THE DERIVATION PROBLEM AND THE SIMILARITY PROBLEM ARE EQUIVALENT

EBERHARD KIRCHBERG

Communicated by Serban Strătilă

ABSTRACT. There is proved a proposition which implies that the similarity problem and the derivation problem for C^* -algebras are equivalent, and also that they are equivalent to a bicommutation problem.

KEYWORDS: C^* -algebra, derivation, *-representation.

AMS SUBJECT CLASSIFICATION: 46L57.

Let $A \subseteq B(H)$ be a C^* -algebra. The similarity problem and the derivation problem for A are the following open questions respectively:

Is every bounded (possibly non-selfadjoint) representation r of A on a Hilbert space K equivalent to a *-representation of A on K?

Can we find for every *-representation $D: A \to B(K)$ on a Hilbert space K and every bounded derivation $\delta: A \to B(K)$ with respect to D an operator $t \in B(K)$ such that $\delta = [t, D(\cdot)]$?

Let L be a bounded linear map from A into B(K) then by ||L|| respectively $||L||_{cb}$ we denote the norm of L in B(A, B(K)) and the supremum over $n \in N$ of $||L \otimes \mathrm{id}_n||$ in $B(M_n(A), M_n(B(K)))$ respectively.

From works of Christensen ([1], [2]) and Haagerup ([4]) we know that:

(i) the derivation problem for A has a positive answer if and only if there exists a (best = minimal) constant $\chi < \infty$, such that $||\delta||_{cb} \leq \chi ||\delta||$ for all *-homomorphisms $D: A \to B(K)$ and all derivations δ with respect to D;

60 EBERHARD KIRCHBERG

(ii) moreover it suffices to consider in (i) derivations of form $\delta(\cdot) = [t, D(\cdot)]$ to check the existence of the (same best) constant $\chi < \infty$;

(iii) the similarity problem for A has a positive answer if and only if there exists a continuous function F on R_+ with

$$||r||_{\mathsf{cb}} \leqslant f(||r||)$$

for every completely bounded (possibly non-selfadjoint) representation r from A into B(K).

With help of ultrapower technics one can easily obtain from [4] that moreover;

(iv) it suffices to consider bounded representations $r: A \to B(K)$ of the form $r(a) = e^{-h}D(a)e^{h}$ for a *-representation $D: A \to B(K)$ and $h = h^*$ in B(K) to show (1) in full generality with same f.

We are now in position to give the results. Remark that the corollaries are obvious consequences of (i)-(iv), Proposition 1 and results of [4].

PROPOSITION 1. Let $A \subset B(H)$ be a C^* -algebra and assume that there exists a constant $k < \infty$ such that $||\delta_t||_{\operatorname{cb}} \leq k||\delta_t||$ for every selfadjoint $t \in B(H)$, where $\delta_t(a) := [t,a]$ and δ_t is considered as a map from A into B(H). Then for $h = h^* \in B(H)$ and the representation

$$r_h: a \in A \mapsto r_h(a) := e^{-h}ae^h \in B(H)$$

we have that $||r_h||_{cb} \leq \exp(k(1+||r||))$.

COROLLARY 1. The similarity problem for a C^* -algebra A and the derivation problem for A are equivalent.

COROLLARY 2. The similarity problem is equivalent to the following bicommutation problem: Let $M \subset B(H)$ be a von Neumann algebra and ω a free ultrafilter. Is $(M_{\omega})' \cap (B(H))_{\omega} = (M')_{\omega}$?

Moreover: To study (fixed) A it suffices to consider the finite part M of A^{**} .

Proof of Proposition 1. Let $t = t^* \in B(H)$. Fix $a \in A$ and put $f(z) = e^{-zt}ae^{zt} - a$, $z \in C$. Then f'(0) = [t, a], f(0) = 0 and $|f(z)| \le ||a|| + \max\{||e^{-t}ae^{t}||$, $||e^{t}ae^{-t}||\}$ for $-1 \le \text{Re}(z) \le 1$.

. We apply Schwarz-lemma to the unit disc around z = 0 and use $e^t a e^{-t} = (e^{-t} a^* e^t)^*$ to get $||[t, a]|| \le ||a|| + \max\{||e^{-t} a e^t||, ||e^{-t} a^* e^t||\}$.

Thus, for $\delta_t(a) = [t, a]$ it follows that $||\delta_t|| \le 1 + ||e^{-t}(\cdot)e^t||$ (with norms in B(A, B(H))) and $||\delta_t||_{cb} \le k(1 + ||e^{-t}(\cdot)e^t||_{B(A, B(H))})$ by assumption (of Proposition 1).

Now let be given $h = h^* \in B(H)$ and $r_h : a \in A \mapsto r_h(a) = e^{-h}ae^h \in B(H)$.

Then $||r_h||_{cb} = ||e^{-h\otimes 1}(\cdot)e^{h\otimes 1}||$ where the operator norm on the right hand side means the norm in $B(A\otimes \mathcal{K}, B(H)\otimes \mathcal{K})$ and \mathcal{K} denotes the compact operators on l_2 . It follows $||r_h||_{cb} < \infty$.

By [4] there exists an invertible $T \in B(H)$ with $||r_h||_{cb} = ||T|| ||T^{-1}||$ and $r_h(a) = T^{-1}aT$ for every $a \in A$.

We have $T = e^t \cdot U$ for some $t = t^* \in B(H)$ and unitary $U \in B(H)$. We get $||r_h||_{B(A,B(H))} = ||e^{-t}(\cdot)e^t||_{B(A,B(H))}$. Thus

(2)
$$||\delta_t||_{cb} \leq k(1+||r_h||).$$

On the other hand $||r_h||_{cb} = ||T|| \, ||T^{-1}|| = ||e^{-t}|| \, ||e^t|| = ||e^{-S}|| \, ||e^S||$, where we take $S^* = S := t \otimes 1$ in $B(H) \otimes B(l_2) \subset B(H \otimes l_2)$.

Using spectral calculus for $e^{\tau S}$ on commutative C^* -algebras we get $||e^{\tau S}|| = ||e^S||^{\tau}$ for $\tau \ge 0$, $||e^{-\tau S}|| \, ||e^{\tau S}|| = (||e^{-S}|| \, ||e^S||)^{\tau}$ and

$$\int_{0}^{1} (\|\mathbf{e}^{-\tau S}\| \|\mathbf{e}^{\tau S}\|) \, d\tau = \int_{0}^{1} \|r_{h}\|_{cb}^{\tau} \, d\tau = \frac{\|r_{h}\|_{cb} - 1}{\log \|r_{h}\|_{cb}}$$

if $||r_h||_{cb} > 1$. The latter right identity comes from

$$\int_{0}^{1} e^{\tau \sigma} d\tau = \frac{e^{\sigma} - 1}{\sigma}$$

for $\delta > 0$.

Now let be $a \in A \otimes K$ (and $S = t \otimes 1$ as above). We obtain

$$||r_h \otimes id(a)|| = ||e^{-S}ae^{S}|| \le ||a|| + ||\int_0^1 \frac{d}{d\tau} (e^{-\tau S}ae^{\tau S}) d\tau||$$

$$\le ||a|| + \int_0^1 ||e^{-\tau S} ([S, a])e^{\tau S}|| d\tau$$

$$\le ||a|| + ||[S, a]|| \int_0^1 (||e^{-\tau S}|| ||e^{\tau S}||) d\tau$$

$$= ||a|| + ||(\delta_t \otimes id)(a)|| \left(\frac{||r_h||_{cb} - 1}{\log ||r_h||_{cb}}\right)$$

if $||r_h|| > 1$, because $\delta_t \otimes id(a) = [S, a]$.

Now we take in the above inequality the supremum on both sides for $a \in A \otimes \mathcal{K}$ and $||a|| \leq 1$. We get $||r_h||_{cb} \leq 1 + ||\delta_t||_{cb} \left(\frac{||r_h||_{cb}-1}{\log||r_h||_{cb}}\right)$ if $||r_h||_{cb} > 1$. Thus $\log(||r_h||_{cb}) \leq ||\delta_t||_{cb}$ again because $||r_h||_{cb} > 1$.

It follows (from (2)) that $||r_h||_{cb} \leq \exp(k(1+||r_h||))$ for $r_h: A \to B(H)$.

62 EBERHARD KIRCHBERG

REMARK. It is unknown if for $C_{\text{red}}^*(SL_n(Z))$ the derivation problem has a positive answer for $n=2,3,\ldots$

REFERENCES

- E. CHRISTENSEN, On non selfadjoint representations of operator algebras, Amer. J. Math. 103(1981), 817-833.
- 2. E. CHRISTENSEN, Extensions of derivations II, Math. Scand. 50(1982), 111-122.
- E. CHRISTENSEN, Derivations and their relation to perturbations of operator algebras, in *Proc. Sympos. Pure Math.*, vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 261-273.
- U. HAAGERUP, Solution of the similarity problem for cyclic representations of C*-algebras, Ann. of Math. (2) 118(1983), 215-240.

EBERHARD KIRCHBERG Humboldt University - Berlin Unter den Linden 6 10099 Berlin GERMANY

Received April 15, 1995.