Then
we must compare the ultraweak closure My of A% in its action on (S4) with the
ultraweak closure M} of A% in its action on (§%)’.

Let (ax) be a net in A% which is bounded in My; by [13], Proposition 5.4,
the norm of an element of A® C M; is the same as its norm in M}, so (a,) is
also bounded in M. Now the last part of Lemma 1.1 (ii) implies that ax goes to
zero ultraweakly in M; if and only if it goes to zero ultraweakly in M4. From this
it follows that the identity map from A into itself extends to an isomorphism
between M; and M. 1

THEOREM 4.4. Let (M,R%, a) and (N;R?, B) be W*-dynamical systems and
let§: M — N be an equivariant normal homomorphism. Let J be skew-symmetric
on RY. Then there is a untgue equivariani normal homomorphism 83 : M; — Ny
which agrees with 6 on smooth veclors.

Proof. Since @ is automatically nonexpansive, it is clear that it takes the
norm-continuous part of M into the norm-continuous part of N, and hence also
the smooth part of M into the smooth part of N.

Let I be the kernel of § and factor # into §* : M — M/I and §? : M/] — N,
Then by Lemmas 4.2 and 4.3 we have canonical normal homomorphisms 6} :
My — (M/I); and 63 : (M/I); — N;, and it is clear that these agree with ¢*
and 62 on smooth vectors. Then §; = 6% o 8} is a normal homomorphism from
My into N which agrees with 6 on smooth vectors. Equivariance follows from the
obvious equivariance of 8} and #%; uniqueness is clear by ultraweak continuity. 8

Now we move to our final topic; in analogy with [13], Theorem 6.4, we wish
to show that (Ms)x is naturally isomorphic to Myix, for any skew-symmetric
operators J and K on R?. One way to prove this, along the lines of [13], The-
orem 6.4, is to show directly that (M;)x = Mges = Mjyx where K® J is a
skew-symmetric operator on R? @ R? and the action is (o @ o)(1,2)(a) = aeys(a).
However, it is easier to deduce the von Neumann algebra result from the C*-algebra
result, using the following theorem of Akitaka Kishimoto ([5]). It generalizes [9],
Proposition 6.1, which dealt with the case of ergodic actions.
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THEOREM 4.5. (Kishimoto) Let M and N be von Neumann algebras and o
(resp. B) be an action of a locally compact group G on M (resp. N). Let A (resp.
B) denote the norm continuous part of M under o (resp. N under B). Suppose
¢ 1 A — B is a surjective isomorphism, equivariant for the actions of o and f3.
Then @ eztends lo an isomorphism @ from M onto N.

Proof. Let z € M. For f € C.(G) let
ay(z) = / F(t)on(2) dt.

Then ay(z) € A. If z € A then one has
poar(z) = fyop(x).
For f,g € Cc(G) and z € M
woas(z)=poasoay(z)=PF;opoayz).
Let {g;} be an approximate unit for Co(G), i.e., g: 2 0, [ gi(t)d¢ = 1, and for any
FeCAG)
“g,‘ *f— f“L1 — 0.
Let y be a weak*-limit point of ¢ o ay,(z). Then

(4.1) poays(z)=P(y)
since [|atgug,(z) — ay(z)|| < ||f * gi — fllzallz|] — 0. If z is another weak*-limit
point 6f ¢ o g, (), then

(poas(e) =) PBr(y) = F;(2)
Since this is true for any f € C.(G), one obtains that y = 2. We define % by
P(z)=y.
If z € A, then [jp o ay,(z) — @(z)|| = ||ay(z) — z|| — 0 and so B(z) = ¢(=).
Thus @ extends ¢. It is obvious that % is linear and ||@|| < 1.

By the above argument, one can define @' : N — M. Note fory € N,

F € CAG)
Pt o By(y) = asopi(y) or poas(pTi(y)) = Br(v)-

Comparing with (4.1) one obtains that $ o ¢~ 1(y) = y- In this way one obtains
that @ is an isometric linear bijection and (§)~! = 1.

If 2, > z3 > 0, then B(z1) > B(z2) > 0, because p o ay,(x1) 2 @ 0 g, (22).
Let {z,} be a bounded increasing net in M. Then it follows that im®p(z,) =
#(limz,). Hence if w is a normal state on N then w o % is a normal state on M.

Conversely, if w’ is a normal state on M then w'op™?

is a normal state on N. This
shows that §* : N* — M* maps N, onto M, or ¢ is weak*-continuous. Hence @

is an isomorphism of M onto N. 1
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COROLLARY 4.6. Let (M,R?, a) be a W*-dynamical system and let J and
K be skew-symmelric operators on R%. Then (My)x = My k.

Proof. Let A be the norm-continuous part of M. By [13], Theorem 6.5
(As)x = Ajsx, and according to Corollary 3.7 these are the norm-continuous
parts of (M;)x and Mj,g, respectively. The result now follows from Theo-
rem 4.5. &

It is perhaps worth noting that the generalization of Theorem 4.5 to homo-
morphisms is false: an equivariant homomorphism from A to B does not necessar-
ily extend to a homomorphism from M to N. A counterexample can be constructed
as follows. Let S =T x N, equipped with Lebesgue measure cross counting mea-
sure, and define an action of T on L*°(S) by translation, o, (f)(t,n) = f(t —s,n).
Weak*-continuity of o follows easily from weak*-continuity of the corresponding
action on T. Also, the norm-continuous part of L°(S) is the set Cpe(S) of func-
tions f(t,n) with the property that the sequence of functions f, = f(:,n) € L®(T)
is uniformly bounded and equicontinuous.

Let © be a free ultrafilter on N, and define a homomorphism 7 : Cre(S) —

Cre(5) by
f(t,n) ifn2l;

(nf)E,n) = { lim f(2,k) ifn=0.

Since the family (f,) is uniformly bounded and equicontinuous it follows tHat the
limit function iierg f(-, k) is bounded and continuous, so 7(f) € Che(S).

1t is clear that # is equivariant for the action a. However, it does not extend
to a normal homomorphism from L>(S) into itself. To see this consider the
sequence of functions fi defined by

1 fnzk;
0 otherwise.

fe(n,t) = {

Then fi — 0 weak®, but (z#f)(-,0) = 1.
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