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ABSTRACT. It was shown by Effros, Kraus and Ruan that an ultraweakly
closed subspace of B(H) has the weak*-operator approximation property if
and only if its predual has the operator approximation property. We show
that the preannihilator of such a subspace S has the operator approximation
property if and only if any ultraweakly closed subspace T of B(X) the dual
product of S and T is the ultraweakly closed linear span of the algebraic
tensor product of S and B(K') and the algebraic tensor product of B(H) and
T. Using this we also show that there are reflexive subspaces S and T for
which the dual product is strictly larger than this ultraweakly closed linear
span, answering a question of the second author.
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0. INTRODUCTION

It was shown by the second author in [19] (and independently by Tsuji in [?])
that if M is a separable Hilbert space, then a o-weakly (i.e., ultraweakly, weak-*)
closed subalgebra A of B(X) (the algebra of bounded operators on %) is reflexive
(i.e., A = AlgLat A) if and only if the preannihilator A} of A in the predual
B(H). of B(H) is generated (as a closed linear space) by rank € 1 operators
(where we identify B(H). with the trace-class operators in the usual way). This
result was extended to reflexive linear subspaces in [14]. Arveson observed in
[1], Chapter 7 that those reflexive algebras for which a distance formula holds
satisfy an equivalent condition which he called hyperreflexivity. Hyperreflexivity
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also has characterizations in terms of the preannihilator (one characterization was
obtained in {19], and another in [1]), and can be defined for subspaces (see [14],
[15]). The first example of a nonhyperreflexive reflexive algebra was constructed
in [14]. The first example of a nonhyperreflexive CSL algebra (reflexive algebra
with commutative subspace lattice) was constructed by Davidson and Power in
[5). Motivated by [5], the second author introduced the notion of dual product in
[20]). It is shown in [20] that if S and T are reflexive subspaces of B(H), then
the dual product S*T of S and T is the smallest reflexive subspace containing
S®B(H)+ B(H)®T, and the question was raised of whether ST is always the
o-weak closure of S ® B(M) + B(H) ® T. Using recent results from the theory of
operator spaces, we show in this paper that the answer to this question is no. We
also give a characterization of those o-weakly closed subspaces S for which S* T
is the o-weak closure of S ® B(H) + B(H) @ T for all c-weakly closed subspaces
T. These turn out to be precisely those subspaces whose preannihilators have the
operator approximation property.

The operator approximation property (the OAP), introduced by Effros and
Ruan in [8], is the natural analogue for operator spaces of Grothendieck’s approx-
imation property for Banach spaces. It is shown in [6] that an operator space V
has the OAP if and only if V* has the weak*-OAP, which is the dual version of
the OAP. (Precise definitions of the OAP and the weak*-OAP, as well as a dis-
cussion of basic facts about operator spaces, can be found in Section 1 below.) In
particular, if S is a o-weakly closed subspace of B(H) (where # is not necessarily
separable), then S has the weak*-OAP if and only if its operator predual S, (i.e.
B(H)./S1 with the quotient operator space structure) has the QAP.

The preannihilator S; of S also has a natural operator space structure,
namely the one it inherits as a subspace of the operator predual B{H), of B(H).
Thus two natural questions are:

(1) If S has the weak*-OAP, what properties does S, have?

(2) If S, has the OAP, what properties does S have?

We give answers to both of these questions in this paper.

Before starting our main results, we need a few definitions. If § C B(H) and
T C B(K) are g-weakly closed subspaces, the dual product S+ T of § and T is
defined by S+T = (5L ® Ty )" [20] (where S, ® Ty denotes the closed linear span
of {z®y:2€ S5, andy € Ty } in B(H®K).). We say that S has the dual product
density property (the DDP) if S+ T is the o-weak closure of S® B(K)+ B(H)® T
whenever T is a o-weakly closed subspace of B(K) for some K. If V C B(H).
and W C B(K). are closed subspaces, the predual product V « W of V and W is
defined by V + W = (VL1 @W1), (where V1 @ W1 denotes the o-weakly closed
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linear span of {a®b:a € V+ and b € Wt} in B(H)® B(K) = B(H®K)). A
closed subspace V' C B(H). has the predual preduct density property (the PDP)
if V W is the norm closure of V ® B(K). + B(H), ® W whenever W is a closed
subspace of B(K). for some K.

Our main results are:

(1) S has the weak®™-OAP < S; has the PDP (Theorem 2.6), and

(2) S1 has the OAP ¢ S has the DDP (Theorem 3.2).

Suppose H is a separable infinite-dimensional Hilbert space. Since there are
closed subspaces of B(H), which do not have the QAP, it follows from Theorem 3.2
that the o-weak closure of S@ B(H) + B(H)® T can be strictly smaller than
S+ T. As noted above, it was asked in [20] whether this can happen when S and
T are reflexive subspaces. We show that this can happen, and, in fact, there are
reflexive subalgebras A and B of B(H) for which A % B is not the o-weak closure
of A® B(H) + B(H)® B (Theorem 5.10).

For a discussion of reflexivity and hyperreflexivity properties of operator
algebras and subspaces of operators we refer the reader to the articles [4], [14],

(15], [19], [20], 21}.

1. PRELIMINARIES AND NOTATIONS

For a Hilbert space H, let H(*) denote the direct sum of n copiesof H,n=1,2,....
If V is a subspace of B(H), then M,,(V'), the space of n x n matrices with entries in
V, can be viewed as a subspace of B(H(")) (where we make the usual identification
of Ma(B(H)) with B(H(™)). Let || - || denote the restriction of the norm of
BH®™) to Mp(V),n=1,2,.... A (concrete)} operator space is such a subspace V,
together with the sequence of norms || - [}, on M, (V). In this paper we will always
assume our operator spaces are closed, and so are Banach spaces. A (complete)
L*®-matricially normed space is a Banach space V over C, together with a sequence
of norms || - || on the spaces M, (V) satisfying:

®) llevBlln < llell llollnlIBll, o, B € Ma(€),v € Ma(V);

(ii) [lv1 @ valln4m = max{[lvi|ln, lv2llm}, v1 € Ma(V),v2 € Mn(V).
If V and W are L°-matricially normed spaces, and if ¢ € B(V,W), we can
define a map ¢, € B(M,(V), Mpo(W)) (n = 1,2,...) by @n([vi;]) = [e(vi;)]
([vi;] € Mn(V)). Such a map ¢ is completely bounded if sup ||@n|| < oo, and
a complete isometry if each ¢, is an isometry. If ¢ is compﬂately bounded, the
completely bounded norm of ¢ is defined by ||¢|lcb = sup|[¢n||. The space of

n

completely bounded maps from V to W is denoted by CB(V, W).
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Concrete operators spaces are L®™-matricially normed spaces, and Ruan
proved in [24] that any L®-matricially normed space is completely isometric to
a concrete operator space (see [10] for a short proof of Ruan’s theorem). This
abstract characterization of operator spaces is very useful. For example, if V and
W are operator spaces, and if we define a norm || - {|» on M,(CB(V, W)) by iden-
tifying M, (CB(V,W)) in the usual way with CB(V, M,,(W)) (i.e., associate the
map v — [pi;(v)] in CB(V, M, (W)) to the element [p;;] of M,(CB(V, W))), then
it is easily checked that {CB(V,W),|| - ||ln} is an L*-matricially normed space,
and so is an operator space.

If V is an operator space, then V* together with the norms || - ||» on Mp(V*)
obtained by identifying M,(V*) with CB(V, M,(C)) is called the operator dual
(25] (or standard dual [3]) of V. (If p € V*, then ||| = ||l¢llcb, 50 llellr = llell-)
The canonical map from V to V** is a complete isometry (see [3] or [9]). £ S = V*
for some operator space V, then § is said to be a dual operator space and V is
an operator predual of S. If H is a Hilbert space, we will always assume that
B(M). has the operator space structure it inherits as a subspace of B{(H)*. Then
B(H) (with its usual operator space structure) is the operator dual of B(M). ([2],
Theorem 2.9). If V C B(HM). is a subspace, we will always assume its operator
space structure is the one it inherits from B(H)..

If S C B(H) is a o-weakly closed subspace, then we will always assume
that S. = B(H)./S1 has the quotient operator space structure (i.e. we identify
M, (S.) with M, (B(H).)/Mn(SL), and put the quotient norm on M,(S.) for all
n). Then S is the operator dual of S. ([2], Corollary 2.4). If S C B(H) and
T C B(K) are o-weakly closed subspaces, we denote by CB,(S,T) the space of
normal (= ¢-weakly continuous) completely bounded maps from S to 7.

Let K, denote the C*-algebra of compact operators on a separable infinite-
dimensional Hilbert space Hg, and let T, denote the space of trace class operators,
identified as an operator space with B(Ho).. If V C B(H) is an operator space,
we denote the spatial tensor product of V and Keo by Koo(V); ice., Koo(V) is
the closed linear span of {zr®y : z € Vand y € Koo} in B(H® Ho). If V
and W are operator spaces, and if ¢ € CB(V, W), there is a unique map pu €
CB(Koo(V), Koo (W)) such that poo(z ® y) = 0(z) @y (z €V, y € Ki). If
is a complete isometry, so is ¢, and thus Ko (V) does not depend on how V is
concretely represented as an operator space. If we view the elements of Koo (V') as
00 X co-matrices with entries in V in the obvious way, then @ ([vi;]) = [¢(vi;)]-
(See [8] for a detailed discussion of Ko (V).)

If V and W are operator spaces, a net {gx} in CB(V, W) is said to converge
to ¢ € CB(V, W) in the stable point norm topology if (v )oo (V) — ()0 (v) in norm
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for all v € Koo(V). Let F(V) denote the space of bounded (and hence completely
bounded ([7], Corollary 3.4)) finite rank operators from V to V. A Banach space
V has the approzzmatzon property (AP) of Grothendieck ([12]) if there is a net
{¢a} in F(V) such that ¢, converges to the identity operator idy from V to V
uniformily on compact sets. If V is also an operator space, then V has the operator
approzimation properly (OAP) of Effros and Ruan ([8]) if there is a net {¢,} in
F(V) such that o5 converges to idy in the stable point norm topology. If V has
the OAP, then V has the AP. (This follows easily from the equivalence of (i) and
(ii) on p. 185 of [8]. See also Remark 5.9 in [18].) It seems likely that there are
operator spaces which have the AP and don’t have the OAP, but no examples of
such spaces are known.

Now suppose S is a dual operator space. Then there is a weak*-o-weak
homeomorphism and complete isometry of S onto a o-weakly closed subspace of
some B(H). (See [2] or [8].) In this paper, since we are interested in preannihi-
lators, we will always assume dual operator spaces are concretely represented as
o-weakly closed subspaces of some B(H). If S C B(H) is a o-weakly closed sub-
space, we set Mo (S) = S® B(Hg), where My is a separable infinite-dimensional
Hilbert space. If S C B(H) and T C B(K) are o-weakly closed subspaces, then
for each ¢ € CB,(S,T) there is a unique po, € CBy (Moo (S), Moo (T)) such that
Poo(a®b) = pla)®b (a € S, b € B(Hy)). If we view the elements of My, (S)
as 00 X 00 matrices with entries in S, then ¢ ([ai;]) = [p(a:;)] ([ai;] € Mo (S)).
A net {pa} in CB,(S,T) is said to converge to ¢ € CB,(S,T) in the stable
point-weak* topology if (1 )eo(a) — poo(a) o-weakly for every a € M (S). We
say that S has the weak*-operator approzimation property (weak*-OAP) if there is
amnet {pa} in Fy(S) (the space of normal maps in F(S)) such that {¢,} converges
to idg in the stable point weak*-topology.

There is a close connection between approximation properties and slice maps.
If H and K are Hilbert spaces, and if z € B(H)., the right slice map R, associated
with z is the unique normal map from B(H)® B(K) to B(K) such that

(1.1) R.(a®b) = (z,a)b, a€ B(H), be B(K).

The left slice maps L, : B(H) ® B(K) — B(H) (y € B(K).) are similarly defined.
(If z € B(H)«, the slice map R, depends on K as well as z. However, it should
always be clear from context what the domain and range of R, are. A similar
remark applies to left slice maps.) It is easily checked that

(1.2) (z®y,c) = (y, Ralc)) = (x, Ly(c))

whenever z € B(H)., y € B(K). and ¢ G.B(’H)§B(IC).
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If S C B(H) and T C B(K) are o-weakly closed subspaces, the Fubini product
S®pT of S and Tis {c € B(H®K) : Ry{c) € T Vz € B(H), and Ly(c) € S
Yy € B(K).}. A useful fact is that S®pT = {c € S®B(K) : Rz(c) €T
Yz € B(H)s} = {c € B(H)®T : Ly(c) € S Yy € B(K).} (see Remark 1.5 in
(16]).

We always have S® T C S®rT. We say that S has Property S, if S®T =
S®rT whenever T is a o-weakly closed subspace of B(K) for some Hilbert space
K. It is shown in [18] that S has Property S, <> S has the weak*-OAP. (The
weak*-OAP is referred to as the o-weak approximation property in [18].) It is also
shown in [18] that there are von Neumann algebras without the weak®-OAP. This
is relevant to reflexivity theory: If £; is a subspace lattice, then Alg(£y ® £2) =
Alg £, @ Alg L, for all subspace lattices £ if and only if Alg £; has Property S,
(see [18], Remark 1.1).

If V and W are operator spaces, and if u € Mp(V © W) (where VO W
denotes the algebraic tensor product of V and W), let

llully = inf{lled ol 1l 18113

where the infimum is taken over all possible representations u = (v @ w)f with
v € Mg(V) for some k, w € My(W) for some £, & € My 1¢(C) and 8 € Mien(C).
(If v = [vij] € Mx(V) and w = [wp,] € M¢(W), then v ® w denotes the k¢ x k¢
matrix whose (¢,p) x (7,q) entry is v;; @ wpe, 1 € 4,7 <k, 1< p,g <L) Itis

shown in [9] that || - ||, is a norm for each n, and that the completion VW of
V © W with respect to || - || is an L°°-matricially normed space (for the norms
| - I=), and so is an operator space, which is called the operator space projective
tensor product of V and W. (The operator space projective tensor product was
introduced independently in [9] and [3]. See [3] for a different, equivalent, definition
of [|-1I2-)

If V and W are operator spaces, and if ¢ € CB{V,W*), we can define a
linear map & : VO W — C by (v ® w) = {p(v),w). It is shown in [9] and (3]

that & extends to a map from V ® W to C, and that the map ¢ — & is a complete
isometry from CB(V, W*) onto (V ® W)*. Another fact that we will need is that if
V; and W; are operator spaces, i = 1,2, and if ¢; € CB(V;, W;), i = 1,2, then there
is a unique map @1 ® @, in CB(W\1 RV, W1 ® W) such that (¢ @ p2)(v1 ®v) =

@1(v1) ® a(v2), and [|p1 ® paleb < fleallevll@zlles ([3], Proposition 5.11).
It is shown in [8] that if H and K are Hilbert spaces, then the bilinear
map (z,y) — z ® y from B(H). x B(K). to B(H ® K). determines a complete
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isometry 0 from B(M). ® B(K). onto B(H ® K).. (More generally, if § C B(H)
and T' C B(K') are o-weakly closed subspaces, and if S has the weak*-OAP, then

(z,9) = 2®y (¢ € S., y € T..) determines a complete isometry from S, ® 7T, onto
(S®T)., ([25], Corollary 3.7).) Since # is a complete isometry, so is its adjoint
0* : B(H)®B(K) — (B(H)+ ® B(K).)*. If we make the canonical identifications
of (B(H). ® B(K).)* with CB(B(H)., B(K)) and of M,(CB(B(H)., B(K))) with
CB(B(H)«, Mo (B(K))), then it is easily checked that for n = 1,2,... and for any
z € B(H)«,
(Bo)a(c) = [(0")a(c)](=), ¢ € Mn(B(H)® B(K)).

Hence ||Rs||cb = ||2|| Y& € B(H).. Similarly, ||Zy|leb = [|ull Yy € B(K)s. In
what follows we will often use 8 to identify B(H). ® B(K). with B(X ® K)., and
write B(H)« ® B(K)« = B(H ® K)..

If a € B(H), then a € CB(B(H).,C), and so there is a map a®idp(x). €
CB(B(H). ® B(K)., C® B(K),) for any Hilbert space K. Let R, denote the
composition of a@idB(;c)_ with the canonical complete isometry (extending A ®

y — Ay) from C® B(K). to B(K).. Then R, € CB(B(H @ K)., B(K).). It can
be easily shown that ||R,||cb = ||al|, and

(1.3) R.,(z®y) = (z,a)y, =€ B(H)s, y€ B(K)..

We call R, the right slice map associated with a. The domain and range of R,
are not indicated by the notation, but these spaces should always be clear from
context. The left slice maps Ly € CB(B(H®K )., B(K).) (b € B(K)) are similarly
defined. A straightforward calculation shows

(1.4) (z,a®b) = (Ra(2),b) = (Ls(2),0), 2 € BH&®K)., a € B(H), b € B(K).

Let V C B(H). and W C B(K). be closed subspaces. Then, as noted in the
introduction, we use V ® W to denote the closed linear span of {z @ y:z € V

and y € W} in B(H). @B(IC)* = B(H ® K).. The Fubint product V @p W is
defined by VQr W = {z € B(H®K)« : Ra(z) € W Va € B(H) and Ly(z) € V
Vb e B(K)}. We always have V@ W C V ®p W, as is easily checked. We show
in Section 3 (Theorem 3.1) that V@ W =V @p W for every W C B(K)., K any
Hilbert space, if and only if V' has the OAP.

The next result follows easily from (1.2) and (1.4), and the proof is left to
the reader.
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ProrosITION 1.1. Let § C B(H) and T C B(K) be o-weakly closed sub-
spaces, and let V C B(H). and W C B(K). be closed subspaces.

, (S@®T)L ={2€ B(H®K). : Rs(2) €TL YVa € S}
® ={z€ BH®K). : Ly(z) € SL Vbe T}.
(VW) ={ce B(H®K): R(c)e W Yz e V)
={c€BMHOK): Ly(c) e V* Yye W}
ProPosITION 1.2. Let S C B(H) and T C B(K) be o-weakly closed sub-
spaces, and let V C B(H), and W C B(K), be norm closed subspaces. Then:

(1) (S® FT)yL is the norm closure of S; ® B(K), + B(H). @ Ty
(ii) (V ®@r W)* is the o-weak closure of VL & B(K) + B(H)@WL.

(if)

Proof. Using Proposition 1.1 (ii), we have that

(S1L ® B(K). + B(H). @ Ty )*
=(SL ® B(K).)L N (B(H). ® T1)*
={ceBH®K):Ly(c)e(S.)t =85 Vye BK).)}
N{c€eBHK): Ro(c) € (T ) =T Yz B(H).}
=S®FT,

from which (i) follows immediately. A similar application of Proposition 1.1 (i)
yields (i1).

A subspace S C B(H) is called n-reflezive if the n-fold ampliation (™) =
{s® - ®s:se€ S} is reflexive in B(H™).

PROPOSITION 1.3. Suppose S C B(H) and T C B(K) are o-weakly closed
subspaces, with H and K separable, and that S and T are both reflezive (resp.
n-reflezive, weakly closed). Then SQ rT is reflexive (resp. n-reflezive, weakly
closed.)

Proof. From [19], a o-weakly closed subspace is reflexive (resp. n-reflexive,
weakly closed) if and only if its preannihilator is generated by operators of rank
< 1 (resp. rank < n, finite-rank). So an application of Proposition 1.2 (1) yields
the result. &

The next result will prove useful in what follows, and should be compared
with the analogous results for o-weakly closed subspaces (with B(K). replaced by

B(K)).
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PROPOSITION 1.4. Let V C B(H). and W C B(K), be closed subspaces.
() VOrW ={z2€ V@ B(K)\: Ra(2) e W Vae B(H))}.

Proof. (i) Since (B(K).)* = {0}, it follows from Proposition 1.2 (i) that
(V ®r B(K).)* = V& B(K). Since B(K) has Property S, ([16], Theorem 1.9),
VL@ B(K) = V+ @ rB(K). Since B(K), = {0}, it follows from Proposition 1.2 (1)
that (VA& pB(K))L = (V*)L @ B(K), = V & B(K).. Hence V @ B(K). =
((Ver B(K).)*)L =V ® B(K)..

(i) By (i), V®F W C V ®F B(K), = V ® B(K)., s0 we get C. On the other
hand, if z € V ® B(K)., then Ly(z) € V for all b € B(K), and so we also get O. 1

2. ANNIHILATORS WITH THE WEAK*-OAP

For o-weakly closed subspaces S C B(H) and T C B(K) we define the dual Fubini
product S +p T by
SxpT= (S_[_ RF TL)J‘.

For closed subspaces V C B(H). and W C B(K)., we define the predual Fubini
product V xp W by
v *p W = (VJ' §FWL)L.

The next result follows immediately from the definitions and Proposition 1.2.

ProrosiTiON 2.1. (i) If S C B(H) is a o-weakly closed subspace, then S
has the DDP <> ST = Sxp T whenever T is a o-weakly closed subspace of B(K)
for some Hilbert space K.

(i) If V. C B(H). is a closed subspace, then V has the PDP <& V + W =
V xp W whenever W is a closed subspace of B(K)« for some Hilbert space K.

The next proposition, whose routine proof is left to the reader, will be useful
in Sections 4 and 5.

PROPOSITION 2.2. (i) Suppose S C B(H) and T C B(K) are o-weakly closed
subspaces. Then S« T =S+pT & T+*S=Tx*pS.

(i) Suppose V C B(H). and W C B(K). are closed subspaces. Then V+W =
VipW oWV =WaxpV,

THEOREM 2.3. Let V C B(H). be a closed subspace, let S = VL, and let
Ho be a separable infinite-dimensional Hilbert space. The following conditions are

equivalent:
(i) V has the PDP;
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(i) V«W =V xp W whenever W C B(Hqg). 15 a closed subspace;
(iii) S has the weak®-OAP.

Proof. (i) = (ii) follows immediately from Proposition 2.1 (ii).

(i) = (iii). Let T C B(Ho) be a o-weakly closed subspace. Then S®T =
(SL*T)* = (VT = (Vxp Tt = S&r(TL)t = S@ T Hence S has the
weak*-OAP by Theorem 2.6 in [18].

(i) = (i). Let KX be a Hilbert space, and let W C B(K). be a closed
subspace. Let T = W*. Since S has the weak”-QAP, it has Property S,, and so
VW =(5®T)L ={(S®rT)L = S »p Ty =V +p W. Hence V has the PDP
by Proposition 2.1.(ii). #

REMARK 2.4. If § is a dual operator space, then, as noted above, S can be
realized concretely as a o-weakly closed subspace of B(H) for some . Theorem 2.3
implies that although S, depends on the concrete realization of S, if S has the
weak*-OAP, then S; has the PDP for any such realization.

3. PREANNIHILATORS WITH THE OAP

THEOREM 3.1. Let S C B(HM) be a o-weakly closed subspace, let V = S,
and let Ho be a separable infinile-dimensional Hilbert space. The following condi-
tions are equivalent:

(i) S has the DDP;

(it) S*T = S*p T whenever T C B(Hp) 15 a o-weakly closed subspace;

(i) VOW =V @r W whenever W is a closed subspace of B(K). for some
Hilberl space K;

(iv) VOW =V ®@r W whenever W C B(Hg). 1s a closed subspace;

(v) V has the OAP.

Before proving Theorem 3.1, we need a few lemmas. The first lemma is a
special case of Proposition 3.3 in [9].

LEMMA 3.2. Suppose V is a closed subspace of an operator space W, let K
be a Hilbert space, and let iy : V — W be the tnclusion map. Then iy @idB(,c). :
V® B(K). — W ® B(K). is a complete isometry. If W = B(H). for some Hilbert
space H, then iy @idg(,c)_ maps V ® B(K). onie V ® B(K)..

LeMMa 3.3. Let V C B(H). be a closed subspace, let iv : V — B(H).
be the inclusion map, let K be a Hilbert space and let ¢ = iy @idB(,c).. For



PREANNIHILATORS AND DUAL PRODUCTS 31

2€V®B(K)., let W, = {Ra(2) :a € B(H)}. Then V® W, is the norm closure
of {((¥ ®idp(x), N(p~'(2)) : ¥ € F(V)}.
Proof. Let ¢ € F(V). Since V C B(H)., we can choose ai, ..., a, in B(H)

and zi,...,2, in V for some n so that
(3.1) ¥(z) = f:(m,a,-)x.-, zeV.
=
Then
(32) ‘P((¢®ld3(fc).)(<ﬂ Y2))) = Zw. ® Ra,(z)

i=1

when z = z@yforsomez € V, y € B(IC) (since LHS = go((lﬁ ® idp(x), ) (z®y)) =

o((z) ® y) = (z<m a)ai ® y) = zj 2 ® (2, 00}y = z; 2 ® Rai(2® 1)), from
which it follows easdly that (3.2) is va,hd for any z in V®B(IC) Since the elements
of F(V) are precisely the maps defined by (3.1) for some choice of a;,...,a, in
B(MH) and z;,...,z, in V, it follows immediately from (3.2) that the norm closure

of {((¥ ®3dneey. )¢ !(2)) : ¥ € F(V)} is V@ Wi
Proof of Theorem 3.1. (v) = (iii). By Theorem 2.4 in [6], there is a net
{#a} in F(V) such that ¥, ®idp(x), : V & B(K). — V & B(K), converges in the

point-norm topology to the identity map of V® B(K).. Now let W C B(K). be
a closed subspace, and let 2 € V @7 W. Then z € V ® B(K). by Proposition 1.4

(ii), and so @(p~1(2)) = z (where, as in Lemma 3.3, ¢ = iy @idB(,c)_). On the
other hand, (UA@idB(;c),)((p'l(z)) — ¢~1(2) in norm, and ¢ is an isometry by

Lemma 3.2, so ¢((¥ @)idg(,c)_)(cp‘l(z)) — z in norm. Since W, = {R.(2) :a €
B(M)} C W, it follows from Lemma 3.3 that 2 € VQW. Hence VRrW C VQW.
But the reverse inclusion always holds, so V@r W =V @ W.

(iii) = (iv) and (ii) < (iv) are trivial, and (i) = (ii) and (i) & (iii) follow
from Proposition 2.1 (i).

(iv) = (v). By Theorem 2.4 in [6], to show V has the OAP it suffices to
show that V* has the weak*-OAP. By Propositions 2.2 and 2.3 in [18], to show
V* has the weak*-OAP it suffices to show that for any z € (V* ® B(Hy))., z is in
the norm closure of {(z) : ¥ € F(V)}, where % = ((#*)oo)x. Since B(H,) has

Property S, there is a complete isometry § from V ® B(Ho). onto (V* & B(Ho)).
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such that 8(z ®@y) = 2@y ([25], Corollary 3.7). If we use § to identify V & B(Ho).
with (V* & B(Ho))., then § =  ®idp(xy).. Hence it suffices to show that if
z € V.® B(Ho)«, then z is in the norm closure of {(1/)<§)idg(uo)_)(z) (€ F(V)}.

So let z € V® B(Ho)s, and let ¢ = iy ®idp(,).. Then o(z) € V ®
B(K)., and so if we set W = {Ra(p(2)) : a € B(H)«}, then p(z) € V ®r W by
Proposition 1.4 (ii). Since W is a closed subspace of B(Hq)., ¢(z) € VQW. Hence

by Lemma 3.3, ¢(2} is in the norm closure of {o((¥ ® idp(x,). )~ (¢(2)))) : ¥ €
F(V)}, and so, since ¢ is an isometry by Lemma 3.2, z is in the norm closure of

{(¢éid3(ﬂo).)(z) 11 € F(V)}, as required. B

4. SUBSPACES WITH THE DDP

ProPoSITION 4.1. Let S C B(H) be a o-weakly closed subspace. If Sy is
finite dimensional, then S has the DDP.

Proof. Since S| is finite dimensional, it has the OAP, and so $ has the DDP
by Theorem 3.1. 1

Note that if H and K are finite dimensional Hilbert spaces, then for any
subspaces § C B(H) and T C B(K) we have that S*T = S® B(K}+ B(H)® T,
since S has the DDP by Proposition 4.1, and S ® B(K) + B(H) ® T is finite
dimensional and so o-weakly closed. This result is proved more directly in [20].

THEOREM 4.2. (i) Let S; C B(H;) be nonzero o-weakly closed subspaces,
t=1,2. Then S; x Sz has the DDP & S; and Sy have the DDP.

(11) Let Vi C B(Mi)s be nonzero closed subspaces. Then Vi @ Vz has the
OAP & Vi and V, have the OAP.

Proof. By Theorem 3.1, it suffices to prove (ii). So first assume that V; and
V2 have the OAP, and let S; = V;*, i = 1,2. Let K be a Hilbert space, and let T
be a o-weakly closed subspace of B(K). Then (S; * S2) *T = ((S1 * S2)1 @ T0)*
=(Vi®eVe)®TL)* = (Vi®(Va®TL))* = Sy #(S2+T). Moreover, it follows easily
from Proposition 1.2 (i) that (S1*rS2)*pT = S1*p(S2*#T). Since V3 and V; have
the OAP, it follows from Theorem 3.1 that (5;+S2)*T = S1#(So*T") = Sy *p(S2+T)
=81 % (S2#p T) = (S1%F S2)*r T = (S1 # S3) *r T'. Hence S; * $5 has the DDP
and so Vi ® V5 has the QAP.

Now assume that V; ® V> has the OAP. Then V,®V; also has the OAP (since

the map z®y — y®=z extends to a complete isometry from B(H1)x ® B(H3). onto
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B(H3)s ® B(H1)4), and so by symmetry it suffices to show that V; has the OAP.
Choose a fixed unit vector yp in V3, and choose by € B(H2) such that {yo, bo) = 1.
Let o(2) = 2 @ yo, £ € V1. Then ¢ is a complete isometry when viewed as a

map from V; into V) ® B(H2). (since the projective operator space tensor norm is

an operator space cross norm ([3], Theorem 5.5)), and so, identifying Vi ® B(H2).
with V1 @ B(H2). via Lemma 3.2, we get that  is a complete isometry from V; into
Vi @ B(H3). (and, of course, ¢(Vi) C Vi ® V2). Moreover, Ly, (¢(z)) = {30, bo)z =
z for all z in V3. Set V = V; ® V5. Since V has the OAP, there is a net {#,} in
F(V) such that (¥3)ee{2z) — 2 in norm for all 2 € Ko (V). In particular, since
oo : Koo (V1) = Koo(V), (¥3)oo (o0 (¥)) = 9ool(y) in norm for all y in Koo (V1).
Let @) = Ly, oYy o @ for all A, Then gy € F(V4) for all A, and if y € Ko (V3),

th
- (#2)e0(8) = (Lao)eo ()0 (P00 (8))) = (Eno)eo (900 (3))
= (Lbo o (P)oo(y) = (idVl)oo(y) =Y
in norm. Hence V7 has the OAP. 1

It was shown in [18] that if L is a completely distributive commutative sub-
space lattice (a CDCSL) on a separable Hilbert space H, and if A = Alg L is the
associated CDCSL-algebra, then any o-weakly closed A-bimodule has Property
Sg. The proof used the fact that there is a net {a,} of finite rank operators in A
such that ay — 1 o-weakly, which follows from Laurie and Longstaff’s result ({22])
that the set of finite rank operators in A is o-weakly dense in A. We next show
that every o-weakly closed A-bimodule has the DDP. We need some preliminary
results. (See [13] or [4] for exposition on CDCSL-algebras.)

For a € B(H), let £, and r, denote the maps £,(b) = ab and r.(b) = ba
(b € B(H)). Then £3,74 € CB,(B(H),B(H)), and so (£5). and (rq)s are in
CB(B(H)«, B(H)+). For z € B(H)., set az = (r4)+(z) and za = (£,)«(z). Then

4.1 {az,b) = {z,ba), {xa,b) = (z,ab), a,b€ B(H), x € B(H)..
It follows immediately from (4.1) that if S C B(H) is a o-weakly closed subspace,
and ifa € B(H),thenaSCS=S;¢CS; and SeC S=aS, CSL.

PROPOSITION 4.3. Let S C B(H) be o-weakly closed, and suppose there are
nets {ar} and {b,} of finite rank operators in B(H) such that ay — 1 and b, — 1
o-weakly, and such that Sax C S YA EA and b,SC S Vy €T. Then S has
the DDP.

Proof. Let V = 5, and let K be a Hilbert space. Let gy = (74, )« ® idp(x).
(A € A) and ¥y = (&)« ®idpx), (v € T). Then if a € B(H), b € B(K), and
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2 € BH®K)., {pa(2),a @ b) = {z,aa, ® b} ={2,(a @ b){a, ® 1)) for all A € A,
so {pa(2),€) = {z,c(ar ® 1)),c € B(H ® K). Since c(ax ® 1) — ¢ o-weakly,
(pa(2),¢) — {z,c). Similarly, {(y(2),c} — (z,¢} for all z € B(H ® K). and
c € B(H®K). Hence

(4.2) wa(z) — z weakly and #,(z) — z weakly (2 € B(H®K).).

If b € B(K), then (R,(pa(2)),b) = {pa(2), 8 ® b) = (2,aa) @ b} = (Raa,(2), b}, s0
Ra(2(2)) = Raay(2) (@ € B(H), A € A, z € B(H®K).). Similarly, Ra(%(2)) =
Ry a(2) (@ € B(H), ¥ €T, z € B(H®K).). f2 =20y, (z € V, y € B(K).) then
oA(t4(2)) = arzby @y € arVb, ® B(K). (v €T,A € A), and s0 oa(y(2)) €
a Vb, ® B(K). if z€ V ® B(K)..

Now let W C B(K). be a closed subspace, and let z € V ®@p W. Let
XA €A,y eT. Since z € V® B(K), pa(¥y(2)) € axVby, ® B(K).. Moreover,
if a € B(H), then Ra(x(¥y(2))) = Rb,aa,(2) € W, since z € V ®@r W. Hence
oA(¥4(2)) € 6xVby®p W by Proposition 1.4 (ii). Since axVby is finite dimensional,
it has the OAP, and so a Vb, ®r W = apVb, @ W by Theorem 3.1. Since
b,Sax C S, axVby, C V, and so oa(¥,(2)) € VO W (X € A,y € T). Hence it
follows from (4.2) that ,(z) € V®W Vv €T, and another application of (4.6)
shows that z € V@W. Thus V@r W = V®W, and so § = V* has the DDP by
Theorem 3.1. 1

COROLLARY 4.4. Suppose H is a separable Hilbert space, and A; C B(H),
i=1,2, are CDCSL-algebras. Let S C B{H) be a o-weakly closed Ay -As bimodule.
Then S has the DDP. In particular, all CDCSL-algebras have the DDP.

Let Mo be a separable infinite-dimensional Hilbert space, and let S C B(Ho)
be a o-weakly closed subspace. Then S is compactly dense (or local) if SN Koo
is o-weakly dense in S, S is finitely dense if SN F(B(Hg)) is o-weakly dense in
S, and S is rank one dense if the linear span of the rank one operators in S is
o-weakly dense in §. The term local subspace was first used by Fall, Arveson and
Muhly in their work on compact perturbations of operator algebras ([11]}, and
more recently the term compactly dense was used by Ruan in [25] for the algebra
case.

The next result follows easily from the definition of the DDP and the fact
that B(Ho) is rank one dense.
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PROPOSITION 4.5. Suppose Ho is a scparable infinite-dimensional Hilber!
space, and that S; C B(Hq), i = 1,2, are o-weakly closed subspaces, at least one
of which has the DDP. Then if both Si and S, are compactly dense (resp. finitely
dense, rank one dense), Sy * Sy is also compactly dense (resp. finitely dense, rank

one dense).
The following is related to a result in [20].

COROLLARY 4.6. Let Hy be a separable infinite-dimensional Hilbert space,
and let A; C B(Hp), i = 1,...,n be CDCSL-algebras. Let

A_[A1®”~®An Al*---*An
B 0 A1®--- @4,

Then A is a CDCSL-algebra.

Proof. Let L; = Lat A;,i=1,...,n. Then 4;® - -®A, = Alg(L1®-/v -®@Lyn)
([17]),80 A; ®- - -® A, is a CDCSL-algebra. It is easily checked that A; - .x A, is
an A; ® - - -® A, bimodule, and hence A is a CSL-algebra. Indeed, A is a o-weakly

closed algebra, and we have

4 - [(A1 ®-® An)L 0

(Al*"'*An)J._ (A1®®An)J. )

Since A;®---®A, and A;*. - -xA,, are reflexive their preannihilators are generated
by rank < 1 operators. So A, is gene[rated by rank < 1 operators, and hence A is
reflexive. Since 41 ® - ® A, is a CSL-algebra it contains a m.a.s.a., and hence 4
is a reflexive algebra which contains a m.a.s.a., so Ais a CSL-algebra. Moreover,
since each A; has the DDP by Corollary 4.4, it follows from Proposition 4.5 and
induction that A; *---% A, is rank one dense, and hence A is finitely dense. Since
A is a finitely dense CSL-algebra, it is a CDCSL-algebra ([22]). &

5. SUBSPACES WITHOUT THE DDP

It follows from Proposition 4.1 that if  is a finite dimensional Hilbert space, then
every (o-weakly closed) subspace of B(H) has the DDP. The next result implies

that the converse is true.
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THEOREM 5.1. Let H be an infinite-dimensional Hilbert space. Then there
are o-weakly closed subspaces of B(H) which do not have the DDP. Moreover,
there are o-weakly closed subspaces S and T of B(H) such that SxT # S+p T.

Proof. Since H is infinite-dimensional, £ (N) can be isometrically embedded
in B(H).. Hence, since £}(N) has subspaces without the AP ({26]), so does B(#)..
Let V C B(H). be a subspace without the AP. Then V doesn’t have the OAP,
and so S = V* doesn’t have the DDP, by Theorem 3.1. Since X contains a
separable infinite-dimensional subspace Hg, another application of Theorem 3.1
yields a o-weakly closed subspace T" of B(H) such that SxT # S+ T. 1

If S doesn’t have the DDP, then 5 doesn’t have the OAP, and so (S.)*
doesn’t have the weak*-OAP ([6]). Hence if K is any infinite-dimensional Hilbert
space, there is a o-weakly closed subspace T' C B(K) such that (S )*®T #
(51)* ® pT. It turns out that T" also satisfies .S *T £ 5+pT.

PROPOSITION 5.2. Suppose S C B(H) s a o-weakly closed subspace, and
let V.=_35;. Suppose T C B(K) is a o-weakly closed subspace such that V* @ T #
V*@FrT. Then S+T # S*pT.

Proof. Let o = iy @ idp(x). , where iy is the inclusion map from V to B(H),.
Then, since p : V@ B(K}. — B(H®K), is a complete isometry (Lemma 3.2), ¢* is
a complete quotient map from B(H ®K) onto (V ® B(K).)* ([2], Proposition 2.3).
Since B(K) has Property S,, the inclusion map from V* ® B(K) into (V' ® B(K).)*
extends to a o-weak-weak® homeomorphic complete isometry of V* ® B(K) onto
(V@ B(K).)* ([25], Corollary 3.7). Hence we can view " as a map from B(H®@K)
onto V* ® B(K). Moreover, for any ¢ € B(H ® K)

(5.1) (Ra(9™(c))4) = (¢"(c), 2@ 1) = {c,iv(z) ®y) = (¢, 2 ® y),

z € V, y € B(K). and so (since ¢*(c) € V*®B(K)), ¢"(c) € V*'@rT &
R:(p*(c)).€ TVz € (V*). =V = S, ({16], Remark 1.5) & {c,z®y) = 0
whenz € S; and y €T & c€(S; ®T1)* = S+ T. Thus, since ¢* is onto,
(5.2) VB rT = ¢* (S+T).

It also follows easily from (5.1} that ¢*(S® B(K)) = 0. Moreover, since (iv)*
maps B(H) onto V* and since p*(a®b) = (iv)*(a)®b (a € B(H),b € B(K)), we
also have that ¢*(B(H)®T) = V* @ T. Hence it follows from Proposition 1.2.(2)
that
(5.3) (S T)=V"QT.

Since V*@T # V* @ rT, (5.2) and (5.3) together imply that S*T # S+ T. 1
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The main result in this section is that if Hg is a separable infinite-dimensional
Hilbert space, then there are reflexive subalgebras A; C B(Ho), i = 1,2, such
that A; *+ Ay # A; #r A, The proof has several steps. We first show that if
Si C B(H:) are o-weakly closed subspaces such that S; x S; # S) *p Sy, then
A(S51) = A(S2) # A(S1) 5 A(S2), where A(S;) is the o-weakly closed subalgebra
of Ma(B(H;:)) = B('ng)) consisting of all matrices of the form

['\01 :1] , MuecC, sesi.
We next prove that if S; C B(M;), i = 1,2, and T; C B(K;), i = 1,2, are
o-weakly closed subspaces, then S; *x Sz # S1#p S2 = (S10T1) * (S2®Ts) #
($1®@Th) *r (S2®T3). Combining these two results we get that if S; C B(Ho)
(i = 1,2) are o-weakly closed subspaces such that S; * S; # Sy *r S (such
subspaces exist by Theorem 5.1) then

(A(S1)BC1) * (A(S2) ®C1) # (A(S1) ® C1) *r (A(S2) @ C1),

where 1 is the identity operator in B(Hg). Since each of the g-weakly closed alge-
bras A(S;)® C1 is reflexive ([23], Theorem 3.5), and since ‘ng) ® Mg is separable,
we get our example.

PROPOSITION 5.3. Let Sij, 1 € 1,j £ 2, be o-weakly closed subspaces of
B(HM), and let S be the o-weakly closed subspace of M3(B(H)) = B(H(?)) defined

by .
Sn 512] {[511 512] }
S = = 185 € Si5 p .
[321 S22 S21 S22 5 !

Then for any o-weakly closed subspace T C B(K) we have that

511 *T 512 =7

(54) SxT= [521*:!‘ P

] and S*FTZ [Sn*pT Slz*pT]

Sz] *FT 522 * @ T

(where we identify My(B(H ® K)) with Ma(B(H)) ® B(K)). Morcover, S has the
DDP & S;; have the DDP, 1<4,5 < 2.

Proof. By Proposition 2.1 (i), (5.4) implies that S has the DDP & 5;; have
the DDP, 1 < 1, < 2, so it suffices to prove (5.4).
Let T' C B(K) be a o-weakly closed subspace. Simple duality computations

show that (Sm) San)
[ S1)e (Sa1).
L= [(Slz)i (Szzh] ’
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_ and that

(S11)L ®T1L (S21)L®T1 ]) +
(S12)L ®Tr (S22)L® Ty

_ [((511)1_ ®TLY ((Si2)1 ®T.L)l:| _ [511 *T S *T]
TH(Sa)L T ((S22)L®@Tu)t ] LS *T So2xT)

S+T=(SL@TL)' = ({

Let b € B(K). Then for any [z;;] € Ma(B(H). ® B(K).:) = Ma(B(H).)®
B(K). we have

(5.5) Ly([25]) = [Lo (i)}
Indeed, if [z‘-,-] = [:B,'_,' ® yij], then

) 0 0 ]
Ly([2:5]) =Ls ([351 0] @y + [0 :E(;z] ® 112

+[0 0]®y21+[0 0]@1!22)

zg2 0 0 z2

= Y Llfzslou) = Y (v, 0)65s)
1€i,j€2 1€5,7 €2

_ [{v, B)zn (ylz,b)riz] _ [Lz.(zu) Lb(lm)]

T L{war, B)ea1  (ye2,b)zaa] — [ Ls(z21) La(222) ]

Hence
(5.6) Ly([zi5]) € S1 & Ly(ij) € (Sj)L, 1<4,5<€2.

Moreover, by Proposition 1.4 (i) (reversing the roles of % and X in the proof)

(5.7)  SL®rTL = {[zj) € B(HP), ®Ty : Le([z;]) € St Vb€ B(K)}

and for 1 €4,5 €2,
(5.8) (Sij)L ®F T = {z € B(H). ®TyL : Ly(z) € (Sij}L Vbe B(K)}.
Combining (5.6)-(5.8) we get

S T S T
SJ.@FTLz[( 1)L ®rTL (Sn)L ®F L]’

(S12)L ®r TL (S22)L @r TL

from which the second equality in (5.4) follows easily. @
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COROLLARY 5.4. Let S; C B(M;), i = 1,2, be o-weakly closed subspaces,

and let
Cl1 &
AlS) = [ 0 61] '

Then S, * Sa # S1*p Sy = A(Sl) * A(Sz) 75 A(Sl) * A(Sg)

Proof. Since Sy x S3 # S1 *#5 Sa, Proposition 5.3 implies that A(S1) * Sz #
A(S1) #F 82, and so, by Proposition 2.2 (i), Sy * A(S51) # S2 #p A(S:). Hence
A(Sz) * A(S1) # A(Sg) X A(S]_) and so A(Sl) * A(Sz) ?l: A(Sl) * A(Sz) |

THEOREM 5.5. Suppose that S; C B(H;) and T, C B(K;), i = 1,2, are
nonzero o-weakly closed subspaces. If Sy % 83 # Sy *p Sa, then (S1@Th) * 52 #
(Sl @Tl) *p Sz and (Sl @Tl) * (52 @Tz) =/: (Sl §T1) *p (Sz @Tz)

Proof. 1t follows easily from Proposition 2.2 (i) that it suffices to show that
Sy * .Sy 75 S1*xp Sy = 5 *(Sz @Tz) # 51 *p (Sz@Tz).

Let H = Ha® Ko, V; = (S,')_L, 1= 1,2, and let W = (Sz@Tz)_L. Fix a
unit vector g in T3, and choose a unit vector yo in B(X2). such that {yo, bo) = 1.
Define a map ¢ € CB(B(H2)., B(H).) by ¢(z) = z® yo (z € B(Hz).). Then it
follows from Proposition 1.1 (i) that ¢ : Vo = (S3)L — (S: @ T3)L = W.

Let ¢ = idp(n,). ® ¢ € CB(B(H1)« ® B(Hz)s, B(H1). ® B(H),). Then
Y(B(H1)s @ V2) C B(H1). @ W
and
(Vi ® B(H2):) C Vi ® B(H)..

Now let 2 € Vi®F V2. Then z € Vi ®r B(Hz)s = Vi®B(H2)., 50 ¥(2) € Vi ®
B(H)«. Moreover, if a € B(H1) and b € B(H), then (Ra(¥(2)),b) = (¥(2),a @ b)
= {z,a®¢*(})) = (Ra(2), " (8)) = (p(Ra(2)),b). Hence

Ra(¥(2)) = p(Ra(2)), @€ B(Hy).

But z € V1 ®F Vo = Ra(2) € V2 Va € B(H1), so Ra(¥(2)) € W Va € B(H1).
Hence by Proposition 1.4 (ii), ¢(z) € V1 @ W.

By assumption, there is an element zy € V; @p V such that zg ¢ Vi ® V5.
Choose ¢ € B(H; ® Hz) such that

(5.9) (20,c0) #0, {z,c0) =0, zeV;® V.
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Then (¥(z1 ® @2),co ® bo) = {1 ® @(z2),c0 @ bo} = {1 ® z2 @ Yo, ¢0 @ bo) =
(z1 ® 2, co){vo, bo) = (21 ® T2, o) §z1 € B(H1)e, z2 € B(H3).). Hence

{¥(2),c0 ® bo) = {z,¢c0), 2z € B(H1). ® B(Hz)..

In particular,

(5-10) {¥(20), co @ bo) # 0.
It follows from (5.10) that in order to show that Vi @ W # V1 ® W (and so
S1#r (52 ®Ty) # 51 *(S2 ®T4)) it suffices to show that

(5.11) 0= {u,co®@bg) = {Lpo(u), o) IfuecVi@W,

where Ly, is the left slice map from B(H; ® Hz). ® B(K2)e — B(H1 @ Ha)s

associated with by. If we let L, denote the left slice map from B(H3). ® B(Kz2). —
B(M2)s associated with bo, then Ly (z; ® (22 @ y2)) = (y2,b0)(z1 ® z2) = 21 ®
((y2, bo)x2) = 21 ® Ly, (22 ® 32) (%1 € B(M1)s, 22 € B(Ha)x, y2 € B(K2).), and
50

(5.12) Lig(21 ® ) = 21 @ Loy (y), 21 € B(H1)s, y€ B(H)..

Now let v = 2, ®y (21 € Vi, y € W). Then it follows from Proposition 1.1 (i)
that Lso(y) € (S2)L = Va. Hence it follows from (5.12) that Ly,(u) € Vi ® Ve,
and hence {Ly,(u),co) = 0 by (5.9). Since the map u — {Lp,(tt), o) is linear and
continuous, (5.11) holds, as required. 8

The next two corollaries follow immediately from Theorem 5.5 and Theo-
rem 3.1.

COROLLARY 5.6. Suppose that S; C B(H;), i = 1,2, arc nonzero o-weakly
closed subspaces, and V; C B(Hi)s, i = 1,2, are nonzero closed subspaces.

(i) If S1 @ 52 has the DDP, then 51 and S, have the DDP.

(ii) If Vi * Va has the QAP, then Vi and V, have the OAP.

COROLLARY 5.7. Suppose S C B(H) is a o-weakly closed subspace and lel
1 denote the unit of B(H). If S does not have the DDP, then neither does the
reflezive subspace S® C1 of B(H ® H).

Let Ho be a separable infinite-dimensional Hilbert space, and suppose S is
a o-weakly closed subspace of B(Hg) without the DDP (which exists by Theo-
rem 5.1). Then since S®C1 is reflexive, (S®C1) C B(Ho ® Ho)s = Teo is
generated by rank one operators. Since S® C1 doesn’t have the DDP, (S® C1),
is an example of a subspace of T, which is generated by rank ones and fails to have
the OAP. As noted above, the QAP implies the AP, but there may be operator
spaces which have the AP but don’t have the QAP. For this reason, the following
result is of interest.
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PROPOSITION 5.8. Suppose S; C B(M;), i = 1,2, are nonzero o-weakly
closed subspaces. If (S1 ® Sz)1 has the AP, then (S1)1 and (S3)L have the AP.

Proof. Let V; = (S;)y, ¢ = 1,2. It suffices to show that ¥} has the AP.
Let V = (S1®S2)1. Choose unit vectors by € Sz and yo € B(M2)« such that
{¥0,b0) = 1, and let (z) = z®yo, z € V;. Then ¢ : V; — V by Proposition 1.1 (i).
Let K C Vi be compact, and let € > 0. Since ¢ is continuous, ¢(K) is a compact
“subset of V, and so, since V has the AP, there is a ¥ € F(V) such that ||3(yp(z)) -
¢(z)]| <€ Vx € K. By Proposition 1.1 (i}, Ly, (V) C V1, s0 Ly, o o p € F(V4).
Moreover, [|Ly,|| = {|bo| = 1, so ||(Ls, © ¥ 0 @)(z) — La,(p(2))[| <€ Vz € K. But
if 2 € Vi, Ly (9()) = Lio(z @ 0) = {0, bo)x = z, 50 ||[{(Ly oo )(z) —z|]| < &
Vz € K. Hence V; has the AP. 1§

COROLLARY 5.9. There is a subspace of T, which is generaled by rank one
operalors but fails 10 have the AP,

Proof. Let Hg be aseparable infinite-dimensional Hilbert space. Then we can
identify Too with B(Ho ® Hg)«. By the proof of Theorem 5.1, there is a subspace
V C B(Ho). without the AP. Let S = V+. Then it follows from Proposition 5.8
that (S®C1), doesn’t have the AP, where 1 is the unit of B(Hg). As noted
above, (S®@C1), is generated by rank one operators. 1

THEOREM 5.10. Let Hy be an infinite-dimensional separable Hilbert space.
Then there are reflexive algebras A; C B(Hq), i = 1,2, such that A; x Ay #
A1 *p Ag.

Proof. Choose a Hilbert space H; such that 'ng) ® 7{52) = Hg. By Theo-
rem 5.1, we can find a subspace S; C B(;) that doesn’t have the DDP, and by
Theorem 3.1 we can find S C B(H;) such that S) * S # S1 #r Sa. Let

C1 S )
asy=17 & =1

(where 1 is the identity of B(H1)). Then by Corollary 5.4, A(S;) * A(Sy) #

A(S1) r A(S2). Finally, let A; = A(S) @ €| | 2 ,i=1,2. Then A; C B(Ho)

is a reflexive algebra, ¢ = 1,2, and, by Theorem 5.5, Ay * Az # Ay *r Az. B
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