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ABSTRACT. We charaterize the membership in the various dual operator
algebra classes Am .y of absolutely continuous contraction operators T' on
Hilbert space with finite defect indices; the characterizations involue multi-
plicity measures like the difference of the defects or the number of copies of
the bilateral shift in the minimal coisometric extension of T. We then give
examples of operators in no class Am,n with m or n infinite.
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1. INTRODUCTION

Let M be a separable, infinite dimensional, complex Hilbert space and let L{H)
denote the algebra of all bounded linear operators on H. A dual algebra is a
subalgebra of £{H) that contains the identity operator I and is closed in the
ultraweak operator topology on £(#). The study of contractions on Hilbert space
via dual algebras was initiated in [3]; crucial have been certain classes Apmn, 1 €
m,n < No (definitions reviewed below). Yet the classes with both indices finite are
not well understood. Further, there are few classes of operators whose membership
is known exactly. In this note we give a characterization of membership in the
classes A, », for operators with finite defect, and provide a family of operators not
in any class with an infinite index.

We begin with some standard notation and preliminaries. Let T denote the
unit circle in the complex plane, D the open unit disk, and m Lebesgue measure on
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T. For 1 € p < oo, let LP = LP(T) be the usual Lebesgue space, and H? = H?(T)
the usual Hardy subspace of LP. It is well known that H® is the dual space of
a certain quotient space L!/H} of L'. For I some measurable subset of T, let
L%(T') denote the subspace of L2(T) consisting of those functions with support on
T, and denote by Mp the operator of multiplication by z on £2(I'). We will use St
to denote the unilateral shift (that is, multiplication by z on H%(T)). Finally, for
some subset A of D, denote by NTL(A) the subset of T consisting of non-tangential
limits of sequences of points from A.

We shall have concern solely with singly generated dual algebras (see [1] for a
full discussion), so suppose T' is an operator in £(H), and denote by Az the dual
algebra it generates. One knows that Ap is the dual space of a certain quotient
Q7 of the trace class operators; denote elements of @r by [L]g, or simply [L] if
no confusion will arise. For vectors # and y in H, we write, as usual, z @ y for
the rank one operator defined by (z @ y)(u) = (u,¥)z, © € H. The elements
(z ® y]g, constitute particularly important elements of Q7.

Recall that a contraction T is completely non-unitary (abbreviated c.n.u.) if
it has no unitary direct summand, and is absolufely continuous if its unitary part
has spectral measure absolutely continuous with respect to Lebesgue measure on T
or acts on the space (0). For an absolutely continuous contraction T we use without
further comment the Sz.-Nagy-Foiag Functional Calculus (cf. [1], Theorem 4.1 and
(17], Theorem 4.1) 7 : H*® — Ap. Recall that there exists a bounded, linear,
one-to-one map ¢r of @Qr into L'/H} such that &7 = ¢5.

The class A = A(H) consists of those absolutely continuous contractions T°
in £(H) for which the functional calculus @7 : H® — Ar is an isometry. It is
by now standard that for T in A and each A in D there exists an element [Ch]g,
such that {f(7),[Ci]or) = f(A), f € H*® (where we identify f with its extension
to D).

Suppose that m and n are any cardinal numbers satisfying 1 < m, n <
Rg. A dual algebra Ap is said to have property (Aman) if every mxn system of
simultaneous equations of the form [2;Qy;] = [Li;], 0 < i< m, 0 < j <n, where
{[Lij]}gii‘m is an arbitrary m x n array from Qr, has a solution {z;}ogi<m,
{yi}og; ::gonsisting of a pair of sequences of vectors from H. As usual we denote
(An,n) by (AR,). Furthermore, we denote by A, ,(H) the set of all 7" in A(H) such
that the algebra Ar has property (Am ), and usually simplify Ap o (H) to Am s
and A, » to A,.

Recall that M is a semi-invariant subspace for T € L(#) if there exist
invariant subspaces A} and A for T with A7 D A, such that M = My O N, =
N1 NN, We write Lat(T) and SLat(7") respectively for the lattices of invariant
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and semi-invariant subspaces of 7. For £ an clement of Lat(T") we let 7'|£ denote
the restriction of 7" to £; if § is (unitarily equivalent to) a restriction of T to
an invariant subspace we may say instead that T is an extension of S. For M
in SLat(T), let Ta denote the compression of T to M, that is, Tay = PuTIM,
where P4 is the orthogonal projection whose range is M. We say that T dilaies an
operator S, or S is a compression of T, if S is unitarily equivalent to a compression
of T.

Recall from [17] that a contraction T has an isometric dilation which is, in a
natural sense, minimal, and we denote this by U;f ; its unitary extension yields Up,
the minimal unitary dilation of T'. There is as well a minimal co-isometric extension
of T which we denote by By. Since Uf is an isometry it has a (maximal) unitary
summand Rr, and we denote by E(T") the Borel subset of T (unique up to sets of
measure zero) such that m|E(T') is a scalar spectral measure for . Similarly, for
the co-isometry Br, denote by X.(T) the analogous set for its maximal unitary
surmnmand.

Recall as well from [17] that the class Cy. consists of those operators T such
that ||7"z|| — 0 for all z € H, and C.o = (Cp.)*. Also, Cj. is the class of those
T such that ||T"z|| — 0 only for ¢ = 0, C.; = (C:.)*, and the class Cap is the
intersection of Cy. and Cy for each pair («, 3), @, 8 € {0, 1}. For a contraction T
the defect index dr is defined to be dy = dim{(I — T*T)3H} . If both dp and
dp. are finite, we say T has finite defects.

Finally, we shall use two notions associated with any absolutely continuous
contraction T which arise from efforts to study its “boundary behavior” on the
circle T. First, for an absolutely continuous contraction T define as in [4] a subset
Z of T to be essential for Tif || f(T)I| = [1£1Z]]o S esssup|| f|Z|| for every function
fin H®(T). Define ess(T) to be the maximal essential set for T' (up to sets of
Lebesgue measure zero). {Observe then that 7 € A if and only if T is essential
for T.) Second, in [7] a subset Xy of T is defined for any absolutely continuous
contraction T. (Roughly, X7 is the subset of T on which T° “wants” to be in the
most restrictive class Ay, r,.) For our purposes we need merely note from that
work that X7 is empty for an operator with finite defects, and that T = ess(T) =
Xp UD(TYUZ.(T), T e A.
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2. OPERATORS WITH FINITE DEFECTS

We embark upon our description of contraction operators T, with both defect
indices d7 and dr- finite, in the various classes A, ,,. Recall from {17] that for an
absolutely continuous contraction T the operators Ar(t), t € (0,27), are defined
in terms of the characteristic function ©7 by Ap(t) = (I — Or(e'*)*Or(e*))}/?,
t € (0,27). Denote by r(¢} the rank of Ar(t).

LeEMMA 2.1. Let T be a c.n.u. contraction with dr or dp- finite. Then

U+EQTQ“'QBSTJ@\A’II‘;@'”@MFZ

(dre) (dr)

acting on HX(T)@--- @ HA(T)® LX) ®---® LA T,), where T; = {e* : t €
(dz+) (dr)
(0,2m),r(t) 24}, :=1,2,...,n.

Proof. For the case of dy and dp. finite this holds from [17], Theorem VI.6.1,
and if one defect index is infinite combine Theorem VI.3.1, Proposition V1.2.1,
I1.(2.6), 11.(2.7), and 11.(1.3) of that work. &

A proposition for the finite defect case follows immediately.

PROPOSITION 2.2. Suppose T € A, dr, dr+ < co. Then
(l) Ifdr < dpe then T € AdT'—dT,No;
(ii) Ide- < dr then T € Aﬂo,dr~dr» .

Proof. From duality (ii) follows easily from (i), and for (i) we consider only
dy = 1 and dp- = 2 for case of exposition. From [17], Theorem V1.6.1 we have
that the minimal unitary dilation Up of T is

(2.1) Ur = My & My © Mr,

acting on L%(T) @ L%(T) & L*(T;). It follows also from [17], Theorem VI.6.1 that
UZ., the minimal isometric dilation of T*, is

Uf. = 5v ® Mp, @ My,

acting on H%(T) @ L3(T"}) @ L(T}), where I’} D T';. But it is well known that
the minimal coisometric extension By of T is the adjoint of the minimal isometric
dilation of T, so

(2:2) Br=Ul) =Ste My, & My,
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acting on H*(T) @ L*(I"}) @ L*(I'}), where T{ D I',. And since the minimal
isometric dilation of By is the minimal unitary dilation of T', we have

(2.3) Up=2 My & Mltll ] MI:;

acting on L2(T) @ L%(T}) ® L*(T}). A comparison of (2.1) and (2.3) shows that
I, = T (except possibly on a set of measure zero). But then from (2.2) Br
contains a copy of the bilateral shift, and it follows easily from [14] that T' € Aj x,,
as desired. # '

We may also make some progress for c.n.u. contractions even with one defect
infinite by use of Lemma 2.1. For any operator 7" and integer n, denote by 7"
the n-fold ampliation of 7. We first dispose of a special case: note that if dp = 0,
then T is a c.n.u. isometry, so T = S(TdT'). It is well known that for n < oo,
5'-(,") € Ry x, and S ¢ Apyg g (via [9]), and so the case dp = 0 (and, via duality,
dps = 0) need not be further considered.

The following is the extension one would expect of Proposition 2.2.

ProprosITION 2.3. If T is a c.n.u. coniraction having one finite and non-
zero defecl index and one infinile defect, then T € Ry,.

Proof. Suppose first that 7' € A, and consider the case 1 < dp < oo and
dp. = 0o. Using the fact from [14] that if By contains a bilateral shift of infinite
multiplicity, then T € Ay,, the proof is just as that for Proposition 2.2, mutatis
mutandis. If we assume merely that T is an absolutely continuous contraction,
Lemma 2.1 and [14] show that in fact T € A. &

This yields the following corollary, which we then strengthen.
CoROLLARY 2.4. Let T € A\ (A1, x, UAg,,1). Then dp = dp-.

PROPOSITION 2.5. If T' is a c.n.u. contraction in A\ (Ryn, U Ax,,1) then
both defects are infinite.

Proof. Suppose that T is a c.n.u. contraction in A\ (Ayx, UAx, 1) and with
finite defects, so by Corollary 2.4 we know dpr = dp«. Consider T' in its upper
triangular C 1-C.¢ decomposition, say

T1 %
24 T= .
24) ( 0 Tz)
Observe that both 7} and T3 have finite defect indices by [17], Proposition VII.3.6.
Suppose now that ess(72) # 0. Since Ty € C.o, from [7],

(2.5) ess(Ty) = X, U (T3),
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and since T3 has finite defects Xp, = 0, and thus ess(T3) = Z,(T2) # 0. Then T3
has a non-zero unitary part of its minimal coisometric extension, so since T3 has
finite defects we know by [9], Lemma 1.3 that the minimal coisometric extension
contains a bilateral shift. Using [14] as usual, we have T3, and hence T, in A; x,,
a contradiction. Thus we may assume that ess(7%) = @. Since for any absolutely
continuous contraction V we have from [7] that ess(V) = Xy UZ. (V) UE(V), we
deduce finally that

(2.6) X, = L.(T2) = E(T2) = @.

Since T € A we know that ess(T) = T, and since T has finite defects X7 = §.
Then
T = X2 US,(T) UZ(T)
= T,(T) US(T)
=L, (M)UEZM)UZ.(TR)UZ(Ty)
= L.(T1) UZ(TY),

where the third inequality follows from [2], Lemma 1.4 and the fourth from (2.6).
Thus ess(73) = T, s0 Ty € A, and of course T} has finite defect indices.
Consider now T) in its upper triangular C.;~C.¢ decomposition, say

T11 *
2. = | .
27) T ( 0 le)

A repetition of the argument above, and some adjoints, shows that necessarily
either 711, and hence T, is in Ay, 1 (a contradiction) or 715 € A and T} has finite
defect indices. But note that Tiz € Cy; from [10] we have Tj,, hence T', in A; x,,
and this final contradiction finishes the proof. 8

The following lemma is from [5], and will enable us to complete our charac-
terization of the operators with finite defect indices in the classes A, x,.

LEMMA 2.6. For any absolutely conlinuous contraction T' and each inieger
n > 1, the following are equivalent:

(i) T € An xos

(i) there ezisis M € Lat(T) such that T)IM € C.oN A, x,.

Proof. That (ii) implies (i) is obvious, so suppose that T € A, x, for some n.
From [5], there exist pairwise orthogonal subspaces M;, i = 1,2,...,n such that
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My € Lat(T) and M; € SLat(T) (i = 2,...,n) and so that Thy; € Ry x, for i =

1,...,n. These subspaces may in fact be chosen so that T has the decomposition
T
T *
(2.8) T = ..
0 Tn
Tas1

G L
with respect to My @ -- @ M, @ ( V Mg) , where T} £ Tpm; (i=1,...,n)and
i=1

n KR
Tw+1 1s the compression of T to ( V M,-) (possibly T}, 41 is absent).
=1

Since T3 is in Ay x,, there exists (from [6]) a subspace N invariant for T}
(and hence for T) such that Ty[N; € C.o N Ay x,. Further, from the techniques of
(5] the compression of T to (AV})* is in A,_1 x, (essentially, because of the n — 1
blocks T;, i = 2,...,n, on the diagonal in (2.8)).

The above argument, applied now to the compression of 7" to (N;)* which
is in A,_1x,, produces a subspace N> invariant for this compression such that
(Tiv)2INe = Ta, € CoN Ay, while the compression of T to (M U Ny)t is in
A, _3x,. Iteration of this argument shows that T" has the form

(2.9) T =

)]
n+1

n L
with respect to the decomposition M1 @ - - @ N, @ ( vV M) , and so that T} is
=1
inCoNAxg,i=1,...,n. From[5) M =M, @ - - ® N, is as required. 1
We may finally characterize membership of a contraction with finite defect
indices in some class Ay, x,-

THEOREM 2.7. Suppose T is an absolutely continuous contraclion wilh fintte
defect indices dp and dp.. Then the following are equivalent:
(i) T € An xos
(ii) there exists M € Lat(T) such that T 2 T|M iscnu. and d, —dz 2 n;
(iii) Ru(T) contains a copy of the bilateral shift of multiplicity n.

Proof. For (i) implies (ii), note that the restriction of 7' to the subspace
produced from Lemma 2.6 has finite defects by [17], Proposition VIL.3.6 and is in
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C.o N Ay x,, and so by [9] satisfies the defect inequality in (ii). That (ii) implies
(iii) follows from [9), which shows that R.(T|M) contains a copy of M{™, and the
obvious fact that the unitary part of R.(T") has R.(T|M) as a summand. Finally,
(iii) implies (i) follows from [14]. 1

Observe that there is as usual a dual version of the result for the class Ay n,
which we leave to the interested reader. We remark also that the characterization
of membership in the A, , with both m and n finite even in the case of finite
defects awaits the determination, for example, of whether St @ St is in Ay,
a long standing but still open problem. Note also that (i) does not imply that
dr- = dp 2 n, as is obvious from the example T = S{Tﬂ} @ 5%, and that since a
normal operator with eigenvalues dense in the disk isin Ay, but has no unitary part
of its minimal coisometric extension, some condition like finite defects is required
for the results above.

Indeed, one may produce a 7" merely in A; x, (not even in Az ) for which
there is no M € Lat(T) so that Tas € Ay x, and dr,,, drs, are both finite. Let
B’ be constructed by decreasing each weight of My in such fashion as to have
all weights of B’ strictly less than one but B’ similar to M7y (see [15]). Observe
that B’ is a contraction, Ag: has property (A x,) (since A, does), and B’ € A.
Hence B’ € Ay x,. But any compression of B’ shrinks the norm of every vector,
so any compression to an infinite dimensional subspace has infinite defect indices.

The following corollary improves a theorem in [10]. Denote by Jr the Jordan
model of T (see [16) for the relevant definitions).

CoROLLARY 2.8. Suppose T € A, and T has finite defect indices. Then
there ezists M € Lat(T) such that Jpja has the unilateral shift of muliplicity n

as a summand.

3. SOME EXAMPLES

We consider in this section a family of examples illustrative for A and its subclasses
and providing examples of operators not in Ax,1 U Az r,. Let

L={z€C:(]z] = 1 and Re(z) € 0) or (Re(z) = 0 and |Im(z)| < 1)}.

Thus L is the boundary of the open left half disk; let Dr, denote this left half disk
(so Dy, is the simply connected component of C \ L). Put arclength measure £ on
L, and define L%(L, d?) to be the space of (equivalence classes of) square integrable
complex functions on L. Define H2(L,d{) to be the closure of the polynomials in
L?*(L,d¢). Let Ny be the (normal) operator of multiplication by z on L?(L,d¢),
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and T its (subnormal) restriction to H?(L,df). Similarly, define R to be the
reflection of L across the imaginary axis, and Dg, L?(R, d¢), H?(R,d{), Ng, and
Tgr in the obvious way.

We will consider 77, @ Tf and variants in what follows; the basic example
below stems from [6] but was never published.

PRoOPOSITION 3.1, Let T =T @ T5. Then T € A, but T is not tn Ay,
Al,Noz or Axo’l.

Proof. To show that Ty @ T is in A, observe that o(T7) is the closure of
the region Dz bounded by L, and o(T}) is the closure of the region Dr bounded
by R. Thus o¢(T) = D, which is sufficient for membership in A.

To show that Ty, © T% is not in Ay 3, observe that Ny @ N, dilates 77 @ Th.
But Ny @ Nj is a normal operator with NTL(o(Nr & Ni) N D) = @ (almost
everywhere), and whose unitary part has multiplicity one (a.e.) on T. By [11],
Ni & Ni € Ay 9, so neither is its compression T, @ T§.

The proof that T = Ty @ T is not in Ay, 1 is similar to that for A x,,
and so we prove only the latter. Suppose that T = Ty, ® T§, is in Ay x,. Then
T has property Ef, (see [8] for a definition), and it follows (via the proof of
[6], Theorem 6.2 and taking adjoints) that for each A € D, there exist sequences
{22}, and {y}}22, in the unit ball of 4 such that

(2) lim [I[C3] - [22 ® Rlllar = 0,

(b) lli22 ® ulllor — 0, w € H, and

(c) {v2}3%; converges weakly to zero.

Let T' =Ty @ Ty act on H = Hy & Hpr and write vectors as w = wl @ wk.
For each ) in the disk, fix sequences {z}}%%, and {y2}3%, as above. Define Ay
by Ar = {X € D :limsup [|lz3%|| - [lya (| > 1/2}. We first claim that

n

3.1) NTL(AL) € T N {Re(z) < 0}.

To see this, one shows easily that NTL({Ayg) is essential for 7p. But Tt has no
spectrum, thus no essential set, in the right half plane (see [4]).
Set Ap = {} € D : limsup ||z} F|| - ly®|| = 1/2}. Since T is in A we have
n

T is essential for 7', and using (3.1) and =)} and ¥ in the unit ball, it is easy to
deduce T N {Re(z) > 0} C NTL(ARg).

Now consider some conformal map v of the right half disk Dy onto the unit
disk D. It is possible to check that for each X in Az with associated sequences
{w;‘;,R}go=1 and {yr);'R :):1) one has

(a) Jim [[[Cyon] — (232 © 12 Pl < 1/2,
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(b) ”[zr);'R ® wng(r;‘) - 0, w € Hp, and

(¢) {¥2R}%, converges weakly to zero.

Clearly NTL({#(A) : A € Ar}) has positive measure on T. But also ¢(T%) is
(unitarily equivalent to) the backward unilateral shift S§ (of multiplicity one). If
5% had any point u = ¢(A) in D with sequences as above, then using a standard
argument and Mobius transforms as in the proof of [1], Proposition 6.1, each point
of D has a sequence as above. But then S} would have property Eg, e and so Sy
would be in Ay y,, a contradiction. #

Some variants of the above operator provide some further examples.

PROPOSITION 3.2. For any m,n, 1 £ m,n < Ro, the operator T, =
T};m) @ (T)™ € Ap . If m and n are both finite, let k = min(m, n); then T n
s in none OfA)H.l_g.’_g, nl.Rna and Auo,l.

Proof. The assertion with both m and n finite is proved as above. For the
first assertion, we merely sketch the case m = 1, n = 2. Assume then that
Ti2 = Tr @ (T})® acts on the space H = Hy @ Hp. Let (Tp)D =T @ Th
act on the space Hp decomposed as Hp = H1 @ Ha, s0 H = Hy @ Hy ® Hs, and
write vectors w in 7 with respect either to the decomposition w = w’ @ w® or
the decomposition w = w’ & w! ® w?, as needed.

Suppose then that [L;] and [L,] are arbitrary in Qr, ,. Since T3 2 € A = Ay 4
there exist vectors z;, 23, 1, y2 in M so that [L] = [z: ® vlqr, , and [Ly] =
[z2® yg]q.,.m. Note that since T is a direct sum,

[Li] = (=} ® 0) @ (47 ®O)ler, , +[(0©27) ® (08 y)lar, ,»
and
[La] = [(=5 ®0) ® (45 @ O)or, , + [(0®25) ® (00 ¥)lqr, ,-
It is clear that [LE) £ [zf @yE] € Qr,, (L] 2 (2 @vE] € Qr,, [LF) £ 2R @yl €
Q(T;!)(’) s and [L‘g] 9-: [Zg S yf] € Q(Tﬁ)(’) .
Now T}, is subnormal, so A7, has property (A;x,} from [13] and hence
property (A4 2). Thus there exist vectors u, vy, and v, in Hy so that

(3.2) [u®vi]=[L{ler, and [u®vs]=[L7lqr,.

Consider now [zf @ y{z]q(w ya - It is easy to verify that, for any polynomial
R

p, one has
(P((TR)P), [=f @ vF]) = (p((TR)P)2T, yF)uz
(33) = (p(T,})x{, y})"‘h + (p(T;!)xLl,: y?)ﬂn
= (p(T#), (=1 ® v1ler, ) + (P(TR), [} ® yilay, )-
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Similarly, we have the completely analogous equation involving [z ® y& ]Q(T-)(z) ,
[z} ® yz]QT, , and [22 ® y%]QT. . Now A7p; has property (Ax,,1) and hence (A1 1)
from [13] and adjoints, so there are vectors w!, z! in H; and w?, 2% in ‘H, so that

(34) [v' ® #loy, = [z} @ Yllor, + [z} @flay,, i=1,2.

It is then possible to check, via actions on polynomials and using (3.2), (3.3), its
analogue and (3.4), that [(u ® w' ® w*) ® (v1 ® 2 ® O)loy, , = [Lilor,, and
[(uow' w?)@ (&0 2*)or, , = [La2]oy, ,- Since [L1] and [Ly] were arbitrary
in Qr, ,, 71,2 is in Ay o as desired. 8

One can modify the arguments above to gain a little more information about
the membership of the various Ton,n In the various classes A, ;.

PROPOSITION 3.3. Let m and n be positive integers. Suppose Ty, ,, = Tlgm)ea
(T3)™) is in A;; for some i and j (each necessarily finite by Proposition 3.2).
Then if i < m, Tpnng1 i i Ag 41, and if i > m, Tmnt1 15 10 Ay, jpr. Simalerly,
fj€<n, Tmyrn ts 0 Rigaj, and if 5> n, Trugyn i 10 Ajgy g

Proof. For the case ¢ > m, the key observation is that for any m, AT(m) has
property (Am x,), and hence (Ap, ;41) (and not merely (A, ;). A modification
of the argument above then suffices. #

There’s one more part of information available almost for free; we need only
observe that (—7}, »)* is unitarily equivalent to T}, ,,.

PROPOSITION 3.4. Let n be any positive integer. If, for somei and j, T n =
T(") ® (T3)™) is in A;j, then T, is in A;; as well.

It turns out that the information above is not sufficient to place the Tnn
uniquely, each in its “maximal” class A; ;, in the Ro by Ro grid of all the A; ;. We
record the obvious conjecture, and then the relationship between the conjecture
and Proposition 3.3.

CONJECTURE 3.5. We conjecture that for each m and n positive integers,
Tm,n € Am,n \(Am+1,1 U Al,n-{-l)v

PRrOPOSITION 3.6. The assertion in Conjecture 3.5 is equivalent to the con-
dition that, for each m, n, i, and j positive integers, Ty p = Tlgm) ® (TH)™ in
Ai,;j implies both Tpn ny1 is in Ay 54 and Trapy n i in Rigy .

The force of these examples, which would be increased if the conjecture is

correct, is that the family {Tin n}57 =1 provides at least some examples of elements
populating the various A;,; but not in either Ay x, or Ax,1 (that is, in no class
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with at least one index finite). It is known from [12] that the classes A;; are

[{

distinct, but this distinction is, more properly put, a distinction between “rows”

(i-e., the various A, x,), and a different distinction between “columns” (or the
various Ay, ), using various ampliations of the unilateral shift Sy and its adjoint.

We remark finally that the family of examples above may be modified to
yield operators T with nonempty set X7 (see [7]) still inhabiting only classes A; ;
with strictly finite indices.
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