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ABSTRACT. Factorization theorems are obtained for selfadjoint operator poly-
n

nomials L(R) := Y A A; where Aq, Ay, ..., An are selfadjoint bounded linear
y=0

operators on a Hjﬁilbert space H. The essential hypotheses concern the real

spectrum of L{A) and, in particular, ensure the existence of spectral sub-

spaces associated with the real line for the (companion) linearization. Under

suitable additional conditions, the main results assert the existence of poly-

nomial factors (a) of degrees [§n] and [1(n +1)] when the leading coefficient

Ay, is strictly positive and (b} of degree 2n (when n is even) when Ay, is in-

vertible and the spectrum of L () is real. Consequences for the factorization

of regular operator polynomials (when L(w) is invertible for some real ) are

also discussed.
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1. INTRODUCTION

This paper concerns new results on the factorization of selfadjoint operator poly-
nomials, i.e. operator valued functions of the form

n
L) =)_M4;, AreC,
=0

where Ag, A1, ..., An are bounded selfadjoint operators on a Hilbert space M, and
the leading coefficient A, is invertible.
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As with many other papers on problems of this kind we rely on properties of
the “linearization” Al — Cy, and “symmetrizer”, G, of L()) defined on H" by

A As ... A, o I 0 0
0 0 I 0
Aq 0 .
(]‘l) GL: : . : 3 CL= o 3
oo f
" ~Ay —A, ... —An_1

and Ej = A74;,7=0,1,...,n— 1. It is easily verified that GLC = CiGy,ie.
Cy is selfadjoint in the Krein space (H",[-,]) generated by the inner product

[x,y] = (GLI,y),

z,y € H". Consequently, the spectrum of L(}), o(L{)}) (= ¢(CL)) is symmetric
with respect to the real line.

To describe the hypotheses under which our results are obtained we must first
present the notion of points of spectrum of L(X) of “determinate type”, which was
introduced and developed by the authors in [8]. It can be formulated in terms of
either the pair Cy, G, or the polynomial L(}) itself (sce Lemma 7 of [8]). First,
a point A € o(CL) is in the approzimate spectrum of Cr, 04p(CL), if there is a
sequence {fn} C H" such that

(1.2) Ifall=1, lICLfn = Afall =0

as n — oo. Then a point of aap(Cr) is said to have determinate type if, for any
sequence {fn} satisfying (1.2) we have either lim [fa, fu] > 0 (when ) is said to
have plus type), or im[f,, fa] < 0 {when X is said to have minus {ype). It is easy
to see that points of ¢(Cp) of determinate type are necessarily real.

In terms of L(}) itself, a real number Ag € o(L(})) is an approzimate eigen-
value of determinate type if there is a sequence {f,} in H such that [|f,|| = 1 and
L(Xo)fa — 0 and, furthermore, for any such sequence, either im(L/(Xo) fn, fn) > 0
or im(L'(A0)fn, fu) < 0. These two inequalities determine points of plus and mi-
nus type, respectively. We write 6 (L(A)) and o (L(})) for the (real) subsets of
o(L(A)) consisting of points of plus, and minus types, respectively.

The paper is devoted to the study of the factorizations of L(A) when allreal
points of spectrum have determinate type, i.e. when

(1.3) (L)) NR = a4 (L(A)) U o— (L(X)).
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The first result (Theorem 3.1) is obtained under the additional assumption
that A, > 0. A special case states that, with these assumptions, L(A) has a
monic, spectral right divisor N(A) such that ¢(N(A)) is the union of o4 (L(A))
with the spectrum of L(A) in the open upper half of the complex plane.

When M is finite dimensional such a result, even without the restriction on
the real spectrum, is well-known (see [11] and [4], for example). For spaces H of
infinite dimension Theorem 3.1 is a generalization of Theorem 9 of [8] (in which
the non-real spectrum is assumed to be empty), and provides a partial answer to
problems posed by Rodman (see p. 192 of [13]).

The second major result (Theorem 4.1) generalizes Theorem 9 of [8] in a
different direction. As in that theorem, it is assumed that all of ¢(L(})) is real and
of determinate type, but the condition of definite leading coefficient is weakened,
and we admit an invertible indefinite leading coefficient A,. This result is part of
a continuing effort to obtain factorization results for polynomials with indefinite,
or not invertible leading coefficient (see [6], and [7]) and, in particular, it extends
the result of Theorem 3.1 in [7].

Examples are included in Section 5 to show that theorems of similar gener-
ality which include real mixed points of spectrum, or only non-real spectrum (and
no real spectrum) are unlikely.

To put these results in a historical perspective, we note the early result
of Krein and Langer on factorization of quadratic operator polynomials (see [5]
and also Theorem 5.9.1 of [13]). This theorem involves a compactness condition
on the operator coeflicients and is of quite a different character. Subsequently,
major contributions were made by Langer ([11]) who, in particular, related the
existence of right divisors of L(A) (with A, > 0) to the existence of maximal G-
nonnegative and Cp-invariant subspaces. Gohberg, Lancaster, and Rodman (3],
[4]), developed the “supporting subspace” idea (which also appears in Langer’s
work) and focused attention on spectral factorization. Our analysis depends on
the major results of the last three quoted papers.

The fundamental idea behind the new results is that, when the real spectrum
consists of points of determinate type, then o (L(})), ¢-(L(})) and the non-real
spectrum are closed sets. This is discussed in Section 2. The main results are
established in Sections 3 and 4 and, in Section 5 extensions of the main theorems
are made to operator polynomials for which the leading coefficient may not be
invertible, but there is a real o for which L{a) is either invertible, or L(a) > 0.
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2. PRELIMINARIES

The main results of this paper depend on properties of the spectrum of a selfad-
Joint operator polynomial L{A) which follow from the condition that all points of
a(L(A))NR are of determinate type. This section is devoted to some development
of these properties.

The first lemma appears in [2] but, for completeness, the proof is repeated
here. It is stated for an operator A on a Krein space K, but for our applications
the space K is H" with the inner product generated by Gy, of (1.2). The lemma
will be applied to the operator Cr on K (ref. Lemma 7 of [8]). Here we denote by
p(A) the resolvent set of A, and by o4 (A) the set of all its points of plus type.

LEMMA 2.1. Let A be a bounded selfedjoint operator on a Krein space. Let
a,b € p(A) and assume that (a,b) C p(A) Uoy(A). Then there is a complez
neighbourhood U of [a, b} such that U\[a,b] C p(A).

Proof. Suppose the assertion is false. Then there is a sequence {A,} C 8o(A)
(and hence in ¢4,(A)), and a point Ag € o4 (A)N(a,b) such that A, — Ag. Hence,
for each n there is a vector f, such that [|f,|| = 1 and

@ 45 = Mol < 201

Write v, = [Afa — Anfa, fu] and we have

[Afnvfn] = f\n[fn;fn] + Yn-

Equate imaginary parts to obtain

—Imy,
Ima,

[fn: fn] =
and, using (2.1), we find that [f,, fo] — 0. But (|fa]l = 1 and [|Afn — Aofal| — 0
as well, so we contradict the assumption that Ao € 04(4). 1

If it is assumed that o(L(A)) NR consists of points of determinate type then
it follows from the lemma that we have a disjoint union of closed sets:

(2.2) o(L(A) = o4 (L(A)) Uo_(L(X)) U oo(L(})),

where ao(L(A)) consists of non-real points.
Since o(L(A)) is symmetric with respect to the real line we can make a further
sub-division into closed sets:

(2.3) ao(L(N) = AURX
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where A = {X : A € A} and ANA = 0. For example, one may choose ImA > 0
and Im X < 0 for all A in A and A, respectively, and

(2.4) H® = NpFNoAMAM",

where N, N_, M, and M* are the spectral subspace of Cp corresponding to
a4 (L(X)), o-(L())), A, and A, respectively. Furthermore, the subspaces A, and
N_ will be uniformly Gr-positive and uniformly Gr-negative, respectively (see
Lemma 5 of {8]).

3. THE CASE OF A DEFINITE LEADING COEFFICIENT

THEOREM 3.1. Let L(A) = . M A; be a selfadjoint operator polynomial
£

j
with A, > 0, and assume that all points of c(L(A)) N R have determinate type.
Then L()) admits a spectral factorization

(3.1) L) = M(\)AN(N),

where M(X), N(\) are monic polynomials of degrees [1n] and [$(n + 1)), respec-
tively, and

o(M(V) = - (LW UK, (N (}) = (L) UA.

Note that A and A are non-real subsets of o(L{))) defined in Section 2.
Before starting the proof it will be convenient to formulate two lemmas. For any
set ¢ C C we denote by 7@ the set symmetric to ¢ with respect to R.

LEMMA 3.2. Let A be a G-selfadjoint operator on a Hilbert space H and
o1, oy be two isolaled parts of o(A) with corresponding Riesz projectors Ry and
Ry. Ifo1N&2 = 0 then Im R; and Im Ry are G-orthogonal.,

Proof. 1t is easily seen that R[;} (the adjoint of R, in the G-inner product)
is the Riesz projector corresponding to @. Then o1 N 72 = B implies R{;]Rl =0
and for any f € Im Ry, ¢ € Im Ro,

[f,9]=[Rif,Rag)} =1[0,9] =0. &

Recall that subspaces R and § of a Krein space are called a “dual pair” if
RNSH = {0} and RILINS = {0} (and R[], SIH] are the orthogonal companions
of R and &, respectively, in the sense of [1]). Also, if R and & are both neutral
they form a dual pair if and only if R+S is non-degenerate (see Section 1.10 of
(1], for example).
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LeEMMA 3.3. Let A be G-selfadjoint and o be an tsolated part of the spectrum
for which co "R = 0 and 0o NGy = 0. If S and §* denote the spectral subspaces
of A defined by oq and 7o, respectively, then S and 8* are a dual pair.

Proof. It follows from Lemma 3.2 that S and S* are both G-neutral. Then,
because o¢ (and hence ¢y U Tp) is isolated, the Riesz subspace, S+S8*, associated
with 0o U5y is ortho-complemented (i.e. the span of S+S* and (§+8*)*] is #).
It follows that 548" is a Krein space (see Theorem V.3.4 of [1]). Finally, by
Lemma [.10.2 of 1}, it follows that S and S* form a dual pair. #

Proof of Theorem 3.1. It follows from a theorem of Langer (Theorem 3 of [11])
that, if A4 +M (as constructed in Section 2) is a maximal Gp-nonnegative sub-
space, then L(A) has a monic right divisor N()) such that ¢(N())) = o4 (L(}))UA.
But Ay +M is a Riesz subspace and, by Theorem 19 of [3] we know, in addition,
that the spectrum of the left divisor M(}) is equal to o_(L(})) UA.

As N is uniformly Gr-positive, M is Gr-neutral and [Ny, M] = {0}, it
follows that Ny +M is Gr-nonnegative.

Suppose that Ay +M is not a maximal Gr-nonnegative, Cr-invariant sub-
space, i.e. there is a Gr-nonnegative Cp-invariant subspace £ such that £ O
N4+ M properly. Equation (2.4) gives

Ny +M)+(N_4M*) = H™,
so there is a nonzero f € (N.+M*)N L.
Write f = f; + f, where fi € N_, fo € M*. Then, as [N_,M*] = 0 and
M* is neutral,
0<[f, fl=h A+ fe F)=[A. Al <0
Thus, [f1,fi] =0and, as fiy e N, fy =0 and f = fo € M*.
Now for nonzero f € M* it follows from Lemma 3.3 that there is an h € M

such that [f, h] # 0 (otherwise f € M{t]) and, by multiplying A by a unimodular
number, if necessary, there is an h € M such that [f, k] < 0. Then

[f+h,f+h]=2[f Al <0
However, by definition, f is also in the nonnegative subspace £, so that f+h € £
as well. This is a contradiction and shows that N +M is maximal.

REMARK 3.4. Under the hypotheses of Theorem 3.1 the polynomial L{A) has
another factorization L(A) = Ni(A)A.M;(}), where the polynomials M;()) and
N1(}) have spectral properties analogous to those of M()) and N(}), respectively.

There are also similar dual formulations for subsequent factorization theo-
rems.
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REMARK 3.5. When n = 2 interesting alternatives to the hypothesis A, > 0

are possible. These include:

(i) there is a Ag € C and a § > 0 such that

(L), Pl 2 81111

for all f € H. (When A € R such a condition is discussed in Section 5.)
{ii) there is a A\g € C and a § > 0 such that

I(L'o)f, D 2 6 I1F1I°

These cases will be discussed in a future publication, in which it will be shown
that the hypothesis (i) admits factorization of some rational operator functions
which are selfadjoint on the unit circle.

4. OPERATOR POLYNOMIALS WITH REAL SPECTRUM

The basic assumptions of the next theorem are that n is even, that A, is invertible
(weakening a hypothesis of Theorem 3.1) and ¢(L(A)) C R and has determinate
type (strengthening another hypothesis of Theorem 3.1). In the terminology of
the paper [9], L(A) is a quasihyperbolic operator polynomial.

2p
THEOREM 4.1. Let L()) = 5. XAy be a selfadjoint operator polynomial

k=0
with Ay invertible. Assume that o(L(A)) C R and e(L(A)) = o4 (L(AX))Uo- (L(X)).
Then L(A) admils a spectral factorization with respect to o4 (L())) and o_(L(})),
t.e. there exist monic operator polynomials M (), N(X) of degrees p such that

L(A) = M(A\) Az N(X)

for all A € C, and o(N (X)) = a1 (L(N)), o(M(X)) = o-(L(})).

It will be convenient to formulate another lemma before proving the theorem.
We introduce subspaces S, and Sf of H?f. By definition, S, and S have the first
p components, and the last p components equal to zero, respectively.

LEMMA 4.2. If Ay, is invertible then SE1 = S,

Proof. Let y € Sp. Then for any f € S, we easily verify that [f,y] =
(Grfy)=0,ie 8, ¢ SH.
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aH
b2

On the other hand, if y € S,[,” and we write

_[Gu Gia] _ [0
GL_[Glz 0]’ f_[f]’

with respect to M2 = HP @ MP, then
(GLf,¥)2p = (Graf, B)p
for all f € H?. But

AP+1 Ap+2 Azp
Ap+2

Gz = .
Ay ... 0

and is therefore selfadjoint and invertible. Thus, ( 7, G12%:) = 0 for all feHr
implies 3 = 0,ie. y€S&,. 1
Proof of Theorem 4.1. We use Theorems 16 and 19 of [3] (see also Theorem 1

of [11]} which ensure that a factorization of the required form exists provided that
there is a direct sum decomposition

(4.1) Np+S, = NP,

Since o4 (L(A)}Uo_(L(X)) = o{L())) = 0(CL) we have Ny +N_ = H?P and,
furthermore, the sum is G-orthogonal.

Let us first prove that A4 NS, = {0} and the direct sum N;+S, is closed.
If not, then there are two sequences {fpn} C Sp, {gn} C N4 such that {|fa]l = L
and ||fn — gnll = 0 as n — 0. Let

0
Jo = [fn]

in H? @ H?. Then, denoting possibly nonzero components by *, we have
1
GLfn = [0] ) (GLfnafn) =0.

But ||fa = gn|| — 0 then implies that (GLgn,gs) — 0 as n — oo, as well. Since
gn € Ny it follows that g, — 0 and this contradicts the hypothesis that ||fu|] = 1
and ||fn = gnl} — 0.

Now let us prove that Ay+S, is the whole of H?. I not, there is a nonzero
h € (N448,)*+1. But N_E_'L] = N_ and, by Lemma 4.2, S,[,J'] = Sp. Thus, h €
N_NS,. However, as in the first part of the proof, we see that N_ NS, = {0},
and we have our contradiction. Equation (4.1) is established. &
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REMARK 4.3. When L(}) is quadratic (p = 1), then N(A) and M()) take
the form N(A) = M — Z, M(A) = M - Y, and the operators Z, Y are similar to
selfadjoint operators on H. To see this, observe that Z is similar to the restriction
Cr | N4+ (see Theorem 28.2 of [12], for example). Then it follows from Lemma 5
of [8] that Cf | N} is similar to a selfadjoint operator. '

Note that it has been shown in [7] that, even in the finite dimensional case,
there is no analogue for Theorem 4.1 for selfadjoint operator polynomials with odd
degree and invertible leading coefficient Agpyq, unless Agpyy is definite. In the
latter case, Theorem 3.1 applies.

It can be argued that Theorem 4.1 is the best of its kind in the sense that, if
the restrictions on o(L())) are removed, then there may be no spectral factoriza-
tion. For example, one might conjecture that with no real spectrum a factorization
would be possible. Example 4.5 below shows that this is not the case. Example 4.4
is well-known and demonstrates that, with mixed real points of spectrum, there
may be no factorization.

0 X
A1
type and there is no right divisor of the form AI — Z.

EXAMPLE 4.4. Let L(A) = . Here, X = 0 is an eigenvalue of mixed

ExaAMPLE 4.5. Let

0 0 0 (A+1)?
B 0 0 (A+1)? 1
L) = 0 (A —1i)? 0 0
(A —1)? 1 0 0

Here, o(L({))) = {i, —1} and each eigenvalue has algebraic multiplicity 4 and geo-
metric multiplicity 1. To show that there is no right divisor of the form Al — Z
we consider chains of generalized eigenvectors for the two distinct eigenvalues.

It is found that for the eigenvalue i there is a chain of the form {e1, e1, *,*},
where e, denotes the first unit coordinate vector in C* and % denotes a vector of no
immediate concern. Similarly, for the eigenvalue —i there is a chain {e3, €3, *,*}.

A theorem of Langer ([10]) states that, for the existence of the right divisor
M — Z, it must be possible to select a basis for C* from the leading vectors of the
chains, Clearly, this is not possible for this example. 8

Observe that in Examples 4.4 and 4.5 all values of L()), A € R, are indefinite
(and not only the leading coefficient). This is necessary because, otherwise, a
factorization is known to exist (see Remark 3.5 (i) and Theorem 5.2).
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5. REGULAR QUASIHYPERBOLIC OPERATOR POLYNOMIALS

In this section we make some remarks on the extension of Theorems 3.1 and 4.1
to quasihyperbolic polynomials (i.e. with only real and determinate spectrum
including the point at infinity when appropriate) for which the leading coefficient
1s not invertible, but for which there is an o € R such that L{a) is invertible. Such
a polynomial is said to be regular.

The technique applied here is to “shift and invert” the eigenvalue parameter
so that earlier theorems can be applied and then transform back to the parameter
A. Some of the necessary preliminaries have been developed in Section 7 of [9).

Let us first consider the case when the degree of L(}) is even, say n = 2p.
Weset p=(A—0a) ! and

%
M = w1 i) = 30 L 10 a) = Py

=0

Thus, M, = L(a) and is invertible. In this case, finite points of o(L(})) of
determinate type also have determinate type for M{u)} but the signs are reversed
“plus” « “minus” (Lemma 5 of [9]). Also (when A, is not invertible) 0 € (M (1))
and has the same type as co € o(L(}A)). (We recall that co € ¢(L(})) has plus
type if, as n — oo,

lim(Azp—1fa, fa) > 0

whenever [|fa[| = 1 and |JA2pfa]] — 0, and similarly for the case when oo has
minus type. See Section 7 of [9].)
The following result is easily obtained from Theorem 4.1.

THEOREM 5.1. Let L(A) be a quasihyperbolic operator polynomial of degree
2p with Agp not invertible, and assume there is an o € R such that L(a) is in-
verttble. Then there are operator polynomials Li()) and L)) of degree p such
that

L(2) = La(M)L(e) L1 (X)
and o(L1(A)) = o4 (L(A)), o(L2(X)) = a-(L(N)).
r
Fuyrthermore, if Ly(A) = 3} MLy j, k= 1,2, then L1p and Ly, are invert-
§=0
tble according as oo has plus or minus type, respectively, as a point of a(L(A)).

When L()) has odd degree, say n = 2p + 1, one might try the device of
defining

L) = X7+20 4+ L))
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and apply Theorem 5.1 to f,(,\) However, it is easily seen that oo is not a point
of determinate type for E(A), 50 Theorem 5.1 does not apply.

If L(A) is a QHP of odd degree, 2p + 1, and there is an a > 0 such that
L{a) >» 0 then Theorem 3.1 can be used to obtain a factorization, but the con-
ditions o(L1(A)) = o1(L(})), o(L2(A)) = o_(L())) are not satisfied. Points of
spectrum of plus and minus types will appear in both factors. Indeed, when the
degree is odd it is known that, in general, factorizations of the kind described in
Theorem 5.1 do not exist (see Theorem 3.6 of [7]).

To obtain a “mixed” factorization in the case of odd degree, shift and invert

the parameter as above to obtain

2p41

M(p):= p?* Lo+ ) = 3

2p+1 )
LY (a) =: E W M;,

i=0

2p+1—jf
FP+ 7

N

where Mypy is invertible. The “mixing” of points of spectrum occurs because, if
Ao € o(L(A)) has plus (minus) type, then po = (Ao — @)~ ! has the type reversed
when Ag > o and preserved when g < a (Lemma 5 of [9]). Also, if oo has plus
or minus type for L(A) then this type is preserved for the point 0 € o(M(p)). It
is found from Theorem 3.1 that:

THEOREM 5.2. Let L(X) be a gquasihyperbolic operator polynomial of odd
degree, 2p+1, with L(a) > 0 for some a € R. Then there are operator polynomials
Ly(A) and La(A) of degrees p+ 1 and p, respectively, such that

L) = L\ L(@) L1 (A)
and o(L1())) is the union of
o (LN N{ATA>a}, o (L) N{A A< a},
and {o0} if 0o has plus type for L()). Also, o(La(N)) is the union of
o+ (LA N{A[A<ea}, o (L) N{A[A>a}

and {oo} if oo has minus type for L()).

We note that the leading coefficient of L1(A) (of Lz(})) is invertible if co has
plus type for L(A) (has minus type for L(})).
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