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ABSTRACT. Let H be an infinite-dimensional Hilbert space, and let f(z) be a
complex polynomial with deg(f) 2 2. We find the general form of surjective
linear mappings ¢ : B(H) — B(H) that preserve operator roots of f(X) =0
in both directions.

KEYWORDS: Linear preserver.

AMS SUBJECT CLASSIFICATION: 47849,

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The problem of characterizing linear operators on matrix algebras that leave in-
variant certain functions, subsets or relations has attracted the attention of many
mathematicians in the last few decades ([18]). The first papers concerning this
problem ([13], [16]) date back to the previous century. It seems that the system-
atic study of linear preservers begins with the paper of Marcus and Moyls ([19]).
They characterized linear mappings on M, the algebra of all n x n matrices, that
preserve the spectrum. This result has been generalized recently by Li and Pierce
who obtained the general form of bijective linear operators on M, mapping the
set of matrices annihilated by a given polynomial into itself ([17], Theorem 3.3;
see also [2], [14]), thus extending not only the above mentioned result due to Mar-
cus and Moyls but also several results on linear mappings preserving nilpotents,
idempotents, or r-potents.

In the recent years there has been also a considerable interest in linear pre-
server problems on operator algebras over infinite-dimensional spaces ({1], [3]-[10],
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[15], [21]-[23], [25])-[29]). It is the aim of this paper to continue this work by
studying linear mappings ¢ : B(H) — B(H) that preserve operators annihilated
by a given polynomial. Here, H is an infinite-dimensional complex Hilbert space
and B(H) is the algebra of all bounded linear operators on H. Our approach is
different from that one used in the finite-dimensional case ([2], [14], [17]).

Let us fix some notation. For any Hilbert space H we denote by F(H),
N(H), Np(H), and N'(H) the set of all finite rank bounded linear operators,
the set of all nilpotent linear bounded operators, the set of all nilpotent linear
bounded operators with nilindex no greater than k, and the set of all nilpotent
bounded linear operators of rank one on H, respectively. For any z,y € H we
denote the inner product of these two vectors by y"z, while zy* denotes the rank
one operator given by (zy*)z = (y*z)z. Every operator of rank one can be written
in this form. The operator zy* is nilpotent if and only if y*z = 0. Let f(z) be a
complex polynomial. We denote by V; the set of all operators A € B(H) satisfying
f(A) = 0. A mapping ¢ : B(H) — B(H) preserves operators annihilated by f(z)
if (Vy) C Vy. We say that a mapping ¢ : B(H) — B(H) preserves operators
annihilated by f(z) in both directions if for every A € B(H) we have f(p(A}) =0
if and only if f(A) = 0. It should be mentioned here that some mathematicians
working on linear preserver problems, e.g., Beasley and his collaborators, say that
@ strongly preserves V; if it preserves V; in both directions.

MAIN THEOREM. Lel H be an tnfinife-dimensional Hilberi space, and let
f(z) be a complez polynomial with deg(f) = 2. Assume that a surjective hin-
ear mapping @ : B(H) — B(H) preserves operators annihilated by f(z) in both
directions and that o(I) = I. Then ¢ s either an automorphism or an antiauio-
morphism.

Note that the above result can be formulated more precisely. Namely, it is
known that every automorphism of B(H) is inner ([12]), that is, it is of the form
A+ TAT-! for some invertible operator 7' € B(H), and every antiautomorphism
is of the form A w— TA*T~! for some invertible T € B(H). Here, A" denotes the
transpose of A relative to a fixed but arbitrary orthonormal basis. Furthermore,
the assumption ¢(I) = I is only needed when f(z) = z* (cf. Theorem 2.1). For all
other cases we give complete descriptions of the surjective linear mappings ¢ pre-
serving V; in both directions. In particular, the case f(2) = z* for some positive
integer k is treated in Section 2, and the other cases are treated in Section 3.

It seems that without the surjectivity assumption the problem of charac-
terizing linear mappings preserving operators annihilated by a given polynomial
would become extremely difficult. Namely, even the question how to describe all
(not necessarily surjective) endomorphisms of B(H) doesn’t seem to have a simple
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answer. A finite-dimensional analogue of our result is given in [17]. Surprisingly,
the result in the finite-dimensional case is slightly more complicated. For exam-
ple, the mapping ¢ : M, — M,, defined by @(A4) = (1/2)A + (1/2n)(trA)I, where
tr(A) denotes the trace of A, satisfies all the assumptions of the above theorem for
f(z) = «?, but is neither an automorphism, nor an antiautomorphism. The reason
for this appears to lie in the fact that the linear span of all square-zero operators
in the finite-dimensional case is the set of all trace-zero operators, a proper subset
of M, while it is well-known that in the infinite-dimensional case every operator
can be written as a sum of five square-zero operators ([24]).

It turns out that our result is not valid for an arbitrary infinite-dimensional
Banach space X. For example, for every positive integer k, £ > 2, a surjective
linear mapping ¢ : B(H) — B(H) preserving operators annihilated by f(z) = z* in
both directions is either an automorphism or an antiautomorphism multiplied by a
nonzero constant. On the other hand, there exists an infinite-dimensional Banach
space X such that the algebra B(X) has a non-zero multiplicative linear functional
([20], [30]). Then M, the linear span of N;(X), is a proper subspace of B(X).
A surjective linear mapping ¢ : B(X) — B(X) preserving operators annihilated
by f(z) = z* in both directions maps M onto itself. Using our methods one can
determine the structure of the restriction of ¢ to M, while nothing can be said
about the behaviour of ¢ outside this subspace.

Comparing our result with the finite-dimensional one ([2], [14], [17]) we see
that we need a stronger assumption on ¢: it must preserve V; in both directions.
It would be nice to have the same result under the weaker assumption of preserving
V; in one direction only. It would be also interesting to obtain the resuit for the
case f(z) = z? without the p(I) = I assumption.

It follows from [11], Lemma 1 and [14], p. 169 that in the finite-dimensional
case every linear nonsingular mapping ¢ : M,, — M, preserving V; in one di-
rection actually preserves V; in both directions. Our methods work with minor
modifications also in the finite-dimensional case. Moreover, in this special case our
proof can be simplified a lot (for example, we have no problems with the continuity
of ). Therefore, our paper also gives a new simple proof (with no use of algebraic
geometry) of the characterization of linear mappings on M, preserving V; for a
given polynomial f.
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2. LINEAR MAPPINGS THAT PRESERVE NILPOTENTS WITH BOUNDED NILINDEX

The key step in the proof of Main Theorem is to reduce the general problem to the
case when f(z) = z* for some positive integer k > 2. This section deals with this
special case. It should be mentioned that some other linear prescrver problems
were reduced to the problem of determining linear mappings preserving nilpotents
(see [8], [17]).

We will first consider the special case that f(z) = z®. This case is excep-
tional. First, this is the only case where we have to assume that ¢ maps the identity
operator into itself. And second, the proof does not work in the finite-dimensional
case. However, an elementary solution of the problem of characterizing linear
mappings on M,, preserving square-zero matrices was given in our earlier paper

([26])-

THEOREM 2.1. Let H be an infinile-dimensional Hilbert space, and let ¢ :
B(H) — B(H) be a surjective linear mapping salisfying o(I) = I. Assume that
for every A € B(H) we have A2 = 0 if and only if (p(A))?2 = 0. Then ¢ is either
an aulomorphism or an antiautomorphism.

Proof. Let H be a direct sum of two closed infinite-dimensional linear sub-
spaces H; and H; (note that we didn’t assume that H, and H; are orthogonal).
Let P and @ = I — P be idempotents corresponding to this direct sum decompo-
sition, that is, InP = H, and ImQ = H,. Assume that operators A, B € B(H)
satisfy PAP = A and QBQ = B. It follows from [24], Theorem 2 that A and B
can be written as sums of five operators having square zero, A = A; + -+ + As,
B =B+ - -+ Bs, with PA;P=A; and QB;Q = B; foralli=1,...,5. Clearly,
A; + B; is a square-zero operator for every pair 4,5 € {1,...,5}. Consequently,
we have p(A;)@(B;) + ¢(B; Yp(Ai) = 0, which further yields

(2.1) e(A)p(B) + ¢(B)p(A) = 0.

Let R € B(H) be an idempotent such that its image and its kernel are both
infinite-dimensional. According to (2.1) we have

p(R)p(I — R) + o(I — R)p(R) = 0.

Applying the assumption ¢(I) = I we get that ¢(R) is an idempotent as well.
Let us next consider an idempotent R having a finite-dimensional image.
Then we can find idempotents 73,72 with infinite-dimensional images such that
RT; =TiR=0fori=1,2, 1T, = ToT1 =0,and I = R+ T, + T3. We already
know that ¢(T7) and ¢(T3) are idempotents. Applying (2.1) once again we see
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that o(T1)e(T2) + @(T2)e(Th) = 0. It follows that (7} + T2) is an idempotent
as well, and consequently, ¢(R) is also an idempotent. Similarly, one can show
that ¢ maps idempotents with finite-dimensional kernel into idempotents. Hence,
@ preserves idempotents.

Next, we will prove that ¢ is injective. Assume on the contrary that there
exists a nonzero A € B(H) such that ¢(A) = 0. Then A is a square-zero operator
and it is easy to find a square-zerc operator B such that A+ B is not a square-zero
operator. It follows that ¢(B) = ¢(A + B) is not a square-zero operator. This
contradiction shows that ¢ is injective.

It was proved in [7], Theorem 1 that every bijective linear mapping on B(H)
preserving idempotents is either an automorphism or an antiautomorphism. Ap-
plying this result we complete the proof. 1

In order to study linear mappings preserving nilpotents of higher nilindex in
both directions we will need two lemmas.

LEMMA 2.2. Let k > 2 be a positive integer, H a (finite or infinite-dimen-
sional) Hilbert space, and let A € N (H) be a nonzero operator. Then the following
conditions are equivalent.

(i) A e NY(H).

(ii) For every B € Ny(H) satisfying A+B & Ni(H) we have B+aA ¢ Ni(H)
for every nonzero complez number o.

Proof. In order to prove that (i) implies (ii) we have to recall [27], Proposi-
tion 2.1 which states that a nonzero nilpotent A € B(H) has rank one if and only
if for every B € N(H) satisfying A+ B ¢ N(H) we have B + aA ¢ N(H) for
every nonzero complex number «.

So, assume that A is a nilpotent of rank one and that B is a nilpotent
satisfying B¥ = 0 and (B+A)* # 0. H B+A € N(H), then by [27)], Proposition 2.1
we have B + aA & N(H) for every nonzero o. Obviously, this yields (ii).

It follows that we can assume from now on that B + A is a nilpotent. The
operator A can be written in the form A = z2* with z*2 = 0. Let us choose
y € H satisfying (B + A)*y # 0. It is easy to see that V = span{z, Bz,
...,B¥ 'z y, By,...,B*~1y} is an invariant subspace for both A and B. Let
r be the smallest positive integer such that B"x = 0. Let us choose a basis
{z,Bz,...,B""z,ey,...,em} in V. Then, with respect to the direct sum decom-
position V = span{z, Bz,...,B" "'z} @ span{ey,-..,em}, the restrictions of A
and B to V have the following matrix representations '

A1 Ay

A"’z[o 0

B
] and B|v=[Bl 2],

0 B3
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where
0 g 0
g ‘Bl “’0’1 1 00
A= T . and By =1{(0 1 0 0
00 0 0 0 --- 10
It follows from A + B € N(H) that a; = --- = a,_1 = 0, and consequently,

A|VB|‘VA|V = 0 for every integer ¢ 2> 0. This further implies that
(B|V + aAW)k = a(AwBlkV-l + B|VA|VB]kv_2 4+ 4 Blkv_lAlv) = o:(B]v + A|v)k.
Therefore, (B + aA)*y = a(Bjv + A )*y # 0. This completes the proof of the
implication (i) = (ii).

To prove the converse statement we assume that A € Nx(H) is not a rank
one operator. First we will consider the case that A2 # 0 and that k& > 4. Then it

is possible to find a direct sum decomposition of H such that the corresponding
matrix representation of A is

(2.2) A= [’;1 j:]

where A3 € My(H) and A, is an operator acting on a three dimensional space

with a matrix representation
0 10
0 00

Let B € Ni(H) have the matrix representation

B, 0
B =
[ 0 —2A3]

0 -2 0
Bi=|0 0 0f.
2 0 0

One can easily see that A + B ¢ N (H), while (B +24)* = 0.
Next, we will consider the case that 42 # 0 and k = 3. Set H; = Ker A and
define H; as the orthogonal complement of Ker A7~ in Ker A/, j = 2,3. Then

0 A Ay
A= 0 0 Ag}

0 0 0

with B; equal to
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with respect to the direct sum decomposition H = Hy @ Ho @ Hs. Moreover,
the operators A; : Hj41 — Hj, j = 1,2, are injective. If dimH;, = 1 then H
is a three dimensional space and in an appropriate basis A has the same matrix
representation as A; in the previous case. Choosing B; as above we see that
A+ By is not nilpotent, while (B; +2A)? = 0. So, we will assume from now on
that dim Hy; > 1. As A;A; # 0 we can find a square-zero operator 7' : H; — Hy
such that T'A;1 Ay # 0. We define Be B(H) by

T —=24; —-2A;3
B = [0 0 0 ] .
0 0 0

It js easy to verify that B,2A 4+ B € N3(H), while (A+ B)® # 0.

It remains to consider the case when A is a square-zero operator not having
rank one. Then H can be decomposed into a direct sum of closed linear subspaces
H = H,® Hy ® Hy @ Hy such that the corresponding matrix representation of A
is '

0 0 A A,
|00 0 4
A"oooo
00 0 0

with A; and Az being nonzero. Hence, we can find z € H3 such that A3z # 0.
The operator A is similar to

I M 007 I -M 00 0 0 Ay A+ MA,
0o 1 00|l o I 00| _f0o0 0 As
0o 0 ro|l%fo 0 Io0 00 0 0
0o 0 o1l to o 01 00 0 0

Here, M is any bounded linear operator mapping H» into H;y. So, we can assume
with no loss of generality that there exists z € H4 such that Asz = 0 while
Agx # 0. :

Assume first that k > 4. Let us define T : Hy — Hy, S : Hy — Hgs by
T = z(A;2)" and S = z(Azz)*. Then A,T = 0, and consequently,

0 0 -24; =24,

0 0 0 0
B_OS 0 0
T 0 0 0

and (24 + B) belong to Ny(H), while (A + B)*z = —[|A4,2||?||Asz||’z, so that
A+ B¢ N(H).
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In the remaining case that & = 3 one can find a bounded linear operator
T : Hz — Hjz such that A;T A3 # 0. Qbviously, the operator

0 0 —24, 0
00 0 o0
B‘o:roo
00 0 0

satisfies (A + B)? # 0 and (24 + B)® = 0. This completes the proof.

LEMMA 2.3. Let H be an infinite-dimensional Hilbert space, k an integer no
smaller than 3, and let A € B(H) be a nonzero square-zero operator. Assume also
thal A is not a rank one operator. Let B be any operator from B(H). Suppose
that for every finite rank nilpotent operator T € B(H) the operator A+ T belongs
to Np(H) if and only if B+ T € Ny(H). Then A= B.

Proof. Our assumptions imply that dimKer A = co and dimIm A* > 2. The
operators A and B have the following matrix representations

_ 0 A, _ B, B,
A_[O 0} and B-[Ba BJ

with respect to the direct sum decomposition H = H; @ Hy where H; = Ker A
and Hz = Im A*.
Let us first prove that B4 = 0. Assume on the contrary that there exists
z € Hj such that Byz = y # 0. Choose a rank one operator C € B(H3, H;)
satisfying Cz = —Baz. We will first consider the case that y = Az for some
nonzero complex number A. If we define a nilpotent finite rank operator T by
0 C
T =
o 5]
then obviously (A+T)? = 0 and (B+T)z = Az which contradicts our assumptions.
So, it remains to consider the case that z and y are linearly independent. Then
we can find a rank one square-zero operator D € B(H,) satisfying Dz = z — y. If
0 C
r=[; 3]
then (A + T)® = 0 while (B + T)z = z. This contradiction shows that B4 = 0.
In our next step we will prove that By = Al for some complex number X € C.

Assume on the contrary that there exists z € H; such that z and Byz = y are
linearly independent. Then we can find a square-zero rank one operator D € B(H;)
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such that Dz = z — y. We can also find a rank one operator C € B(Ho, Hy)
satisfying C B3z = —B,Bsz. Then the operator

=[5 %]

satisfies (A+T)3 = 0 and (B + T)(z + Bsz) = z + Bsz. This contradiction shows
that B; = Al for some complex number A. '

Let us now prove that Bs = 0. Assume that this is not true, so that there
exists z € H; such that Baz = z # 0. We choose y € H> such that y and
z are linearly independent. Then we can find a rank one square-zero operator
D € B(H,) satisfying Dy = y — z. We choose a rank one operator C' € B(H3, H1)
such that Cy = z — Az — Byy and define

0 C
T= .
[0 D]
Once again we have (A+7)% = 0 and (B+T)(z+y) = 2+y. So, we have B3 = 0
and since B¥ = 0 we have also X = 0.

Let y be any nonzero vector from H;. Then we can find a nonzero z € H;
with y*z = 0 and a finite rank operator C' € Nj(H,) such that C¥~! = zy*. Let
D € B(H2, H,) be any rank one operator satisfying D*y = —Ajy. If

C D
T=
[5 ]
then (A + T)* = 0, and consequently, (B + T)* = 0. This is equivalent to

(B2 + D)*y = 0. As y was an arbitrary nonzero vector from H; we have A; = By
which completes the proof. &

THEOREM 2.4. Let H be an infinite-dimensional Hilbert space, k a posiitve
integer no smaller than 3, and let  : B(H) — B(H) be a surjective linear mapping.
Assume that for every A € B(H) we have AF = 0 if and only if p(A)*¥ = 0. Then
@ = cf where @ is either an automorphism or an antiaulomorphism and ¢ 25 a
nonzero complex number.

Proof. As in the proof of Theorem 2.1 we show that ¢ is bijective. It follows
from Lemma 2.2 that ¢ preserves nilpotent operators of rank one in both direc-
. tions. It was proved in {27], Proof of the Main Theorem that if ¢ : B(H) — B(H) is
a bijective linear mapping preserving nilpotents of rank one in both directions then
there exist a nonzero complex number ¢ and a bounded bijective linear operator
S : H — H such that either



54 PeTER SEMRL

(i) ¢(T') = eST'S~! for every nilpotent T € F(H); or

(1) (T) = cST* 57! for every nilpotént T € F(H). Here, T* denotes the
transpose of T' relative to a fixed but arbitrary orthonormal basis.

In the first case we define a new mapping ¢ : B(H) — B(H) by

#(A) = c71571p(4)S.

Obviously, ¢ is a bijective linear mapping preserving nilpotents with nilindex no
greater than k in both directions. Moreover, ¢(T) = T for every finite rank
nilpotent operator. It follows from Lemma 2.3 that ¢ maps every square-zero
operator into itself. As every operator from B(H) is a sum of five square-zero
operators ([24]) we have ¢(A) = A for every A € B(H). This completes the proof
in the first case. In almost the same way we get in case (ii) that ¢ = ¢f where ¢
is an antiautomorphism of B(H). a

3. PROOF OF THE MAIN RESULT: THE GENERAL CASE

Let f(z) = (2 — 21)-- (¢ — i) be a complex polynomial with deg(f) = k > 2.
Here, zi,...,z; are possibly repeated complex numbers. Let ¢ : B(H) — B(H)
be a surjective linear mapping that preserve operators annihilated by f(z) in both
directions. First we will show that ¢ preserves AN.(H) in both directions. Let
N € B(H) be a nilpotent of nilindex r € k. Then there exists a direct sum
decomposition of H into closed subspaces H = H; @ - -- @ H, such that

0 My Mz ... Ny,
0 0 Npa ... Ny,
N=1|: o :
0 0 0 ... Nei,
0 0 0 ... 0

with respect to this decomposition. To see that this is true one can take H; =
Ker N and define H; as the orthogonal complement of Ker N7=! in Ker N7, j =
2,...,r. If

1711 0 0
Ao 0 m?l
0 0 ... =z

then f(A + aN) = 0 for every complex number a. It follows that f(p(A) +
ap(N)) = 0 for every a. All coefficients in this operator polynomial must be zero.
In particular, the coefficient at o* must be zero, and hence, W(N)F =0.
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Assume now that ¢(M)* = 0 for some operator M € B(H). As before we
find C' € B(H) such that f(C + ap(M)) =0, « € C. The surjectivity of ¢ yields
the existence of D € B(H) such that (D) = C. It follows that f(D +aM) =10
for every complex number a, and consequently M* = 0.

We are now ready to prove our main result using the above considerations
and the results from the previous section. We have to distinguish several cases.
Let us first assume that f(z) = (z — a)? for some nonzero complex number a.

ProrosiTION 3.1. Let H be an infinite-dimensional Hilbert space, a a non-
zero complez number, and let ¢ : B{(H) — B(H) be a surjective linear mapping.
Assume that for every A € B(H) we have (A — al)? = 0 if and only if (p(A) —
al)? = 0. Then @ is either an automorphism or an antiautomorphism.

Proof. We have already proved that ¢ preserves square-zero operators in
both directions. All we have to do is to show that ¢(J) = I and then the result
follows directly from Theorem 2.1.

Let N be any square-zero operator. Then we have f(al + aN) = 0 for every
complex number &, and consequently, (¢(al) + ap(N) — el)? = 0. It follows that
XA+ AX =0 where X = p(N) and A = p(al)—al. The mapping ¢ is surjective
and preserves square-zero operators in both directions. So, XA + AX = 0 holds
true for any square-zero operator X. Since every operator can be written as a
sum of five square-zero operators we have XA+ AX = 0 for every operator X. It
follows that A = 0, or equivalently, ¢(I) = I. This completes the proof. 8

Let us next consider linear mappings preserving Vs with f(z) = (z—a)(z—b),
a#b, a# b

PROPOSITION 3.2. Let H be an infinite-dimensional Hilbert space, a and b
complez numbers, a # b, a # —b, and let ¢ : B(H) — B(H) be a surjective linear
mapping. Assume thal for every A € B(H) we have (A — al)(A — bI) = 0 if and
only if (¢(A) — aI{{p(A) — bl) = 0. Then ¢ is either an automorphism or an
antiautomorphism.

Proof. Once again we only need to prove that o(I) = I. At least one of
a and b is a nonzero number. With no loss of generality we will assume that
a # 0. Obviously, we have p(al) = aP + b(I — P) for some idempotent P €
B(H). We will show that P is either I or 0. If this is not true, then we can
find a nonzero square-zero operator N satisfying PN = N and NP = 0. The
surjectivity assumption yields the existence of a square-zero operator M such
that (M) = N. As f(p(al) + N) = 0 we have f(al + M) = 0 which further
yields M = 0. This contradiction shows that either p(al) = al or p(al) = bl.
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In the first case we have the desired relation () = I. In the second case we
get ©(bI) = p((b/a)al) = b*a~'I. But f(p(bl)) = 0, and therefore, b?a~! is
equal either to a or to b. The mapping ¢ preserves square-zero operators in both
directions and must be therefore bijective. It follows that @(al) # ¢(bI), and
consequently, b2a~! = a. Under our assumptions this is not possible. So, the
second possibility can not occur. This completes the proof. &

Under the assumption that a = —b we have two possibilities: (1) is equal
either to I or to —I. So, we have the following result.

PROPOSITION 3.3. Let H be an infinile-dimensional Hilbert space, a a non-
zero complex number, and let ¢ : B(H) — B(H) be a surjective lincar mapping.
Assume that for every A € B(H) we have A2 = al if and only if (p(A))? =
al. Then ¢ = cf where ¢ € {—1,1} and 0 is either an automorphism or an
antiautomorphism., ’

Untill now we have proved that Main Theorem holds true whenever deg(f) =
2 or f(z) = zF. So, let us assume from now on that deg(f) = m > 2 and f(z) #
z™. Then we have already proved that ¢ preserves N(H) in both directions. So,
by Theorem 2.4, ¢ is either an automorphism or an antiautomorphism multiplied
by a nonzero constant c. Assume that ¢ # 1 and write f(z) = (z=21) - - (z—Zm)
where xi,...,%,, are possibly repeated complex numbers. If 2; is any of the
roots of f then @(z;I) = ex;I; but f(¢(z;1)) = 0 and therefore cz; = z, for
some p, 1 € p < m. This shows that the finite set {z1,...,Zm} is closed under
multiplication by ¢, and consequently, ¢ must be a kth root of unity for some
positive integer k. Moreover, the polynomial f must be of the form f(z) = z'g(z*),
1 2 0. This gives us together with the previous propositions the following result
which together with Theorems 2.1 and 2.4 yields the Main Theorem.

THEOREM 3.4. Lel H be an infinite-dimensional Hilbert space, and let ¢ :
B(H) — B(H) be a surjective linear mapping. Let f be a complez polynomial
satisfying deg(f) = m > 2 and f(x) # z™. Assume thal for every A € B(H)
we have f(A) = 0 if and only if f(¢(A)) = 0. Then either @ is an automor-
phism, or an antiaulomorphism, or for some ! > 0, k > 2, g(z) € Clz], we have
f(z) = z'g(z*), and for some kih root of unity c, ¢ = c@ where 0 is either an

automorphism or an antiautomorphism.

Acknowledgements. This work was supported by a grant from the Ministry of Sci-
ence of Slovenia.



LINEAR MAPPINGS THAT PRESERVE OPERATORS 57

10,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

REFERENCES

. B. AupeTIT, H. DU T. MOUTON, Spectrum-preserving linear mappings in Banach

algebras, Studia Math. 109(1994), 91-100.

P. BOTTA, S. PIERCE, W. WATKINS, Linear transformations that preserve the nilpo-
tent matrices, Pacific J. Math. 104(1983), 39-46.

M. BRESAR, Commuting traces of biadditive mappings, commutativity-preserving
mappings and Lie mappings, Trans. Amer. Math. Soc. 335(1993), 525-546.

. M. BrESAR, C.R. MieRs, Commutativity preserving mappings of von Neumann

algebras, Canad. J. Math. 45(1993), 695-708.

. M. BRESAR, P. SEMRL, Mappings which preserve idempotents, local automorphisms,

and local derivations, Canad. J. Math. 45(1993), 483-496.

. M. BRESAR, P. SEMRL, Normal-preserving linear mappings, Canad. Math. Bull.

37(1994), 306-309.

. M. BRESAR, P. SEMRL, On local antomorphisms and mappings that preserve idem-

potents, Studia Math. 113(1995), 101-108.

. M. BRE3AR, P. SEMRL, Linear maps preserving the spectral radius, J. Funct. Anal.,

to appear.

. M.D. Cuor1, D. HApwIN, E. NORDGREN, H. RADJAVI, P. ROSENTHAL, On positive

linear maps preserving invertibility, J. Funct. Anal. 59(1984), 462-469.

M.D. Cuoi, A.A. JarariaN, H. Rapiavi, Linear maps preserving commutativity,
Linear Algebra Appl. 8T(1987), 227-241.

J. Dixon, Rigid embeddings of simple groups in the general linear group, Canad. J.
Math. 29(1977), 384-391.

M. EIDELHEIT, On isomorphisms of rings of linear operators, Studia Math. 9(1940),
97-105.

G. FROBENIUS, Uber die Darstellung der endlichen Gruppen durch lineare Substitu-
tionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin (1897), 994-1015.

R. HowARD, Linear maps that preserve matrices annihilated by a polynomial, Linear
Algebra Appl. 30(1980), 167-176.

A.A. JAFARIAN, A.R. SOUROUR, Spectrum-preserving linear maps, J. Funct. Anal.
66(1986), 255-261.

S. KANTOR, Theorie der Aquivalenz von linearen oo Scharen bilinearer Formen,
Sitzungsber. Miinchener Akad. (1897), 367-381.

C.-K. L1, S. PIERCE, Linear operators preserving similarity classes and related re-
sults, Canad. Math. Bull. 37(1994), 374-383.

C.-K. L1, N.K. TsSING, Linear preserver problems: A brief introduction and some
special techniques, Linear Algebra Appl. 162-164(1992), 217-235.

M. Marcus, B.N. MovY1s, Linear transformations on algebras of matrices, Canad.
J. Math. 11(1959), 61-66.

B.S. MITYAGIN, 1.S. EDELHSTEIN, Homotopy type of linear groups for two classes
of Banach spaces, Funktsional. Anal. i Prilozhen. 4(1970), 61-72.

M. OMLADIE, On operators preserving commutativity, J. Funct. Anal. 66(1986),
105-122.

M. OMLADIC, On operators preserving numerical range, Linear Algebra Appl. 134
(1990), 31-51.

M. OMLADIE, P. SEMRL, Linear mappings that preserve potent operators, Proc.
Amer. Math. Soc. 123(1995), 1069-1074.



58

24.

25.

26.

27.

28.

29.

30.

PETER SEMRL

C. PEARCcY, D. ToPPING, Sums of small numbers of idempotents, Michigan Math.
J. 14(1967), 453-465.

P. SEMRL, Two characterizations of automorphisms on B(X), Studia Math. 105
(1993), 143-149.

P. SEMRL, Linear mappings preserving square-zero matrices, Bull. Austral. Math.
Soc. 48(1993), 365-370.

P. SEMRL, Linear maps that preserve the nilpotent operators, Acta Sci. Math.
(Szeged) 61(1995), 523-534.

A.R. SOUROUR, The Gleason-Kahane-Zelazko theorem and its generalizations, Ba-
nach Center Publ. 30(1994), 327-331.

A.R. SOUROUR, Invertibility preserving linear maps on £(X), Trans. Amer. Math.
Soc. 348(1996), 13-30.

A. WILANSKY, Subalgebras of B(X), Proc. Amer. Math. Soc. 29(1971), 355-360.

PETER SEMRL
Faculty of Mechanical Engineering
University of Maribor
Smetanova 17
62000 Maribor

Slovenia

Received March 24, 1995; revised May 20, 1996.



