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ABSTRACT. The topic of the present paper is a general approach of study-
ing invertibility problems in algebras the elements of which are sequencesof
operators. These sequences can be viewed as approximation sequences for a
given operator, and the proposed approach allows to relateproperties of the
approximation sequence (stable convergence, limiting sets of spectra, Moore-
Penrose invertibility, asymptotic behaviour of the condition numbers) with
corresponding properties of a certain function, the symbol of the sequence.
This method applies to practically relevantapproximation methods such as
the finite section method for Toeplitzoperators and spline projection methods
for singular integral equations with piecewise comtinuous coefficients as well
as for Mellin operators.
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1. INTRODUCTION

Let H be a Hilbert space and L(H) be the C*-algebra of all linear and bounded
operators on H, and suppose we are given an operator A in L(H) and a sequence
(An) of operators A, € L{H) tending to A in the strong operator topology of
H (ie. ||Anz — Az|| — 0 for all £ € H). For instance one can have in mind an
operator equation

(1.1) Ar=y (z,ye H)
which is tried to be solved by a certain “reasonable” approximation method

(1.2) Apzn =y (xn,yEH)-
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In the present paper we are not mainly interested in the applicability of the method
(1.2) to the problem (1.1) (i.e. in the convergence of the solutions z, of (1.2) to
a solution z of (1.1), although this aspect is also partially covered) but we would
rather like to think of (A4,) as a sequence of approximation operators for the
operator A and we ask for relations between the operators A, with large n and
their limitoperator A. Of course, there is no one-to-one correspondence between
properties of A and A, (indeed, these operators are in general of a quite different
nature; for example, for solving (1.1) one will certainly choose the operators A, to
be finite matrices, hence compact). Nevertheless, we shall point out that, for large
classes of operators A and sequences (A4, ), numerous properties of A are reflected
by properties of (A,) at least asymptotically. Note also that the approximation
of A by A, is not a one-way street. Considering for example the Ising modell in
statistical physics one is soon led to Toeplitz matrices whose order is proportional
to the number of involved particles which can easily exceed 10?3, In this situation,
any computational effort seems to be non-sense, and one would rather try to
replace “giant” matrices by their infinite limit operators and to hope that the
limit operators can tell us something about their finite approximations.

In the present paper we shall study the correspondence between (A,) and
A by embedding the sequences we are interested in into a suitably chosen C*-
algebra which owns a special structure. In order to motivate this structure, we
start with examining a typical and stimulating example in the following section:
the approximation of Toeplitz operators by their finite sections. In Sections 3 and
4 we are going to employ this structure, beginning with general C*-algebras and
proceeding with algebras of sequences of operators, in order to derive relations
between the norms, eigenvalues, s-numbers, spectra, psendospectra ete. of A, and
A, and in the concluding section we shall recall some further concrete algebras
of approximation sequences of practical relevance which are just subject to our
assumptions.

2. FINITE SECTIONS OF TOEPLITZ OPERATORS

Let us illustrate our programme by an archetypical example: the finite section
method for Toeplitz operators with piecewise continuous generating function. Due
to its practical relevance (for example, the proof of the Fisher-Hartwig conjecture
by A. Bottcher and one of the authors is based essentially on the stable convergence
of certain Toeplitz matrices) and to its rich and beauty structure, the finite section
method for Toeplitz operators became a standard model in the functional-analytic
theory of approximation methods (see, e.g.,[4], [6], [10], [18], [22], [25]).
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Let {? denote the Hilbert space of all sequences (z,)p30 of complex num-

oQ
bers with inner product((zx),(vk)) = Y. zi¥ and corresponding norm {|(z:)}] =

(2, (20)) 2. i

Given a function a € L*(T), we let
1 2n
— izy —inz
an—27r/f(e )e dz
0

be its nth Fourier coefficient. The Toeplitz operator T(a) : 12 — 1% generated by a
is defined by
oo
T(a)(wr) = (vs) With w =) ar_izr.
=0

This operator is bounded, and its norm is equal to sup |a(t)|. The matrices
teT

Ta(a) = (ai—j)P 72, are referred to as Toeplilz matrices. Introducing operators
Py i 12 = 12 (z¢) = (x0,..-,2n-1,0,0,...) we can identify the Toeplitz matrix
Tn(a) (acting on C") with the finite section P,T(a)P, of the Toeplitz operator
T(a) (acting on I?), and we shall make use of this identification troughout what
follows.

We say that the finite section method applies lo the operator T(a) if the
equations

P, T(a)P,z(™) = P,y

are uniquely solvable for all n 2 ny and for all right hand sides y € {2, and if their
solutions (™ € Im P, converge in the I%-norm to a solution of the equation

T(a)z = y.

One of the authors showed in [25] the following result.

THEOREM 2.1. Let a be a piecewise continuous function (i.e. a function
possessing one-sided limils al each point of the unit circle T). Then the finite
section method applies to T(a) if and only if both operators T(a) and T(&) with
a(t) = a(1/t) are invertible.

One can show that a piecewise continuous function has at most a countable
number of discontinuities. In case the number of discontinuities is even finite,
Theorem 2.1 goes back to [6]. Moreover one should remark that the invertibility
of T(&) is already a consequence of that one of T'(a), but in the form quoted above
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the theorem remains valid for matrix valued generating functions as well as for
operators acting on IP-spaces with 1 < p < o0, too.

‘We shall not give a proof of this theorem here, but we want to sketch how
C"-algebra techniques apply to derive this and related results.

First we need an equivalent formulation of applicability of the finite section
method. It is not hard to see that the finite section method applies if and only
if the sequence (7,(a)) is stable, i.e. if and only if the operators T,(a) : Im P, —
Im P, are invertible for all sufficiently large n,;say for n > np, and if the norms
of their inverses are uniformly bounded. The advantage of this reformulation
is that stability of a sequence can be iranslated into an invertibility problem in
a suitably chosen C*-algebra. Indeed, let F stand for the set of all sequences
(An), An : Im P, — Im P,,. Defining operations by

(An)+ (Bn) =(An+ Ba) and (An)(Ba) = (AnBn),

an involution by
(An)" = (47),

and a norm by

[I(4n)ll = sup {| Aa]l,

one can make F to become a C*-algebra. Clearly, the sequence (P,) is the identity
element in this algebra, and it is also easy to check that a sequence (A,) € F is

invertible in F if and only if e/l matrices A, are invertible and ifsup [|A;!]} < co.
n=0
Well, this is not yet stability, but there is a simple trick to manage this

point. Namely, the set G of all sequences (G,) € Fwith ||Gp|| — 0 as n — oo
forms a closed two-sided ideal of the algebra F, and a little thought reveals that the
cosel(An) + G is invertible in the guotient algebra F/G if and only if the matrices

An are invertible beginning with a subscript ng, and if sup ||A7!|| < oo, which
n?no
exactly means stability.

So we are left with an invertibility problem in the C*-algebraF/G. For our
purposes it is more convenient to work in a smaller algebra than ¥/G. Let A denote
the smallest closed subalgebra of 7 which contains all sequences (P,T(a)P,) with
a running through the piecewise continuous functions. One can show (see, e.g.,
[4], Proposition 7.27) that G C A, hence, one can form the quotient algebra A/G,
and this algebra can be viewed as a *-subalgebra of F/G.

One might ask whether invertibility of a coset (A,) + G inF/G respective
in A/G correspond to the same “stabilities”. But, fortunately, we are dealing
with C*-algebras which implies that, if for a sequence (An) the coset (An) + G is
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invertible in F /G, then it is also invertible in A/G, thus, no problems arise when
working in ,A/G rather than in F/G.
In what follows, we need a further family of operators:

W : P =12, Wa(zi) = (Ta-1,---,21,%0,0,0,...).

Obviously, W2 = P, and W,P, = P,W, = W,. H. Widom established the
following fascinating formula relating the finite sections of a Toeplitz operator the
generating function of which is a product ab of two functions with the product of

the finite sections of the Toeplitz operators with generating functions a and b: If
a,b € L°(T) then '

Tu(ab) = Tn(a)Tu(b) + PoH (a)H(b)Po + W, H(&)H (D)W,

where W(a) : 12 — I? refers to the Hankel operator

H(a)(zk) = (yk) with Y = Eak+1+11:1.
=0

Widom’s formula yields that

Tn(a)Tn(b) = Tn(8)Tn(a) = Pa(H(a)H(}) — H(b)H(&))Pn
+ Wa(H@)H () — HB)H(a))Wa,

and since the operators H(a)H(b) — H(b)H(G) and H(@)H (b} — H(b)H(a) are
compact whenever a and b are piecewise continuous (see [4], Theorem 5.34), we
see that any two sequences (T, (a)) and (75, (b)) commute modulo sequences of the
form (P, Ko Py + W, K1 W,) with compact operators Ky and K;. Pushing forward
this observation one can even show that the set J of all sequences (A, ) with

An = PoKoPp + Wo K1Wy + G

with Ko, K1 compact and (G,) € G is contained in A, forms a closed two-sided
ideal of A, and that this ideal is nothing else than the commutator ideal of the
algebra A.

The commutativity of the quotient algebra .A/J gives rise to the hope that
it could be tackled by means of Gelfand’s local spectral theory. Before explaining
this point we have to check another problem: suppose we are given a sequence
(An) for which the coset (An) + J is invertible. In which way is this invertibility
related with our original problem, i.e. invertibility of (A,) + G?
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The answer is given by an useful observation by one of the authors (see [25])
which now is usually referred to as a lifting theorem.

Namely, one can show that, for each sequence (A,) € A, the strong limits
s-lim A, P, =: Wo(A4n)

and
s-im W, A, W,, =: Wi (4,)

exist (this is not hard; one only has to bear in mind that P, — I strongly and
that W,Th(a)W, = P,T(a)F,) and that a sequence (A,) is invertible modulo G
if and only if both operators Wy(An) and Wy(A,) are invertible and if the coset
(An) + J is invertible in A/J (a proof of a more general assertion will be given
in the following section).

And what about invertibility in .4/J? Now, it is indeed possible (although
not a triviality) to identify the maximal ideal space of this commutative C*-algebra
(1t is the cylinder T x [0, 1] provided with an exotic topology, see [3] and [4], The-
orem 7.44). Further, this maximal ideal space coincides exactly with the maximal
ideal space of the C*-algebra generated by all Toeplitz operators with piccewise
continuous generating function modulo the compact operators which was charac-
terized by Gohberg and Krupnik (compare [4], Theorem 5.46). This identification
can be used to show that if the operators Wy(A,) and W;(A,) are Fredholm then
the coset (An) + J is invertible. What results is the following theoremdue to
Baottcher and Silbermann ([3] or [4], Sections 7.35-7.45).

THEOREM 2.2. A sequence (A,) € A is stable if and only if both operators
Wi(An) and Wy (A,) are invertible.

An equivalent formulation of this theorem, given in [27], is

THEOREM 2.3. The algebra A/G is isometrically isomorphic fo the smallest
closed subalgebra of L(1%) x L(I?) spanned by ell pairs (T(a), T(d)) with a being
piecewise coniinuous.

In what follows we are going to show (in an essentially more general situation)
that the isomorphism established in Theorem 3 is really a keyobservation. One
can express a bulk of relations between an approximation sequence {A,) and its
limit operator A in terms of properties of the pair (Wo(A,), Wi(An)).
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3. IDEAL-LIFTING HOMOMORFPHISMS

3.1. LIFTING IDEALS BY HOMOMORPHISMS. Let B and C be C*-algebras with
unit elements, let Z be a closed two-sided +-ideal of B, and let W : B — C be a
*-homomorphism which sends the unit element of B into that of C. Recall that a
+-homomorphism is automatically continuous, and that its norm is less than or
equal to 1 (compare [14], Theorem 4.1.8 (a)). We say that the homomorphism
W lifts the ideal T (or that it is Z-lifting) if the image of the ideal Z under this
homomorphism is a closed two-sided *-ideal of C, and if the restriction of W onto
7 yields an isomorphism between these two ideals. For example, every homo-

morphism lifts the zero-ideal, and the identical homomorphism of B lifts every
ideal.

PRrOPOSITION 3.1. Let B,C,T be as above and let W : B — C be an T -lifting
homomorphism. Then an element b of B is tnvertible in B if and only if ils coset
b+ T is invertible in the gquotient algebra B/T and if its image W (b) is invertible
in C.

Proof. The invertibility of b evidently implies that one of #+7 and of W (b).
So let, conversely, b+ 7 and W (b) be invertible, and denote the identity element
of B by e. Invertibility of b+ 7T involves the existence of elements a € B and j € T
such that ab = e+ j. Since W(Z) is an ideal, we conclude from W(j) € W(Z) that
W(;)W(b)~" is in W(Z), too. Further, the isomorphism of 7 and W(Z) entails
that there is a uniquely determined element & in 7 such that W(k) = wW(HW ()L
Seta=a—k. Thena+Z=a+7,and

b= (a—k)b=e+(j - kb).

Since, by definition, j — kb € 7 and W(j — kb) = 0 we conclude (again employing
the isomorphism between 7 and W(Z)) that j — kb = 0 and, thus, @b = e. The:
invertibility of b from the right hand side can be shown analogously. B

The next result states that one can even “glue” liftable ideals.

LIFTING THEOREM, PART 1. Let B be a unital C*-algebra and let T be an
indez sel. Suppose that, for each t € T, there are given a unital C*-algebra C;, a
closed two-sided *-ideal T, of B, and an I,-lifting homomorphism W, : B — C;.Let
T denote the smallest closed two-sided ideal of Bwhich contains all tdeals T,. Then
an element b of B is invertible (in B) if and only if all elements W, (b) are invertible
(in C;) and if the coset b+ T is invertible (in B/T).
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Proof. Clearly, invertibility of & involves that one of b+ 7 and of W;(b) for
all t. For the reverse implication, let b+ 7 and W;(b) be invertible for all t. Then
there are elements a € B and j € 7 such that ab = e+ j where € again denotes the
unit element of B. By the definition of the ideal 7, one can find elements j;; € Iy,
with 2 € {1,2,...,n} such that

.. . ) 1
N7 —dty = Jta— - — Jrll < 5

As in the proof of the preceding proposition, there are elements k;, € Zy, such
that Wt.‘(kt;) = Wti(jg‘-)Wg‘-(b)—l. Set a = a4 — kt; - k‘l; — = ktn and 5 =
jty +Jt;+ -+ i, Thena+Z =a+7 and

b=e+j~7+ 0y —ke,b) + o+ (Ge, — Fe,b).
Again as in Proposition 1, we get that 7;, — k¢,b = 0 for all 7, hence
@b=e+j—7

Because of ||7 —3]] < 1/2, this equality gives the left invertibility of b, and its right
invertibility can be shown analogously. 1§

A particular case of this result (with T' = {0,1}) goes back to one of the
authors ([25]). A general version first appeared in {22]; for a slight generalization
(also including the Banach algebra case) and some comments we refer to [10].

The lifting theorem states that, sometimes and under well-defined additional
conditions (invertibility of all Wy(b)), invertibility of an element module an ideal
can imply invertibility of the element itself. This observation often simplifies
invertibility problems drastically, since, in many applications, one can choose the
ideal-lifting homomotphisms in such a way that the quotient algebra B/Z possesses
a much nicer structure that the algebra B itself (e.g. B/Z can have a large center
or can even be commutative whereas B itself is far away from commutativity).

Let us, for example, show how the lifting theorem cited in Section 2 is covered
by the general one: The algebra B corresponds to A/G, and the index set contains
two elements only, T = {0,1}. The algebras Co and C; are both equal to L({?),
and the ideals Zp and Z; can be identified with

{(PaKoP,) +G with Ko being compact}

and
{(WoK1W,)+G with K; being compact},
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respectively. Thus, 7 = 7. Only with the homomorphisms W and W, introduced
in Section 2 some care is needed, since both homomorphisms act on .4, not on the
quotient .4/G. But, evidently, the ideal G belongs to the kernels of both Wy and
W, thus, the quotient homomorphisms

Wit AJG — L(%),(An) + G — Wi(An) for i=0,1

are correctly defined, and these quotient homomorphisms are exactly the homo-
morphisms figuring in the general lifting theorem. Indeed, W; is Z;-lifting, and the
image of this ideal is just the ideal of all compact operators on 2.

3.2. THE SEPARATION PROPERTY. In the above example, one can moreover show
that

Wi(Z;) =0 whenever i, €{0,1} and i#j.

Under this additional assumption, we can complete the general lifting theorem as
follows.

L1rTING THEOREM, PART 2. Let the condilions of the general lifting theorem
be satisfied and suppose moreover that the homomorphisms Wy separate the ideals
Z;, te.

Wi(Z,) =0 whenever s#t.

Then
(1) I, ﬂIt = ‘{0},‘
(i1} invertibility of the coset b+ T implies invertibility of the cosets Wy(b} +
Wi{Z,) for allt € T;
(iil) invertibility of the coset b+ I implies invertibility of Wy(b) for almost
allt € T with only finitely many exceptlions.

Proof. (i) Let j € I, NZ; and s # t. Then W,.(j) = 0 for all r # ¢ since
J €T, and W;(j) = 0 since j € Z, and s # t. Moreover, j € 7, and this shows
that for each invertible element b of B, the element b+ j is invertible again. Hence,
J belongs to the radical of B which is known to consist of the zero element only.

(ii) f j € T then Wy(j) € Wy(Z;). Indeed, this is evident in case j is a finite
sum of elements j;; € Z;,, and it is a simple consequence of continuity of W; in the
general case. Thus, if b+ 7 is invertible in B/Z then there are elements a € B and
Jj € 7T such that ab = e + j, and applying the homomorphism W; to both sides
of this identity we get the left invertibility of W;(}) modulo elements in the ideal
Wi(Z:). Invertibility from the right can be shown analogously.
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(iii) Let again ab = e + j with elements a € B and j € 7, and choose an
element 7= ji, + ji, + -+ ji, with j;;, € Z;, and ||7 — 7| < 1/2. Applying W; to
both sides of the equality

ab=e+jy, +j,+ -+ a,+i-7
we obtain
Wi(a)We(b)=e.+ Wi(j —7) forall teT\ {t1,t2,...,tn}

where e¢; = Wy(e) denotes the unit element in C;. Because of ||Wi(j — 7l < 1/2,
this yields left invertibility of W;(b) for all ¢ with only finitely many exceptions.
Invertibility from the right can be shown analogously. #

Let us remark that this result remains valid (with the zero ideal replaced by
an ideal in the radical) in the Banach algebra case, too.

3.3. SymBoLs. For our next step into the world of hifting theorems we remember
once more our intimate guide: the finite section method of Toeplitz operators.
We have seen in Section 2 that already Fredholmness of Wy(An) and Wi(A,)
implies invertibility of (An) + J. Well, Fredholmness of W;(A,) corresponds to
invertibility of W;(b} modulo elements in the ideal W;(Z;), and this suggests the
following completion of the general lifting theorem.

LIFTING THEOREM, PART 3. Let all hypotheses of the second part be satisfied
and suppose, moreover, that the converse of assertion (ii) is frue, s.e. that, if all
cosets Wi(b) + Wi(Z:) are invertible, then the coset b+ T is invertible. Then (iv)
an element b € B is invertible if and only if all elements Wy(b) are invertible; (v)
for each b € B,

[IBll = sup || W:(B)Il,
€T

and the function T — R, t — ||W;(b)|| aitains its supremum.

In general, the additional assumption in the third part of the lifting theorem
proves to be the strongest and hardest of our hypotheses. In applications it is
usually verified by means of so-called local principles which can be viewed as
abstract versions of the well-known method of “freezing coefficients” in the theory
of partial and pseudo differential operators. In case B/Z is commutative, the
classical spectral theory of Gelfand can serve as a local principle, whereas non-
commutativity requires one of the various generalizations of Gelfand’s theory due
to Simonenko, Allan/Douglas, Gohberg/Krupnik, Krupnik. (See [4], Chapter 1,
for a brief overview, and compare [15]. See also [10], Chapter 1.)

On the other hand, the forcing of this additional assumption is, in a sense, a
main goal of the application of the whole lifting story. Namely, it tells us that we
have found out enough lifting homomorphisms in order to examine invertibility.
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Proof. Assertion (iv) is immediate from the first part of the lifting theorem
in combination with our new hypothesis.

(v) Let 8 stand for the set of all bounded functions on Ttaking at t € T a
value in C;. Provided with pointwise operations

(F+9)0) = f) +9(t), (Fo)(t) = f(t)e (1),
the pointwise involution
(F)() = F)°,
and the supremum norm

£l = sup | £(D)I);
teT

this set becomes a C*-algebra, and the mapping smb : B — & associating with
b € B the functionf : t — Wy(b) is a *-homomorphism. Since *-homomorphisms
cannot increase the norm, we have

(3.1) llsmb(d)ils < [1Blis-

We claim that the kernel of the mapping smb is trivial. Indeed, if j € ker smb
then b+ j is invertible whenever b is invertible. Thus, j is in the radical of B which
consists of zero element only. Hence, smb is actually a *-isomorphism between the
C* —algebras B and smb(B) which involves that equality holds in (3.1).

For the second assertion of (v) we assume there is an b € B suchthat

(3.2) [JW:(b)]] < sup [|Wy(8))] forallte T.
teT
Since R
(W (B)|* = ||W:(8)" W (B)]
" L kY

= [[(W(8)" Wa(5)) * (W (8)" Wi (b))% |

= [I(We(b)" W (b)) 3117

= 1w 0)H)I?
we can suppose without loss the element b in (3.2) to be self-adjoint.For self-adjoint
elements b, inequality (3.2) entails that

(3.3) p(Wy (b)) < sup P(We(b)) =: M

where p(-) denotes the spectral radius. Set ¢ = b — Me. The elements Wi(c) =

We(b) — Me, are invertible for all t € T since p(Wy()) < M, and the first part

of the lifting theorem gives invertibility of ¢ = b — Me. Then, clearly, b — me is

invertible for all m belonging to some neighborhood U of M. On the other hand,

since fu¥ p(Wi(b)) = M, for each neighborhood U of M there is a {yy € T and an
€

my € U such that W,, (b) — mye,, is not invertible and, hence, b — mye is not
invertible. This contradiction proves the assertion. n
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Part (iv) of the previous theorem states that the mapping smb, introduced
in the course of proving assertion (v) and assigning with each element of B an
algebra-valued function on the index set T', is a symbol mapping in the following
sense: a C*-homomorphism s of a C*-algebra A into a C*-algebra B is called
a symbol map (and s(a) € B is referred to as the symbol of a € A) if, for each
a € A, invertibility of s(a) in B implies invertibility of a in .A. Since the converse
implication holds true for every unital homomorphism we conclude that

spectrum of a in A = spectrum of s(a) in B
whenever s is a symbol mapping.

3.4. MOORE-PENROSE INVERTIBILITY. Our final goal is Moore-Penrose invert-
ibility. Recall that an element b of a C*-algebra B is Moore- Penrose invertible if
there is an element a in B such that

(3.4) bab =b, aba=a, ab=(ab)*, ba= (ba)".

If the Moore-Penrose inverse of b exists then it is uniquely determined, and its
standard notation is bf,

In case B is the algebra L{H) of all bounded linear operators on a Hilbert
space H, the Moore-Penrose inverse of an operator A exists if and only if this
operator is normally solvable (i.e. the image of H is closed), and in this case one
has

Al = (A"A+ P)"14"

where P is the orthogonal projection onto the kernel of A. Indeed, here is a
proof for completeness: If the operator A* A 4+ P is invertible then it is easy to
see thatA! satisfies the axioms (3.4). So we are left with verifying invertibility of
A*A 4+ P. Let z belong to the kernel of this operator. Then, since AP = 0 and
PA* =0, one has(f — P)A*A(I — P)z + Pz = 0 which immediately gives Pz = 0
and(I—P)A*A(J—P)z = 0. The latter equality implies ((I—P)A*A(I-P)z,z) =
(A(I-P)z, A(I-P)z) = 0,i.e. A(I—P)z =0. Bui P is the orthogonal projection
onto the kernel of A, hence, (I — P)z = 0 and, consequently, z = 0. Further, since
A*A + P is self-adjoint and, hence,

ker(A*A+ P)+Im(A*A+ P)=H,

it remains to show that the range of A*A + P is closed. Using once more that
(I — P)A*A = 0, and recalling that the range of a projection is always closed, one
easily gets that A*A + P is normally solvable if and only if A*A is so. For the
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normal solvability of A*A one can argue as follows: Let z = lim A*Az,,. Since
A* is normally solvable whenever A is so we conclude that z belongs to the range
of A*, that is, z = A*y with some y € H. Let further @ denote the orthogonal
projection onto the (closed) range of A. Then QA = A and A*Q = A”, and one
can suppose without loss that y = Qy. Thus, for all w € H,

(A*Azy — 2,w) = (A" Az, — Ay, w) = (QAz, — Qy, Aw) — 0
as n — oo. Since the range of A is closed and coincides with the range of @, we
conclude that
(QAzn - Qy, QU) = (QAxn - Qv, v) —0

for all v € H and, thus, Az, — y. The normal solvability of A yields y € Im (A)
and, hence, z € Im (A" 4), and we are done.

There is still another equivalent characterization of Moore-Penrose invert-
ibility which, in contrast to the condition of normal solvability, also works for
clements in arbitrary C*-algebras with identityelement:

PROPOSITION 3.2. An element a of a C*-algebra B with identity is Moorc-
Penrose invertible if and only if the element a*a is invertible, or if 0 is an isolated
point of the spectrum of a*a.

This result is certainly also well-known; only for completeness we present its
proof here. The arguments used in its second part are due to T. Ehrhardt.

Proof. Sufficiency part. If a*a isinvertible then the element & := (a*a)~la*
(belonging also to B) evidently satisfies the axioms (3.4) and is, hence, the Moore-
Penrose inverse of a. So suppose 0 to be an isolated point of the spectrum of a*a.
The C*-subalgebra C of B which is generated by the identity element e and by
a*a is, by the spectral theorem, isometrically isomorphic to the C*-algebra of all
continuous complex-valued functions on the spectrum of a*a. Let p € C be the
(uniquely determined) element corresponding to the (continuous!) function which
takes the value 1 at 0 and which vanishes at all points in o(a*a)\ {0}. The element
p is a projection in € which commutes with a*e and for which a*ap = 0 and a*a+p
is invertible. Having in mind that then ap = 0 (since{|a*ap|| = ||pa*ap|| = ||api|?)
one can straightforwardly check that the element b = (a*a + p)~'a* € C is the
Moore-Penrose inverse of a. ‘

Necessity part. Let a be Moore-Penrose invertible and at = b. If A # 0
is an arbitrary complex number fulfilling the inequality |A| < [{bb*||~" then the
element e — Abb* is invertible in B, and a straightforward calculation shows that
moreover

(e = Xbb*)10b" — (e — ba)

is the inverse of a*a — A. 1
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A C*-subalgebra of a C*-algebra with identity is called unital if it contains
the identity element. It is a remarkable property of unital C*-subalgebras of C*-
algebras that they are inverse closed with respect to usual invertibility, that is, if
an element a of a C*-subalgebra C of a C*-algebra B has an inverse in B then this
inverse necessarily belongs to C. Thus, the spectrum of a considered as an element
of B coincides with the spectrum of a viewed as an element of C. Together with
the previous proposition this yields the following.

CoRroLLARY 3.3. Unital C*-subalgebras of C*-algebras are inverse closed
with respect to Moore-Penrose invertibility, thal is, if an element of a C*-subalgebra
C of a C*-algebra B has a Moore-Penrose inverse in B then this Moore-Penrose

inverse necessarily belongs to C.

We agree upon calling an ideal 7 of a C*-algebra Ba Moore-Penrose ideal if
the invertibility of an element b € B modulo 7 implies its Moore-Penrose invert-
ibility. Obviously, the zero ideal is always a Moore-Penrose ideal, and the ideal
K(H) of all compact linear operators on the Hilbert space H is a Moore-Penrose
ideal in the algebra L{H) (the latter follows simply from the fact that an operator
is invertible modulo compact operators if and only if it is Fredholm, and that Fred-
holm operators have a finite-dimensional cokernel H/Im A by definition, which on
its hand implies that their image Im A is closed).

ProrosiTION 3.4. Let B be a C*-algebra with identity, T be a Moore-
Penrose ideal in B, and let b € B be invertible modulo T. Then there is a uniquely
determined projection k in T (i.e. an element satisfying k* = k and k? = k) such
that

(3.5) bt = (b"b + k)"1b".

Proof. Due to the definition of Moore-Penrose invertibility, the element b'b is
a projection, hence k := e — b'b is a projection, too. We represent the C*-algebra,
generated by e, b and b!, isometrically isomorphic as an algebra of operators on
a Hilbert space, and we denote the operator corresponding to an element a by
a. Clearly, the operator b is Moore-Penrose invertible, and Bt = bt Further, the
operator k = £ — bib is the orthogonal projection onto the kernel of ) (compare,
e.g.,[7], Section 4.5, Lemma 5.1). As we have remarked above, then the Moore-
Penrose inverse of b is given by

(3.6) bt = @b+ k)1,
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which implies (3.5). It remains to show that k belongs to 7, and that k is unique.
From (3.5) we conclude that

oo = b(b* b+ k) ~16%b = b(b* b+ k)L (" b+ k) — b(b*b+ k) Lk = b—b(b*b+ k)" 1k
which, together with the first identity in (3.4), yields
b(d*b+ k) "lk = 0.

The elements b and (b*b + k)~ are invertible modulo 7', hence, k +Z = 0 or,
equivalently, £ € 7. The uniqueness of & follows from the uniqueness of the
projection & in (3.6). #

LIFTING THEOREM, PART 4. Lel the conditions of Part 3 be satisfied. Then,
(vi) +f the Wi(Z;) are Moore-Penrose ideals for all t, then the ideal T 1s a Moore-
Penrose ideal, too.

Proof. Let b € B and b+ 7 be invertible. Then, by assertion (ii), all cosets
Wy(b) + Wi (Zy) are invertible whence, by our assumption, follows that all elements
W,(b) are Moore-Penrose invertible. Moreover, by assertion (iii), the elements
W,(b) are even invertible for almost all ¢ with only finitely many exceptions, say
t € {t1,ta,...,8a}. Fort = t;, let p; denote the (by the previous proposition)
uniquely determined projection in W,;(Z;) such that

(3.7) Vvh(b)T = (Wt-‘(b)*Wti(b) + pi)_l Wi, (b)",

and let k; stand for the (by our assumption that W; is a lifting homomorphism)
uniquely determined pre-image of p; in Z;.
We claim that the element

(3.8) ci=bb+ki+ko 4+ ky

is invertible in B. Indeed, if t € T'\ {t1,%2,...,%s}, then the separation condition
entails that

Wi(c) = Wi (b)* Wy (b)

is invertible, whereas, in case ¢ = t;, the application of W, to both sides of (3.8)
Jjust yields
Wi, (c) = Wi, (8)" We, (b) + ps

which, by definition, is also invertible. Assertion (iv) of the Lifting theorem says
that then ¢ must be invertible.
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We are going to show that the element
(3.9) a:=c b = (0" + ki 4+ ka4 + k)TN

is the Moore-Penrose inverse of b. It is evident from our constructionthat, for all
t € T, Wi(a) is the Moore-Penrose inverse of W;(b). Consequently,

Wi (bab — b) = W, (b)Wy(a)Wi(b) — Wi(b) = 0

for all t € T, which yields via assertion (v) of the Lifting theorem that bab = b.
Analogously, the remaining three of the defining relations (3.4) of the Moore-
Penrose inverse can be verified. 1

Let us remark that (3.9) is just the representation of b according to (3.5) in
Proposition 3.2, i.e. k; + --- + ky is a projection in 7. This is a consequence of
the fact that all elements W;,(k;) = p; are projections and can be easily shown by
employing the separation property and assertion (v) of the Lifting theorem.

4. SEQUENCE ALGEBRAS AND FRACTAL HOMOMORPHISMS

4.1. ALGEBRAS OF SEQUENCES. Let A be a bounded linear operator on a Hilbert
space H. An approzimation method for A is (in a very wide sense) simply a
sequence (An) of bounded linear operators on H which converges strongly to A.
The method (A,) applies to A if the equations

Anzp =y (zn,y€ H)

are uniquely solvable for all sufficiently large n, say n = ng, and for all right hand
sides y, and if their solutions z, converge in the norm of H to a solution of the
equation

Az =y (z,ye H).

It is not hard to see that the method {A,) applies to A if and only if the operator
A is invertible and if the sequence (A,) is stable. Recall that a sequence (A4y)
of operators (or, more generally, of elements of an algebra) is said to be stable if
there is an ng such that A, is invertible for all n > ngy and if sup |47 < oo.

fiZ=ng

Perhaps, it was Kozak who first pointed out that stability of a sequence can
be reinterpreted as invertibility of an element in an accordingly constructed C*-
algebra. For this goal we introduce the set F of all bounded sequences (A,) of
operators A, € L(H) (this set clearly contains all approximation methods since
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each strongly converging sequence is bounded), and we provide this set with the
operations

(An)+(Bn)=(An+ Ba) and (A4:)(Bn) = (AnBn)
called addition and multiplication, with an involution
(An)" = (47),

and with a norm
I(An)ll = sup [|An]].
n2l

It is elementary to show that F becomes a C*-algebrawith identity element (I)
where I is the identity operator on H and that, moreover, the set K of all sequences
(Kn) with ||Kn]| — 0 as n — oo forms a closed two-sided *-ideal of F.

ProvosITiON 4.1. Let (A,) € F. The sequence (Ay) is stable if and only «f
the cosel (An) + K is invertible in the quotient algebra F/K.

For (simple) proof see, e.g., [10)], Proposition 1.2.

Well, now we would like to apply the lifting theory to study invertibility in
F/K and, hence, stability of approximation methods. But there seems to be no
theory of everything: the algebra F/K is simply too large to deal with successfully.
So we shall look for a s-subalgebra, A, of F which contains the identity element
and which, on the one hand, is large enough to contain, interesting sequences
but, on the other hand, small enough to be accessible to the lifting theorem. The
reasonable choice of the sequence algebra A is by no means evident; some examples
will be given in the fifth section.

Given a sequence algebra A we abbreviate the intersection ANK by G. This
set is a closed two-sided+-ideal of A, and it does not matter whether one examines
invertibility of a coset (A,)+ K in F/K or that of (4,)+ G in A/G for (4,) € A.
Indeed, we have alrcady remarked that, if for the sequence (A,) € A the coset
(An)+K is invertible in F/K, then it is also invertible in (A+K)/K, and further,
there is a natural isomorphism between the quotient algebras (A + K)/K and
A/(ANK)=A/G.

4.2. FRACTAL HOMOMORPHISMS. In our concrete examples for the algebra A (see-
Section 5 below), the lifting homomorphisms possess a strong property. Namely,
if (An) is a sequence in A then W(A,) = W{(A,,) for each infinite subsequence
(An,) of (An). Thus, each subsequence of {A,,) contains the full information about
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the image of the whole sequence (A,) under the homomorphism W, and that’s
why we call these homomorphists fractal.

For a precise definition, we associate with each strongly monotonically in-
creasing mapping 5 : Z+ — Z+ the subalgebra A, of F consisting of all sequences
{An(ny) with (Ag) running through the sequence algebra A, and we denote the
natural operator A — A, : (4n) = (Apn)) by T,. A unital homomeorphism W
from A into a C*-algebra C is called fractal if, for each strongly monotonically
increasing mapping n : Z+ — Zt there is a unital homomorphism W, mapping
Ay into € such that

Wy (Ty(An)) = W(A,) forall (4,) € A

To have some examples: the mapping W : (4,) — slimA, is a fractal
homomorphism acting on the algebra of all strongly converging sequences, and
the homomorphisms Wy and W; introduced in the second section are fractal,
too. To see this, it is more convenient to consider the approximation operators
P,T(a)P, as acting on and being invertible on the whole space 12 rather than on
its subspace Im F,. This can be forced by introducing the operators Q, = I — P,
and replacing T{a) = P.T(a)Pn by P,T(a)P, + Qn. Obviously, both sequences
(Tn(a)) and (PaT(a)Pn + Qn) are stable or not only simultaneously. Moreover,
one has to replace the operators W, by E, := W, + Q.. These operators are
isometries on %, and

s-limWp An W, = s-lim E; 1(An + Qn)En
for all sequences (A,) belonging to the algebra of the finite section sequences
considered in Section 2. With these identifications, we can think of this algebra
as a subalgebra of the algebra of all bounded sequences of operators on 2. Now
it is evident that the homomorphism

W : (An) = slim 7Y (An + Qn)En

is fractal; given a function #n one defines

W, : (An,) = s-lim EZ}NAn, + Qni) B,

k— o0 4
PROPOSITION 4.2. If A is a sequence algebra and W : A — C 15 a fractal
homomorphism then the ideal G belongs to the kernel of W.

Proof. Let (Gn) € G. Given € > 0 there is an ng such that ||G.|| < ¢ for all
n 2 ng. Define n{n) = n + np. Then
W5 (Gaga)ll < Wl IGaia)i
and hence
IW(Gnll S el|W]| =e.
Letting ¢ to go to 0 we arrive at [|W(Gn)||=0. ®
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Thus, W(A,) actually depends on the coset (A,) + G only. For convenience,
we denote the (correctly defined) quotient mapping

(An) +G — W(An)
by W again.

4.3. APPROXIMATION SEQUENCES: STABILITY. Throughout what follows we
suppose A to be a sequence algebra and (W;);er to be a family of fractal ho-
momorphisms mapping A into certain C*-algebras €;, respectively. Further we
assume the quotient homomorphisms W, : A/G — C; to be ideal-lifting in the
sense of Section 3 and that all hypotheses made in the parts 1 to 3 of the Lifting
theorem are satisfied. The notations introduced in the third section for certain
ideals etc. will be also taken over into the present contexi of sequence algebras.
Finally, we define a mapping Smb : A — §, where &S refers to the symbol algebra in-
troduced in Subsection 3.3, by (Smb(4,))(1) = W:(An). Evidently, (Smb(An))(1)
coincides with (smb((A,) + G))(t) for all ¢ € T where smb is the symbol mapping
introduced in 3.3 (which in the present context acts form A/G into &), and we
shall hence forth speak of Smb(A,) as the stability symbol of (A,).

THEOREM 4.3. (i) Let (Ay) be a sequence in A. This sequence is stable if
and only if the elements Wi(A,) are invertible for allt € T or, equivalently, if the
stability symbol Smb(A,) is inveritble in 8.

(i) The sequence (A,) is stable if and only if one of its infinite subsequences
is stable.

Proof. Assertion (i) is an immediate consequence of Part 1 of the Lifting
theorem and Proposition 4.1, and assertion (ii) follows from the fractal property
of the homomorphisms: If there is an infinite subsequence (A(n)) then all elements
(Wi)n(Ay(n)) and, thus, all elements W:(A,) are invertible. Then, by assertion(i),
the coset (A,) + G is invertible. 1

As we have already remarked, the homomorphisms Wy and W introduced in
Section 2 for elements of the finite section algebra .4 satisfy the assumptions made
above. Thus, specifying Theorem 4.3 to this context yields exactly Theorem 2.2.

4.4. APPROXIMATION SEQUENCES: STRONG CONVERGENCE. If (Ay) is an ap-
proximation sequence for an operator A then this sequence should strongly con-
verge to A. (For example, the finite sections of a Toeplitz operator do so.) The
condition of strong convergence can be directly included into the definition of
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the sequence algebras. Indeed, one considers the subset F. of F consisting of all
sequences {Ap) for which there is an operator A on H such that

Apn— A and A, — A" strongly as n — oco.
This set F. is a *-subalgebra of F, and it involves the natural homomorphism
(4.1) Wy Fe— L(H), (An)— A=slimA,.

PROPOSITION 4.4. (i) The homomorphism Wy in (4.1) is fractal.

(i) The set Tp := (K) + G with (K) ranging through the constant sequences
of compact operators is a closed {wo-sided *-ideal of F., and the homomorphism
Wy lifts this ideal.

Proof. Assertion (i) is obvious. Assertion (ii): In order to verify that Zp is
a left sided ideal, let (An) be a sequence in F, with strong limit A, and let K be
compact and (G,) € G. Then

(An)(K + Gn) = ((An ~ A)K + AnGy + AK),

and the sequence on the right hand side is in Z; since the strong convergence of
(An) to A implics that the sequence ((A, — A)K + A,G,) is in G, and since AK
is compact again. Analogously one checks that Zj is a right sided ideal.

It is also easy to see that the image of the ideal Zg under the homomorphism
W is an ideal (the ideal of all compact operators on H), and that the restriction
of Wy onto Zg is an isomorphism. 1

THEOREM 4.5. Suppose besides the assumptions from the previous section
that the sequence algebra A 1s even a subalgebra of F. and thal the nalural ho-
momorphism Wy defined in (4.1) is part of the family (W:)ier of homomorphisms
figuring in the lifling theorem. If (An) € A, and if all elements Wi(A,) are in-
vertible, then the approzimation method (A,) applies to the operator Wo(A,) = A,
i.e. the sequence (An) is stable, and the inverse operators A7! converge sirongly
to Wo(A,)™ .

4.5. APPROXIMATION SEQUENCES: INORMS AND CONDITION NUMBERS. The
following relation between the norms of the approximation operators A, and the
norm of the symbol of the sequence (A,) was first recognized by A. Bottcher in
the particular case considered in Section 2 as a consequence of Theorem 3.
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THEOREM 4.6. Let all hypotheses made in Subsection 4.3 be salisfied. If
(An) € A then the limit lim ||Ay|| ezists, and

Jim (|| = sup | Wa(A,)l] = [ISmb(4n)]
- teT
Proof. Recall that the norm in A is given by
1Al = sup 1Al
Having this in mind it is easy to see that the norm in A/G is just
[I(An) + Gl| = limsup ||, .
n—+00
Thus, by assertion (v) of the Lifting theorem,
(4.2) limsup ||An|] = sup ||We(4,)]]-
n—00 teT

It remains to show that the superior limit on the left hand side of (4.2) is actually
a limit. Suppose, it is not. Then there is a subsequence (Apn)) of (An) such that
the limit lim ||A,n)|| exists and

o~ 0O

i {[An(n) [l # limsup | Aq]]
On the other hand, due to the fractal nature of the homomorphisms Wy, we find
via replacing (An) in (4.2) by (Ayn))
Jim (| Agl| = Tim sup [l Ay} = sup (W (An))-
The obtained contradiction proves our claim. 1

In case of the finite section method for Toeplitz operators this theorem ex-
actly reproduces Bdttcher’s observation:

If (As) € A then lim [ Aq[| = max{[|Wo(An}|l, Wi (Aa}II}-

As a by-product, we can describe the asymptotic behaviour of the condition
numbers of an approximation sequence in A as follows.

COROLLARY 4.7. Let all hypotheses made in Subsection 4.3 be satisfied, and
let (An) € A be a stable sequence. Then the sequence of the condition numbers
HARNNAZY of Ay is convergent, and its limit is equal to

sup [|W,(An )| sup [|W(An) | = [|Smb(An)|} |Smb(A4.) 1.
1eT teT

4.6. APPROXIMATION SEQUENCES: MOORE-PENROSE INVERTIBILITY. In this
subsection, we additionally suppose that the ideals Wy(Z;} are Moore-Penrose
ideals for all ¢. Specifying assertion (vi) of the Lifting theorem to the present
contextyields:
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THEOREM 4.8. Let (An) € A. If all cosets Wy(An) + Wi(Z:) witht € T are
invertible then the coset (Ap) + G is Moore-Penrose invertible in A/G, i.c. there
is a sequence (Bn) € A such that

||AnBnAn — Agl| = 0, ||BpAn B, — Bnl| — 0,

[|(AnBn)* — An Bl — 0, I(BaAn)* — BaAnll — 0.
Moreover, the sequence (B,) is unique up o sequences in the ideal G.

One might ask for the relation between the sequences (B,) established in the
preceding theorem, and the sequence (Al) of the Moore-Penrose inverses of A,
(provided they exist). Now, we cannot answer this question in general. The point
is that the operators A} of course satisfy the convergence relations in the theorem
in place of By, but it seems to be very hard to decide whether the sequence (A})
belongs to the algebra A or at least to the algebra F, i.e. whether this sequence is
bounded. Only in case of the finite section method for Toeplitz operators, we have
the following result, where Pps denotes the operator of orthogonal projection onto
a subspace M:

PROPOSITION 4.9. Let T(a)} be a Fredholin operaior and suppose there is an
no such that ker T(a) C Im P,,, and ker T(a@) C Im P,,. Then

(i) PrerP,T(a)Py = P PrerT(a)Prn + Wan Pier(a) Wy for all n large enough;

(ii) the Moore-Penrose inverses of P,T(a)P, converge strongly to the Moore-
Penrose tnverse of T(a).

This observation is a generalization of some recent results by Heinig and
Hellinger ([12]) who started the study of stability and strong convergence of se-
quences formed by the Moore-Penrose inverses of Toeplitz matrices. They derived
thejr results in a completely different way. The above approach is due to one of
the authors (see [29]).

Employing the results of Sections 4.3-4.5 to the Moore-Penrose invertibility
we obtain:

PROPOSITION 4.10. Lei (By,) be any of the sequences established in the pre-
vious theorem.
(i) The sequence of the norms ||B,|| converges, and its limit is equal 1o

sup [|(Wi(A4))'l| = [|(Smb (Aa))'],
teT

i.e. to the norm of the Moore-Penrose inverse of the stability symbol of (A,).
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(ii) The sequence of the generalized condition numbers ||A,||||Br|| converges
to

lISmb (4511 [(Smb (4n))1,

i.c. 1o the generalized condition number of the stability symbol of (A,).

(i1i) If, in addition, the sequence algebra is a subalgebra of F.and if the natural
homomorphism Wy defined in (4.1) is part of the family (Wy)ier then the sequence
(Br) converges strongly to the Moore-Penrose inverse of the operator Wo(Ay).

4.7. APPROXIMATION SEQUENCES: LIMITING SETS OF EIGENVALUES. Qur next
topic is the asymptotic behaviour of the eigenvalues of the approximation operators
A,. A first information about this can be obtained in terms of the (partial) limiting
set of the sequence (o{A,)) of the spectra of A,. By definition, the partial limiting
set nli_.rrgo M, of a sequence of subsets M, of the complexplane is the collection of all
complex numbers which are a partial limit of a sequence (t,) of numbers t, € M,.

The limiting set imo{Ay) is related with a certain kind of stability of the
sequence (A, ) which we call spectral stability (in contrast to the notion of stability
of a sequence introduced in Subsection 4.1 which could be referred to as norm
stability). A sequence (A, ) is spectral-stable if the operators A, are invertible for
large n (say, n > no) and if the spectral radii p(A;;?) of their inverses are uniformly
bounded: sup p(A;!) < oo.

n?no

PROPOSITION 4.11. A complez number s belongs to the limiting setlime(Ay)
if end only if the sequence (A, — sI) is not spectral-stable.

Proof. Let (A, — sI) be spectral-stable, i.e.

sup p((An — s} < o0

nznp

with a certain ng. Then, for all n 2 ng,

1 1
00 > sup = s |o|=—r
tea((An~sD)=1) teg(An~sT) t' teg(ﬁlﬂf—al) Il

whence it follows that

0< inf :t[ =
t

t€a(An)—1s lllf‘n) 't - SI = dist (S, O-(An))

€a(

The latter estimate shows that s cannot be a partial limit of a sequence (¢,) with
tn € o(An).
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Now suppose the sequence (A, — sI) is not spectral-stable. Then either

- there exists a subsequence (A,, — sI);>o such that none of the operators
An, — sl is invertible, or

- all operators A, — sI are invertible if only n is large enough, but there is
a subsequence (A,, — sI)i>o such that

p((An, —sD)™ ) -0 as k — oo

In the first case one has s € ¢(A4n,, — sI) for all k, thus, s € lime(A,). In
the second case there are numbers {,, € 0(A,,) such that |t,, — s/~ — oo or,
equivalently, t,, — s — 0 as k — oco. Hence, s € limo(A,) again. 1

The C*-algebra approach presented in Subsection 4.1 is suitable and intended
for investigation of norm stability rather than for spectral stability. But there is
one case where these notions coincide: a sequence of self-adjoint operators is norm-
stable if and only if it is spectral-stable. Thus, the combination of Theorem 4.3 (i)
with Proposition 4.11 yields:

THEOREM 4.12. Let all hypotheses made in Subsection 4.3 be satisfied, and
let (An) € Abe a sequence of self-adjoint operators. Then

(4.3) limo(An) = | o(Wi(4n)) = o(Smb (4,)).
teT
Besides the partial limiting set of a sequence (M,,) of subsets of the complex
plane one can also consider its uniform limiting set. The uniform limiting set
Lim (M,) is the collection of all complex numbers which are the limit of a sequence
(ts) of numbers ¢, € M,,.

THEOREM 4.13. Let the hypotheses of Subseciion 4.3 be salisfied, and lel
{(An) € A be a sequence of self-adjoint operators. Then
limo(A,) = Limo(An).

Proof. Clearly, Lime(A,) C limo(A,). For the reverse direction, suppose
there is a ¢ € Limo(Ay) \ lime(A4,). Then there existsan ¢ > 0 and a strongly
monotonically increasing sequence(n;) such that

dist (¢, 0(An,)) > €

for all k. Hence, the sequence (A,, — tI) is norm-stable whichimplies via Theo-
rem 4.3 (ii) norm stability of (A, — tI). This contradicts Proposition 4.11. &
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Let us emphasize that the uniform limiting set Limo(A,) is.more uniform
than its definition indicates (compare [23]). Concretely: If (4,) € A is a self-
adjoint sequence and U is an open and bounded neighborhood of Lima(A4,), then
there is an ng such that o(A,) C U for all n 2 ng.

Indeed: For t large enough, say outside a certain closed disk V' containing
U, all operators A, — tI are invertible for all n 2> ng = no(t). Further, given
t € V \ U, there is an open neighborhood U(t) of ¢ such that A, — sl is invertible
for all s € U(t) and n > no. The open sets U(t) with ¢t € V' \ U cover the compact
set V\U, hence, one can pick a finite subcovering U(t1), U(t2), ..., U(tm) of VAU.
Clearly

nzny = max{no(tl), ng(tz), woyno(tm)},

then all operators A, — tI with ¢ € V \ U are invertible, and the norms of their
inverses are uniformly boundedwhich gives the assertion. 1

4.8. APPROXIMATION SEQUENCES: LIMITING SETS OF s-NUMBERS. The set s(A)
of the s-numbers of an operator A is defined by

s(A) = o((A*A)?)

where (A*A)Y/? refers to the non-negative square root of the non-negative oper-
ator A*A. Since (A*A)'/? is in self-adjoint, the following result is an immediate
consequence of the previous two theorems.

THEOREM 4.14. Let the hypotheses of Subsection 4.3 be. safisfied. Then, for
all sequences (A,) € A,

lims(An) = Lims(An) = | s(Wi(4n)) = s(Smb(A4,)).
teT

In case of the finite section method for Toeplitz operators, the results of the
previous two sections are well known. Namely, a classical result by Szegd ([8],
5.2 (b)), states that, for real-valued (even not necessarily piecewise continuous)
functions a, both the partial limiting set lim (P, T(a) P,,) and the uniform limiting
set Lima(P,T(a)P,) coincide with the interval [essinf a, esssup a]. The assertions
concerning s-numbers (also in a somewhat more general situation) go back to
Widom ([31]) who showed that

lims(P,T(a)Pn) = Lims(P,T(a)P,) = s(T(a)) Us(T(a)).

For further generalizations see Widom ([32]), Roch and Silbermann ([23]) and
Silbermann ([28]).
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4.9, APPROXIMATION SEQUENCES: LIMITING SETS OF &-PSEUDOSPECTRA. Let
€ > 0 and let B be a C*-algebra with identity e. The e-pseudospectrum o.(a) of
an element & € B is the set

(4.4) oc(b) = {t € C; b~ te is not invertible or ||(b— te)™}|| > %}

Here is an equivalent characterization of the £-pseudospectrum.

PROPOSITION 4.15. The e-pseudospectrum of b € B coincides with the sei

(4.5) {t € C; there is a p € B with ||p|| < ¢ and t € o (b +p)).

In case B is the algebra of n x n-matrices, this result seems to be well-known.
Reichel and Trefethen ([24]) claimed without proof that, in the general case, the
closure of the set (4.5) coincides with (4.4). For this reason, we are going to add
a proof here which is due to our collegues Torsten Ehrhardt and Tilo Finck.

Proof. Let Sy and Sy abbreviate the sets (4.4) and (4.5), respectively. Our
first goal is the inclusion Sy C 5. Givent € S; choose p € B such that ||p]| < eand
that & + p — te is not invertible. If ¢ € o(b) then, evidently, 1 € S;1. So we can
suppose that the element b — te is invertible. Then the representation

b4 p—te=(b—te)(e+ (b —te)'p)

involves that e + (b — te)~!p cannot be invertible. Hence,||(b — te)~*p|| 2 1 (oth-
erwise invertibility would follow via the Neumnann series), and the estimate

1< |6 — te)~pll < [I(b = te) |} ipl

yields
1

-1
(& — te) llénp“

>

3

N |

i.e. t € S as desired.

To verify the reverse inclusion S; C S, we suppose for contrary that there
exists at € S such that b+ p — te is invertible for all p € B with ||p|] < . Setting
p = 0 we get the invertibility of 5—te and consequently that of b* —Ze, and setting
p = A(b* —~ie)~? where ) is an arbitrary complex number satisfying

£
{4.6) 0< Al <€ W

we get the invertibility of

b—te+ Mb* —e)™! = A(b —te) (—i—e + (a — te) (0" — t_e)“l)
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(observe that in both cases [|p|| € €). Thus, Fe+(a—te)~(b* —te)~! is invertible
for all X satisfying (4.6) which implies that

1" — 7)1

pl(a — 1)1 (6" —Fe)™t) <

The self-adjointness of (a — te) ™! (b* — fe)~ ! yields that

l(a —te)~2(b* — )™} < w,

SO
® _ J.y—1
a— te) 1P = 1" — o) < UEE]

and finally

- Toa— 1
I — te) | = 16" ~ )7t < .

This contradicts our assumptiont € S;. 14

Let us return to the context of sequence algebras now. The following result
shows that the asymptotic behaviour of the e-pseudospectra is (in a certain sense)
much better than that of the eigenvalues. Namely, they always converge to the

e-pseudospectrum of the symbol of the given approximation sequence.

THEOREM 4.16. Let the hypotheses of Subsection 4.3 be satisfied and (A,) €
A. Then, for alle > 0,

(4.7) limoe(An) = | 0c(Wi(4n)) = 0c(Smb(Ay))
teT

and, moreover,
limeo.(An) = Limo.(A,).

In case of the finite section method for Toeplitz operators this result goes
back to Reichel and Trefethen ([24]) (generating functions in the Wiener algebra)
and Bottcher ([2]) (piecewise continuous generating functions) and, since both the
spectra and the norms of the inverses of T((a) and T'(&) coincide in these situations,

one has
limo (P, T(a)P,) = d.(T(a)).

Our proof uses ideas of Bottcher’s; in particular it also bases on the following

observation by Daniluk which is proved in [2],Proposition 6.1.
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PROPOSITION 4.17. Let B be a C*-algebra with identily e, let a € B and
suppose that a — te is invertible for all t in some open subsei U of the complex
plane and that ||(a —te) || < C for allt € U. Then ||(a —te)~}|| < C for all
tel.

Proof of Theorem 4.16. We start with verifying that
g(Wi(An)) C limo,(An)

forallteT.

Let first s € o(Wi(An)). Then, by Theorem 4.3, the sequence (A, — sI)
cannot be norm stable which implies that either

- there is a subsequence (A, — sI); >0 consisting of non-invertible operators
only, or

— all operators A, — sI are invertible if n is large enough, but there is a
subsequence (An, — sI)p>o such that

HAn, = sl =0 as k—oco.

In the first case, s is even in lime&(A;) and, hence, in lime(A,), too; in
the second case, s belongs to o.(Ap, ) for all & large enough which, of course, also
implies s € imo,(A4,).

Now suppose s € oo (Wi (An))\o(Wi(Ay,)). Then Wy(A,))—sI is an invertible
operator, and ||(Wy(An)) — sI})71|] 2 1/e. Let U be an open neighborhood of s.
Daniluk’s result implies that there is an r in U such that

_ 1
l(Wi(4a)) = rD)7H| > =
(otherwise we would have ||[(W;(A,)) — rI)~Y|| < 1/e for all r € U, therefore,
[{(Wi(An)) — #I)~H| < 1/e for all r € U including r = s). Thus,
1

-1
k

I(We(4n)) — rD)7HI 2 -

for all sufficiently large k. This shows that we can find numbers s, € .17k (W;(4n))
which converge to s. Now Theorem 4.6 entails that

1
. -1
i 1A = o)1 > 2
(in case an operator B is not invertible we agree upon defining ||B~!|| = oo so

that the previous conclusion remains valid in any case). Consequently,

10An = s 271 > ¢
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for all sufficiently large n which yields that s; € ¢.{An) and, thus, s = lims; €
limo.(4,).

In order to prove the reverse inclusion,

lime,(A,) C U oe(Wi(An)),
teT

suppose that s € |J oc(W;(An)). Then all operators Wy (A, ) — s! are invertible,
teT

and ]
l(W:(An) — sD)7'|| < p

The second assertion of part (v) of the Lifting theorem gives that
a1 1
sup [(Wh(An) — D)l = = — 26 < |
teT € €
and, hence, by Theorem 4.6,
I(An — s < < =6

for all n > no. If n 2 ng and |s — | < €6(1/e — §)~! then

~ -1
iy NG = 5D
Who =V S T Spiican — a0
1 1

< =
e S R

and, thus, » ¢ o.(An).

The second identity in (4.7) follows easily from the second assertion of part
(v) of the Lifting theorem, and the equality between the partial and the uniform
limiting set is again a consequence of the fractal property of the lifting homomor-
phisms. &

Let us finally remark that the e-pseudospectra of the approximation oper-
ators A, do not only approximate the e-psendospectrum of the stability symbol
of the sequence (Ay); they can also be used to approximate the spectrum of the
stability symbolitself. Indeed, since evidently

[ oe(b) = o(b)
>0
for each element b of a C*-algebra B, one gets immediately from (4.7) that

ﬂ lime(An) = o(Smb(A,))
e>0
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for all sequences (A4,) € A.

4.10. THE LIMIT SPECTRUM IN SENSE OF NEVANLINNA AND VAINIKKO. Let
(An) be a sequence of approximation operators. Nevanlinna and Vainikko (see
[17]) introduced the sets

£4(An) = {t € C; limsup ||(An — tI)7}]] = o0},
11 s OO

Zi(An) = {t € C; liminf[|(A, — tI)7"]| = 0o}

where we again define [|[(A, —tI)7!|} = co in case € o(An). If T4(4n) = Zi(4n)
for a sequence (Ay), then they call (one of) these sets the limit spectrum of (A,)
and denote it by Z(A,).

THEOREM 4.18. Let the hypotheses of Subsection 4.3 be satisfied and (An) €
A. Then the limit spectrum X(A,) ezists, and it coincides with the spectrum of
the symbol of the sequence (A,).

Proof. Tt is easy to see that £ ¢ X;(A,) if and only if there exists a norm-
stable subsequence of (A4, — tI), where ast & £,(A,) if and only if the sequence
(An — tI) is norm-stable itself. Both sets coincide due to the fractal nature of the
homomorphisms W,. 1

5. EXAMFPLES

We are going to mention some examples of algebras of concrete approximation
sequences which satisfy the hypotheses made in the forth section.

5.1. THE FINITE SECTION METHOD FOR OPERATORS IN THE TOEPLITZ ALGEBRA..
Let 12 stand for the Hilbert space of all two-sided sequences of complex numbers

with norm '
Izl = (3 I2al?) .

nel
Given a piecewise continuous function g with nth Fourier coefficient a,, we define
its Laurent operator T°(a) by

T(a): 12 = 13, (zn) = (yn) with y,= Z G- gLk
kel

The operator T°(a) is bounded on {4, and its norm is equal to esssup |a(t){. Further
teT

we introduce the projection operators

P21 (£)—(...,0,0,20,2,...)
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and
Ry : 2 -8B, (z)~(..,0,2_n,...,2n-1,0,...).

Clearly, one can identify the range of P with {2, the operator PT°(a)P with
the Toeplitz operator T(a), and the projections PR, with the projections P
introduced in Section 2.

Let 7 denote the smallest closed subalgebra of the algebra L(I%) which con-
tains all Laurent operators 7°(a) with piecewise continuous generating function ¢
and the projection P, and let 4 stand for the smallest closed subalgebra of the
algebra F of all bounded sequences (4,) of operators A, € L(I2) which contains
all constant sequences (A) with A € 7 and the sequence (Ry).

The algebra A exhibits exactly the afore mentioned structure. In order to
introduce the lifting homomorphisms we need some more notations.

Let L refer to the Lebesgue space of all measurable functionson the real

1= ([ e )’
R

and denote its subspace consisting of all functions which are constant on each of
the intervals [k/n,(k 4 1)/n] with k running through the integers and n being
fixed by S. One can show that the orthogonal projections L, from L? onto S,

axis R with norm

converge strongly to the identity operator as n — co. Moreover, the characteristic
functions x of the intervals [k/n, (k + 1)/n] form an orthogonal hasis of S, and
the operators

1
Fopn iS5 — 1221: Zl‘ka — W(Zk)kez
keZ

are isometries having inverses given by
Foily = S, (z) VA zixs.
Finally, given t € T and s € Z, define operators Yy andU, by
Yol — 1, (zn) = ("20),

U : 13 — l%, (z9) — (Zn-y).

One can show that the strong limits

(5.1) WO(An) := slimA, (€ L(I3)),

(5.2) WEAy) = slimUsn AnUsn (€ L(1))
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and
(5.3) Wi(An) = s-im F, Y1 A Y: FonLy (€ L{LE))

exist for all ¢ € T and (A,) € A, and that the mappings W with € {-1,0,1}
and W, with £ € T are fractal homomorphisms. Moreover, the homomorphisms
W, 1lift the ideals

I, .= {(F_oLoKF,); K compact} +G,

(obviously, the restriction of W; onto Z; is an isomorphism between Z; and the
ideal of all compact operators on L) and we further think of the homomorphisms
W! as being lifting the zero ideal. The following theorem states that we then have
exactly the situation described in the general lifting theorems.

THEOREM 5.1. A sequence (An) € A is stable if and only if all operalors
W' with 1 € {~1,0,1} and W; witht € T are invertible.

This theorem is the result of the efforts by many mathematicians including
Bottcher, Verbitski, Rathsfeld, Roch, Silbermann. For a detailed history and
complete proofs (using local principles)we refer to the monographs [4], 7.55-7.72,
and [10], Section 4.1.

Let us further emphasize that the case of matrix-valued generating functions
can also be handled as one of the authors pointed out in [19]. If one replaces the
operators Fy, etc. by the corresponding diagonal matrices diag(Fy,..., Fn) etc.
then the assertion of the previous theorem remains valid without any changes.
Moreover, these results can be even generalized to the case of piecewise continuous
generating functions taking values in the algebra of all operators on {2 of the form
cI + K with ¢ a complex number and K compact (see [30]).

Hence, in all of the mentioned cases, one can apply the theory developed in
the forth section in order to describe the asymptotic behaviour of norms, condition
numbers, eigenvalues, pseudospectra etc. of the approximating operators.

5.2. THE FINITE SECTION METHOD FOR TOEPLITZ + HANKEL OPERATORS. The
results of Subsection 5.1 can be extended to a larger class of operators including
Hankel operators with piecewise continuous generating function. For this goal,
let 7H denote the smallest closed subalgebra of L{{3) which besides the Laurent
operators T°(a) {a piecewise continuous) and the projection operator P contains
the flip operator

J: I% -1, (zn) = (z-n-1)-



C*.ALGEBRA TECHNIQUES IN NUMERICAL ANALYSIS 273

Prominent elements of this algebra are the singular integral operators with Carle-
man shift,

T(a)P +T°(0)Q + (T°(c)P + T°(d)Q)J
where () = I — P, and the Toeplitz + Hankel operators

PT°(a)P + PT°(b)QJ

or, in earlier notations, T'(a) + H(b).

Again we let F denote the algebra of all bounded sequences, and we shall
use the notation AH now in order to designate the smallest closed subalgebra of
F which contains all constant sequences (A) with A € TH as well as the sequence
(Rn). Our stability criterion again relates stability of a sequence (4,) € AH with
the invertibility of two families of operators, W'(An) with { € {0,1} and Wi(4,)
with t € T and Imt > 0.

We prepare the definition of these homomorphisms by the following reflec-
tion. If B is any C*-algebra with identity e, and if p and j are self-adjoint elements
of B such that

P=p j’=e jpi=e—p

then the mapping

5.4) L ( pap pa(e — p)j )
e —plap j(e—p)a(e —p)j

is a natural *-isomorphism from B onto a *-subalgebra of the algebra Byyy of 2 x 2
matrices with entries in B. We are going to apply the mapping (5.4) for the algebra
AH where we choose p = (T(x+)) with x4 referring to the characteristic function
of the upper semi-circle {¢ € T; Imt¢ > 0} and j = (J). A simple calculation yields
for the generating sequences of the algebra AN:

. (T*(x+ax+)) 0
T (“))H( 0 (T°(X+&x+)))
(T )PT()  (IT(x-)QT*(xs))
((JT"(X \PT(x4)) (T°(x+)QT°(x+)))
-~ ( (T° (4 ) RuT(x4) (JT°(X—)RnT°(X+)))
(T ()RaT(x4)) (T (x4) RaT(x4))
(T*(x))
((T°(x+)) 0 )
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where we set x_ =1 — x.

There are two types of sequences which occur as entries of these matrices:
sequences which belong to the algebra A introduced in Subsection 5.1, and se-
quences of the form (JB,) with (B,) € A. It is easy to see that these sequences
(Bx) have an additional property: whenever t € T and Imt > 0 then Wi(B,) =0
where W; again denotes the strong limit (5.3). Thus, for all# € T and Imt > 0,
the stronglimitsW;(J B, ) exist and are equal to zero. Since one can moreover show
thatthe strong limits Wy (A, ) exist for each sequence inAH, it is correct to define
now

(5.5) Wi1(An) = Wa1(An),
and, for t € T and Imt > @,

Wi(T°(x+)AnT*(x+)) Wt(T°(x+)AnT°(x—)J))

(5.6) Wi(4,) ::(
Wi(JT°(x-)AnT?(x4)) We(JT*(x-)AaT(x-)J)

The definition of the homomorphisms W’ with ! € {0,1} proceeds similarly. For
! = 0 one can set

(5.7) WOo(A,) := WO(4,),

and for | = 1 we apply the mapping (5.4) again, but now with p and j being
identified with (P) and (J), respectively, and define

Wi 1
(5.8) Wi(4,) = ( WHPAP)  WH(PAQJ) )

WJQA.P) WNJIQA.QJ)
Now we have the following generalization of Theorem 5.1.

THEOREM 5.2. A sequence (A,) € AM is stable if and only if all operators
Wt(A,,) witht € T and Imt > 0 and all operators W'(A,,) with 1 € {0,1} are
inveriible.

This result goes back to one of the authors ([20]) see also Section 6.2 in [10].

One can show that the homomorphisms W' and 772 satisfy all assumptions
made above. In particular, they are fractal (which is immediate from their def-
mltlon) and they are ideal-lifting in the followmg manner: the homomorphisms
Wi lift the zero ideal, the homomorphisms Wt with ¢ = 41 lift the idealsZ; and
establish an isomorphism between these ideals and the ideal of the compact oper-
ators on L}, and the homomorphisms W; with Im¢ > 0 lift the ideals 7, generated
by the ideals Z;, Z..; and by the sequence (J), and they induce an isomorphism
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between these ideals and the ideal of all compact operators on L x L. Thus,
again the whole theory of the forth section applies to the finite section method for
operators in AH.

5.3. SPLINE AND WAVELET APPROXIMATION METHODS FOR SINGULAR INTEGRAL
AND MELLIN OPERATORS. The spline spaces under consideration are supposed to
be of a rather natural structure, namely, we start with a mother spline, that is,
with a bounded, measurable, and compactly supported function ¢ satisfying the
following conditions:

(5.9) D p(e-k)=1 forzeR,
keZ
(5.10) Z/(p(t +E)p(t)di - 2* #£0 forzeT.
kel g

(Observe that the sums in (5.9) and (5.10) are actually finite by thecompactness
of the support of ¢.) Then we set g, (t) 1= @(nt — k) and define the spline space
Sy as the smallest closed subspace of L% containing all functions ¢y, withk € Z.
For example one can take ¢ = x[o,1], the characteristic function of [0,1], or ¢ =
X[0,1] * * - - * X[o,1], the d-fold convalution of x[g 1) by itself. Then(5.9) and (5.10)
are satisfied, and Sy, is just the space of all L2-functions which are polynomials
of degree d over each interval [k, k + 1], and which are d — 1 times continuously
differentiable on R. Turther, spaces of compactly supported wavelets are also
subject to our conditions (see [10], Section 2.9.5, for examples).

A basic observation which is usually attributed to de Boor is that the spaces
Sn C L? and {2 are isomorphic : If the function 3 zr@kn is in Sy, then the
coefficient sequence (zx) is in [ and conversely and, moreover, the mappings

Fo:l3 =8, ()= Zxk‘?kn

and
Fon:Se =13, D ziprn — (zr)
are continuous and sup ||Fy{| | F-n|| < oo.
n

The Galerkin projection L, is the operator mapping L? onto Spsuch that
(Lnf,¢kn) = (f,un) for all f € L?and k € Z. Condition (5.10) ensures the
existence of L, ,whereas (5.9) involves the strong convergence of L,, to the identity
operator as n - 00.
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As a typical example, we consider the Galerkin method for solving the sin-
gular integral equation

(5.11) (al +bSg)u=f

where a and b are piecewise continuous coefficients and Sg is the operator of
singular integration,

(Snu)(t)zwli/;—(-%ds, teR.

For the Galerkin method for solving (5.11) we replace (5.11) by the sequence of
approximation equations

(5.12) Lo(af 4+ bSg)un = Lnf, un € Sa.

Since the operators L,(al + bSp)L, converge strongly to thesingular integral op-
erator al -+ bSg we have to examine the stabilityof the sequence (Ln(al+bSr)|Sn)
of approximation operatorsin order to guarantee the applicability of the method
(5.12) to the equation (5.11). This problem can be studied again by embedding
the sequences we are interested in into a suitably constructed C*-algebra.

There is a rather elegant and effective (but not evident) way to define an
adequate algebra of approximation sequences over spline spaces. Let F stand
for the set of all bounded sequences (A,) of operators Ap : Sy — Sn such that
[l(An)I| := sup || AnLn|| < 0o. Provided with elementwise operations, 7 becomes a

n

C*-algebra, and the subset K of F containing all sequences (K,) with [|[Kq|l — 0
forms a closed two-sided ideal in . Clearly, a sequence (A,) € F is stable if and
only if the coset (A,) + K is invertible in the quotient algebra F /K.

In what follows we use the notations U,, and Y; introduced in Subsection 5.1,
and for each real number z we let {z} stand for the smallest integer which is
not less than z. Further, we fix areal number r. Now define A, as the smallest
closed subalgebra of F which contains all sequences of the form (F,T°(a)F-,)
where a is an arbitrary piecewise continuous function on T, and all sequences
(FaUgtntr} PU—{tn4r} F—n)nez+ with ¢ running through the reals.

One can show for example that Ag contains the Galerkin approximation
sequences (5.12) even with different ansatz space S, = S¢ and test space S¥ both
for singular integral operators al +5Sg (where a and b are assumed to be piecewise
continuous on R and continuouson R\ Z) and for Mellin convolution operators,

(M) = 7’6 (i—) f(s)s™ ds,
0
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whereas A_, contains e-collocation sequences for these operators (even with gen-
eral piecewise continuous coefficients), and the algebra Ag is also suitable to in-
vestigate certain qualocation and quadrature methods. For a detailed treatment
of these questions, for an account ofthe history of the topic, and also for somegen-
eralizations (spline spaces generated by finitely many mother splines, operators on
weighted Lebesgue spaces) we refer to the monograph [10].

The algebra A,/(A, N K) again possesses a symbolin the sense of Subsec-
tion 3.3 which is constituted by two families of fractal homomorphisms. Here is
their defimtion.

~ Let (An) € A, and t € T. Then there is an operator Wi(An) € L(L?) such
that

(5.13) S-1im P Yios FonAn FaYoF—u L = Wi(4n),

and the mapping W; : A, — L(L?) is a continuous algebra homomorphism.
~ For each (A,) € A, and s € R, there is an operator W®(A,) € L({3) such
that

(514) i‘l}lgg U—{sn+r} F-nAnFnU{sn+r} = Ws(An):

and the mapping W* : A, — L(I2) is a continuous algebra homomorphism.

—~ The cosets F_,AnF,, + K (12) with K (12) referring to the ideal of the com-
pact operators on {2 are independent on n, and if W™ (Ay) denotes one of them,
then the mapping We, : A, — L(I%)/K (I?) is a continuous algebra homomorphism.

THEOREM 5.3. A sequence (An) € A, is stable if and only if the operators
Wi(Ap) witht € T and W5(A,) with s € R as well as the coset W™ (A,) are
invertible.

It is easy to check that all homomorphisms appearing in the the oremare
fractal and that the homomorphisms W, lift the ideals

I, = {(Fn},tF—nLn‘KFnYt—lF-nlSn) + (AT niC)); K Compa'(:t}‘

Thinking of the homomorphisms W?* with s € RU {co} as lifting the zero ideal
we again see that the situation considered here is subject to the general lifting
theorem and its consequences.

The above mentioned results extend to weighted LP-spaces and to operators
on curves which are even allowed to possess corners, intersections, and endpoints
(see for details [10], Chapter 5), to spline and wavelet approximation methods
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cutting off singularities (see [10], Chapter 4), and also to some classes of multidi-

mensional singular integral operators (compare [9]).

5.4. FURTHER APPLICATIONS. Here we list some further applications for which
the “lifting programme” (i.e. construction of algebras, determination of a sufficient
number of fractal and lifting homomorphisms) has already been accomplished.

~ Algebras of sequences of paired circulants (which appear when discretizing
singular integral operators on simple closed curves) are studied by Hagen and
Silbermann in [11], compare also [18], Sections 10.31-10.42.

— The finite section method for singular integral equations on theinterval
[0,1) based on Chebyshev polynomials which are orthogonal with respect to certain
Jacobi weights is considered in [13)].

~ Only recently, Bottcher and Wolf investigated the finite section method for
Toeplitz operators on the multidimensional Segal-Bargmann space.

- The machinery developed above evidently also applies to the finitesection
method for singular integral operators on the semi-axis (which cuts off the infinity)
as well as to the same method for operators on complicated curves (where it
is then used to cut off singular points such as intersections), although, in these
situations, the approximation operators depend on a continuous parameter, and
so one should rather speak about function algebras than about sequence algebras
(for these results see [21] and [10], Section 6.1).

~ Finally, all things apply to the harmonic approximation of Toeplitz opera-
tors as examined in [26] and [4], Chapter 3.

The first named author was supported by a DHG Heisenberg grant.
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