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PROJECTIONS OF INVARIANT SUBSPACES
AND TOEPLITZ OPERATORS
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ABSTRACT. Let K be a compact abelian group dual to a discrete abelian
group which possesses an archimedean linear order. Let W = EH?(K) be a
Beurling subspace of L*(K), where H*(K) is the space of analytic functions
and F is a unimodular function on K. We show that if E satisfies an ap-
proximation condition, then there is a standard invariant subspace H so that
the orthogonal projection pr : W — H is injective and has dense range. We
explain that this kind of consideration can be regarded as a generalization of
the study of Toeplitz operators.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let K be a compact abelian group dual to a discrete abelian group I'. Suppose
I’ possesses an archimedean linear order, so we may regard T as a subgroup of
R. For ¥ € T, let X, be the character on K given by X,(z) = z(v) for each
z € K. The set {X, | v € T'} is called the standard orthonormal basis of L. We
shall call an invariant subspace a standard invariant subspace if it is spanned by
a subset of the standard orthonormal basis. In particular, the space H2(K) of all
analytic functions in L?(K) is a standard invariant.subspace. Let W be any shift
invariant subspace of L%(K). The orthogonal projection pr : W — H, where H
is a standard invariant subspace, will be called a standard projection. If K is the
circle $1, and therefore I' is the group of integers Z, then every standard invariant
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subspace is of the form X, H?(S'), where n € Z. A celebrated result of Beurling
([2]) tells us that every simply invariant subspace has the form EHZ(S!), where E
is a unimodular function on $!. Thus the consideration of the standard projection
pr, : W — X, HZ%(S!) is the same as the consideration of the Toeplitz operator
T(X_nE) = prygo X_,E. By rephrasing some of the well known results from the
theory of Toeplitz operators ([1]), we are able to say much about pr,,. In particular,
if X_, E can be approximated by a bounded analytic function under the L norm,
then pr, is injective. On the other hand, if X_,E can be approximated by the
complex conjugate of a bounded analytic function under the L norm, then pr, is
surjective. Of course, if there are integers n; and ny so that pr, , is injective while
pr,, is surjective, then there must exist an integer nj so that pr,, is bijective.

The situation becomes considerably more complicated when K is not the
circle. First of all, there are more standard invariant subspaces than those of
the form X, H2(K). One of them is the space HZ(K) of all analytic functions in
L?(K) with zero mean. Secondly, not every simply invariant subspace of LK)
is a Beurling subspace ([2]). In this paper, we shall only prove results about the
case when W is a Beurling subspace. Even with this restriction, we are still facing
a situation more general than that of Toeplitz operators. Furthermore, studies of
Toeplitz operators defined on H2(K), which have appeared recently, have been
limited to Toeplitz operators with continuous symbols ([3]). Nevertheless, we are
able to show in this paper that essentially, the above results about the projections
persist. Precisely, we shall prove the following theorems.

THEOREM 1.1. Let K be a compact abelian group dual to a discrete abelian
group which possesses an archimedean linear order. Let W = EH?*(K) be a
Beurling subspace of L2(K), where E is a unimodular function on K. Suppose
distzw(E, H®(K)) < 1. Then the orthogonal projection pry : W — H*(K) is
tnjective.

The notation H*°(K) stands for the set of all bounded analytic functions on
K, while distz o (£, H®(K)) stands for inf{||E — hjlo | h € H®(K)}.

THEOREM 1.2. Let K, W and E be as tn Theorem 1.1.

(1) Suppose distp=(E, H®(K)) < 1. Then the orthogonal projection pry :
W — H?%(K) has dense range.

(ii) Suppose distp(E, H®(K)) < 1/5. Then the orthogonal projection pry :
W — H?(K) is surjective.

THEOREM 1.3. Let K, W and E be as in Theorem 1.1. Suppose there are
standard projections pr; : W — Hy and pr, : W — H, so that pr, is injective
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while pry has dense range. Then there ezists a standard projection prz : W — H3
which ts injective and has dense range.

The proofs of the theorems will be given in Section 3. The proofs employ
elementary Hilbert space techniques and they do not rely on results from the
theory of Toeplitz operators. In fact, they provide the proofs of the corresponding
statements about Toeplitz operators, which we shall present as corollaries to the
theorems, together with other concluding remarks, in Section 4.

2. PRELIMINARIES

In this section, we shall briefly recall some information about Fourier analysis
on groups and the function theory of invariant subspaces. References for a more
detailed discussion will be supplied as we go along.

We shall drop the letter K from the notations of the function spaces when
ambiguity does not arise. For example, we shall simply write L? for L%(K). The
norm on L? shall be denoted by [|-]|. Every vector v in L? has a Fourier expansion

Z ay Xy,

~vel

where a. is called the Fourier coefficient for the frequency (or exponent) 7. The
subspace H? of L? consists of the vectors whose Fourier coeflicients for the negative
frequencies all vanish. A theorem of Helson and Lowdenslager ([2]) says that a
function in H? that vanishes on a set of positive measure is null almost everywhere.
The space of all bounded linear operators on L? shall be denoted by B, and the
norm on B shall be denoted by || - ||s. Let GL denote the general linear group of
all bounded linear operators possessing bounded inverses.

References on invariant subspaces can be found in the masterly written article
of Helson ([2]). A closed subspace W of L? is invariant if X, W C W for all v > 0.
W is called doubly invariant if the inclusion holds for ¥ < 0 as well. Otherwise it is
called simply invariant. The doubly invariant subspaces are classified by Wiener’s
theorem which says that a doubly invariant subspace of L? consists exactly of the
functions which vanish on some fixed subset of K. In particular, if W is a doubly
invariant subspace that contains a function which is non-null almost everywhere,
then W is L? itself. On the other hand, the theory of simply invariant subspaces
turns out differently depending on whether K is a circle or not. If X is §?, then
as noted in the previous section, every simply invariant subspace is a Beurling
subspace. If K is not §!, the theory is highly complex and many questions remain
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open. Since our focus is on the case where K is not $!, we shall simply assume
that this is the case and we shall be explicit otherwise.

Given a simply invariant subspace W of L?, let Wy = (| XyW and W_ =
¥<0
5> Xy W which is the closure of |J Xy W. Then we have the relation W_ C W C
¥>0 y>0
W, and W_ has codimension at most 1 in W,. So W has to coincide with one

of them. W, and W_ are called the left continuous and right continuous versions
of W, respectively. The distinction between W, and W_ is not interesting. What
is interesting is the question of whether W, and W_ are actually different! If W
is left continuous, meaning W = W, then W is a Beurling subspace if and only
if W © W_ is non-trivial. There are left continuous simply invariant subspaces
which are not Beurling subspaces.

The standard invariant subspaces spanned by the sets {X, |y € T,y 2 r}
and {X, |7 € T,y > r}, where r € R, will be denoted by H(r) and Ho(r) respec-
tively, while the corresponding standard projections will be denoted respectively
by pr(r) and pr'(r). Notice that if r is not an element of ', then H{r) = Ho(r).
The set of all standard invariant subspaces is linearly ordered by inclusion. There-
fore, if there exists ry € R so that pr(r;) is injective, then either every standard
projection is injective or there exists o € R so that pr(r) is injective if and only if
r € o. We shall call « the injectivity least upper bound. Similarly, if there exists
r2 € R so that pr'(r;) has dense range, then either every standard projection has
dense range or there exists # € R so that pr'(r) has dense range if and only if
r > . We shall call 8 the densily greatest lower bound.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let E be an analytic function in L? so that [|E - Elleo < 1.
Thus F has a bounded inverse and it defines an element of GL by multiplication.
Let P be the operator EE-!. Pisin GL and

\P—Ills = |EE~ — EE~|s < |E - Ells|E~*|ls < 1,

where I is the identity operator in B. Let W be P(W) = EH?. Hence W is
contained in H? and this of course means that the orthogonal projection of w
into H? is injective. The claim is that the orthogonal projection pro : W — H?
is also injective. Suppose the contrary. Then we can find a vector w € W so that
pro(w) = 0. The kernel of prg lies in the orthogonal complement of H2 in L? and
so w is orthogonal to W C H2. In particular, w is orthogonal to @ = P(w) € W.
Therefore,

1% — wll = (I]1? + lwll?)?,
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which is at least ||w||. However,
& — wl| = [|P(w) = w|| < ||P = Il|s||lwl| < {Jw]|-

We have a contradiction. Hence pr, is injective. 1

Proof of Theorem 1.2. Part (i) follows from Theorem 1.1 by considering the
orthogonal complement of W. We shall now proof part (ii). Let E be an element
of H? so that ||E — E]joo < 1/5. As before, the operator P = EE~! is in GL and
“P I|ls < 1/5. Furthermore, a direct calculation gives ||P™} ~ I ”5 < 1/4. Let
W = P(W) = EH? and W' = EHZ. Note that W' is contained in Hg = (H?)+.
Now, since P € GL, L? can be written as a direct sum w -+ W', So if we take any
v € H?, then v = 4+ where & € W and @ € W'. Hence & = v— is projected
to v by the orthogonal projection Pty : W — H?. Therefore pt, is surjective. We
claim that the orthogonal projection pry : W — H? is also surjective.

In order to see that the claim is true, we consider the following linear maps:

H2 -V ELy P g2

The map o with image Vc W is defined by nothing but the same procedure
described above of finding a pre-image w of v € H? under pt,. Since the sum
L2=W+Wis direct, the choice of @& € W, and also @' € W', for the expression
v = @ + &' is unique. We let o(v) = @. The space V is the image of V under
P~ therefore V lies in W. We want to show that the composition pryP~ e is
invertible. Of course, if that is true, then for any v € H2, we will be able to find
a v € H?, giving w = P~ la(v') € W, so that

pro(w) = prgPlo(v') = v,

which means that pr; is surjective.

We can achieve our goal by checking that the operator norm of pro P~ 1o —id
is less than 1, where id is the identity operator on H?. We take any unit vector
v € H? let @ = o(v) € W and let @' be the element of W' satisfying the equation
% =v— . Then

lIpro P~ 0(v) — vl] = lipro P~ (@) — vl} = [lpro P~ (v — @) — pro(v)
< lpro(P~H(v) = vl + [[pro P~ (@)
<P~ = D)l + [[pro P~ (@)

1 1y~
< 7 +lIproP @)l
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Since pro(w') = 0, we have

llpxo P~ (@)l = [lpro P~ (&) — pro(@)|
<P~ = (@)
<|IP77 - Il
1

< z 1@l

We are able to obtain what we need because ||@'|| is smaller than 1 for the fol-
lowing reason. Roughly, by the way everything has been defined, 4’ is almost
perpendicular to i. Since W' and @ add up to a unit vector v, we are able to
conclude that @' is of length less than 1. Precisely, notice that if the absolute
value of the inner product

<lel Ilw’|l> <\/1+ﬂw' ' IIW’H>

of unit vectors can be made smaller than 1/v/2, then

&'} 1
1+ [[@])2 . V2

which gives ||#’|| < 1. So it remains to show that A has size less than 1/+/2.
Let % and @' be any two unit vectors in W and W' respectively. Then
P-1(%) € W and P~Y(#') € W*t. So

= |(@ - P7Y(@) + PY(@), & - P~\@) + PU@))|
<z — Pl (L — P&
+ (= PO (P + (P I - P +0
<l - P + 201 = P~ lslP~" s

ROREI0

V2
Thus the proof of the theorem is complete. 8

Proof of Theorem 1.3. Suppose the theorem is false. Then the hypothesis
of the theorem implies that the injectivity least upper bound o« and the density
greatest lower bound S exist. Clearly, o cannot be larger than 8. If « = 3, there
are two possibilities. If & is not an element of T', then the two subspaces H(a)
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and H'(p) are the same and so the two projections pr(«) and pr'(3) are the same.
This means that pr(e) is injective and has dense range, which is contrary to our
assumption that the theorem is false. If o € T, then the fact that pr'(«) is not
injective implies that there is a vector in W so that its Fourier expansion is of the

form

Z ay Xy,

yLa
with ay # 0. Therefore X, € H(a) = X,H? is an image of pr(a). We already
know that pr'(«) has dense range. Putting all this information together, we con-
clude, contrary to our assumption, that pr(a) is injective and has dense range.
Hence we must have o < 3.

By the definition of o and 3, there is a vector w € W such that w is orthog-
onal to H(ry/;) where & < #1759 < 8. The theorem of Helson and Lowdenslager
mentioned in the preliminaries tells us that as a function in L?, w is non-null
almost everywhere. Now Wiener’s theorem implies that the closed subspace of
L? generated by the set {X,w | v € T'} is L? itself. Let V and V’ be the closed
subspaces spanned by {X,w | y € ', 2 0} and {X,w | ¥ €T,y < 0} respectively.
Then the vector space sum V + V' (not necessarily direct) is dense in L? and notice
that V C W while V' C H(ry/;)*. Now take any vector u € H(ry/2). Then there
is a vector & € L? of arbitrarily small norm so that u = v+ v’ + %, where v € V
and v’ € V’. Therefore v = u — v/ — #. It follows that u differs from an image of
the projection pr(ri/z) : W — H(ry2) by the vector pr(ry;;)(%) whose norm is
arbitrarily small. This means that pr(r; /2) has dense range. But this is absurd
because 71752 < B. Thus we have arrived at a contradiction and the proof of the
theorem is complete. &

4. SOME OBSERVATIONS

The study of the standard projection of a Beurling subspace EH? into H? is the
same as the study of the Toeplitz operator T(E). Theorems 1.1 and 1.2 give the
following immediately.

COROLLARY 4.1. Let K be a compact abelian group dual to a discrete abelian
group which possesses an archimedean lincar order, and let E be a unimodular
function on K.

(i) Suppose distzee(E, H*(K)) < 1/5. Then T(E) is left invertible.

(ii) Suppose distpe(E, H®(K)) < 1/5. Then T(E) is right invertible.

Proof. Part (ii) follows from Theorem 1.2, while part (i) follows from part
(i1) because T(E)* = T(E). 1
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By allowing all possible standard projections and by considering invariant
subspaces that are not Beurling, the study of standard projections can be regarded
as a generalization of the study of Toeplitz operators. A typical result about a
Toeplitz operator relates the invertibility or the Fredholm property of the operator
to the nature of its symbol. Similarly, a result about a standard projection of
an invariant subspace should establish a relationship between the properties of
the projection and the nature of the generators of the invariant subspace. The
properties of the projection can be bijectivity or injectivity and having dense
range. However, we do have the following proposition.

PROPOSITION 4.2. Let W be an invariant subspace of L2(K), where K is a
compact abelian group dual {o a discrete abelian group T' which has an archimedean
linear order. Suppose there ezists o € T such that the standard projection pr(yo) :
W — X, H*(K) is bijective. Then W = EH?(K) where E is a unimodular
function on K.

Proof. We need only to find a vector in W that is not in 3 X, W. Let
v>0
wo € W be the unique pre-image of X, under pr(vg). So wg is orthogonal to

Xy, HE. Since pr(vo) is bijective, the orthogonal projection of 20 X, W onto X, HE
is also bijective. Thus wo € }_ X, W would mean that wyg =78, which is not true.
Hence wg is what we need a‘;ﬁohence the proposition. §

Given an invariant subspace W, the problem of finding a standard projection
of W which is injective and has dense range probes deeply into the structure of
W. We expect that what this problem will reveal is quite different from the side
of the story told by results of the Szegd-Beurling type. Even among the Beurling
subspaces, there are opposite responses to the problem. For example, suppose
W = EH? and E is continuous. Since E can be approximated by polynomials,
our theorems show that there exists a standard projection of W which is injective
and has dense range. In fact, results from the theory of Toeplitz operators with
continuous symbols ([3]) imply that there is a v € T so that pr(y) : W — X, H? is
bijective. On the other hand, we can find an inner function E € H%(S?) so that
EH?(S') has infinite codimension in H2(S) ([4]). So in this case, there does not

exist a standard projection which is injective and has dense range.
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