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ABSTRACT. We investigate an abstract degenerate Cauchy problem with a
non-invertible operator M at the derivative. The problem is formulated in a
Hilbert space £ which can be written as an orthogonal direct sum of Ker M
and Ran M*. Under certain conditions it is possible to reduce the problem to
an equivalent non-degenerate Cauchy problem in the factor space §3/Ker M.
The explicit form of the generator for the restricted problem is investigated.
As an example we discuss the Dirac equation, where cur theory leads to a
new interpretation of the nonrelativistic limit. We show that this limit can
be understood in terms of a degenerate Cauchy problem where the generator
of the restricted problem is a Schrddinger operator. Finally, we describe some
consequences for the treatment of degenerate control systems. In particular,
we introduce dual methods of factorization in order to investigate the com-
patibility of factorization and transition to the dual system, which is essential
for the definition of basic notions like observability and detectability.
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1. INTRODUCTION

We are going to study the abstract system

d
(1.1) 7] M 2(t) = Az(t) + f(1),
where M and A are linear operators acting between Hilbert spaces §) and &. These

systems are.called degenerate or singular, if the operator M is not invertible. Under
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certain assumptions it is possible to restrict the whole problem to the orthogonal
complement (Ker M)+ of the kernel of M. Here we investigate the structure of the
restricted problem without assuming that M or A be self-adjoint. Our approach
is particularly useful for systems of differential equations, as will be demonstrated
in Section 3.

Degenerate Cauchy problems have received considerable interest during the
past few decades. For finite dimensional linear systems the problem is understood
completely, because it is possible to transform the matrices M and A to a common
normal form which allows to classify the cases in which (1.1) has a unique solution
for each initial value. This is discussed in the book by L. Dai ([2]), where one can
find many examples, applications to control theory, and references to the earlier
literature.

In the infinite dimensional case we mention the book by Carroll and Showal-
ter ([1]) which also treats the nonlinear and nonautonomous case. Showalter fur-
ther considers the linear problem in [16] and [17]. In his setting the operator M has
to be self-adjoint and non-negative. The operators M and A are initially given as
quadratic forms on some vector space E. The Hilbert space of the system is then
defined to be the completion s of the factor space E/Ker M in the seminorm
defined by M. In this Hilbert space M becomes the identity operator (Riesz map).
In order to obtain in $ipr a single-valued operator Ag which corresponds to 4 one
has to assume, e.g., that A defines a sectorial quadratic form ([17], cf. also Re-
mark 2.6). This assumption also implies that A, generates an analytic semigroup
for the factorized system. Being very elegant, this approach has nevertheless the
disadvantage that the whole setup depends on the operator M, and it becomes
difficult to investigate what happens when M is perturbed or approximated. Qur
approach uses different assumptions allowing to express the factorization in terms
of orthogonal projection operators whose behavior under perturbations is easier
to describe. Moreover, we do not require M to be non-negative or self-adjoint.
Likewise the assumption of parabolicity, although convenient because it leads to
a bounded evolution operator, is not essential for the process of factorization.

In an interesting series of papers A. Favini investigates degenerate Cauchy
problems of parabolic type in Banach spaces. The linear system is considered in [3]
using Laplace transforms of the resolvent. In {5] the problem is treated also under
the assumption that the Banach space of the system can be written as a direct
sum of suitable subspaces (this is the main reason for our use of Hilbert spaces in
the present paper). Most recently, in [11] the authors discuss in particular regu-
larity properties of solutions. The paper [4] treats the controllability of degenerate
systems, based on results in [3]. Results concerning existence, uniqueness and
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regularity of solutions have also been obtained in more general situations. Refer-
ences [6] and [7] treat the case of time dependent operators M (t) and A(t), while
nonlinear operators are considered in [8] and [11]. See [9] and [11] for applications
and (10] for results concerning multivalued operators.

Among the older literature we further mention [13], [14], [15].

In the present paper there is, of course, some overlap with the previously
mentioned work. But the emphasis of this paper is on the possibility of factoriza-
tion and the relation of the factorized problem with the original degenerate system
- without assuming parabolicity: Making use of the decomposition of the Hilbert
space into a direct sum of Ker M and Ran M™ (resp. Ker M* and Ran M) we
formulate the conditions which allow us to obtain an equivalent but nondegener-
ate Cauchy problem in the factor space $/(Ker M) = Ran M* (resp. in Ran M)
and give the explicit form of generators of the factorized problems. The crucial
assumption is that the restriction of A to a mapping from Ker M to Ker M" is
well defined and invertible (Assumption 2.8). This allows to define a factoriza-
tion operator Z, which maps the solutions of the factorized system to solutions
of the original degenerate system. It is interesting that this operator is generally

unbounded.

We treat the basic concepts and the homogeneous equation (f(t) = 0) in
Section 2, the inhomogeneous equation is discussed in Section 4. As an example
illustrating the application of our method to systems of differential equations we
consider the (time dependent) Dirac equation of relativistic quantum mechanics
which in the nonrelativistic limit can be written as a degenerate Cauchy problem.
This degenerate Cauchy problem is by our method of factorization easily seen to
be equivalent (in a certain sense) to the Schrédinger equation.

In Section 5 we make some remarks concerning the setting of control theory
under simplifying assumptions. In particular the conceptionally important relation
between a control system and its dual is compared to the corresponding relations of

the factorized systems, which leads to the notion of dual methods of factorization.
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2. THE HOMOGENEOQOUS EQUATION

NoTATION 2.1. For a linear operator T we denote by D(T'), Ker T, and
RanT its domain, kernel, and range, respectively. If D(T') is dense, the adjoint
operator is well defined and will be denoted by T*. The restriction to © of an
operator T defined on some larger domain will be written as T'D.

Let us consider the degenerate Cauchy problem

(2.1) %M 2(t) = A z(t), 2(0) = z,

where throughout this paper we make the following assumption:

ASSUMPTION 2.2. Let A and M be closed linear operators which are densely
defined in some Hilbert space £y and map into a Hilbert space K.

Here M need not be invertible. Since M is closed, Ker M is a closed subspace
of $. The orthogonal projection onto Ker M will be denoted by P, and P+ = 1—P
projects onto the orthogonal complement of the kernel. Since the adjoint M* of a
closed operator is again densely defined in &, we have the relations

P$H=Ker M, Pt$ = (Ran M*)".

(The symbol ¢ denotes the closure.) For the projection @ onto Ker M* we obtain
the analogous relations

QA=KerM*, Q'£&=(RanM)".
We start with an obvious definition and a few observations.

DEFINITION 2.3. A sirici solution of the degenerate Cauchy problem is a
continuous function z : {0,00) — $ such that z(t) € D(A)ND(M) for all t > 0,
Mz is continuously differentiable, and (2.1) holds.

Any strict solution z of the degenerate Cauchy problem (2.1) clearly satisfies
2(t) € D4 for all t 2 0, where

Da={z€D(A) ]| Az € (Ran M)},
Obviously, we have
(2.2) KerAC D4
LEMMA 2.4. Under the Assumption 2.2 the operator A[D 4 is closed.

Proof. If z, is a sequence in D4 C D(A) such that u = limz, and v =
lim Az, both exist, then (since A is closed) u € D(A) and Au = v. But each Az,
is in the closed set (Ran M)°, hence the limit v is again in (Ran M)°. Thus, u is
i_n DA . [ §
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In order to restrict the degenerate Cauchy problem (2.1) to the subspace
PL$ = (Ker M)* we define the operator

(2.3) MY = MPLD(M)

which is invertible from PLD(M) = (Ker M)* n D(M) into (Ker M*)*. The
operator A, however, will become a multi-valued operator Ag on (Ker M)+ which
can be defined as

(2.4) D(Ao) = {z € (Ker M) | (PLY H{z}n D4 # 0},

(25) Az = A{(PY) Mz} nD4} C (Ran M)®, for all z € D(Ao).

Here (PY)"{z} = {z+y | y € Ker M}, = € (Ker M)!, is the inverse image of
z under the projection P*. Instead of the degenerate Cauchy problem (2.1) we
could investigate

(2.6) SMia)€Aoa(t),  2(0)=Plm,

because for any family of vectors #(t) satisfying this relation there exists a family
z(t) in D4 satisfying (2.1). In general, the family z(t) is neither unique nor
continuous: If k() is an arbitrary family of vectors in Ker M NKer A then 2(2)+k(2)
also satisfies (2.1). In the following typical (non exclusive) cases, the operator Ag
will be single-valued:

(A) Ket A D Ker M NDy,,

(B) (PH) {2} ND4 consists of precisely one element,.

REMARK 2.5. Let §) = R, assume that A, M are self-adjoint, and PD(A) C
D(A). Then Ker A D Ker M ND(A) s equivalent to D4 dense in 5. If this is
true, then D4 = D(A).

Proof. Assume that D 4 is dense. M self-adjoint means Ker M = (Ran M)*.
Hence, for y € Ker M N D(A)

0=(Az,y)=(z,4y), allz €D,

This implies y € Ker A.

Conversely, assume Ker A D B = Ker M N D(A). For all y € B we have
Ay = 0 and hence (z, Ay) = (Az,y) = 0 for all z € D(A). This implies Ran A C
Bt. But B is dense in Ker M, because PD(A) is dense in Ker M and a subset of
B. Hence B+ = (Ker M)* = (Ran M)°. Finally, Ran A C (Ran M)° is equivalent
to D(A) = D 4. Hence D4 is dense by Assumption 2.2. 1§
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REMARK 2.6. (cf. [17]) Let M be self-adjoint and A be sectorial (with vertez
0 and semi-angle 8, cf. [12], Section VI.1.2). Then Case (A) holds.

Proof. Let z € Ker M N 4. Since M is self-adjoint, we have AD 4 L Ker M,
hence (z, Az) = 0. But A is sectorial, and therefore

|(y, Az)|* € (1 + tan8)? Re(y, Ay) Re (2, Az) = 0

for all y € D(A) (see [12], loc. cit.). Since D(A) is dense by Assumption 2.2, we
have Az =0, 1.e, z € Ker A. 1§

Showalter uses this result as an important ingredient in [17]. In his setup
M and A are defined in the sense of quadratic forms. M must be non-negative in
order to define a semi-scalar product. (See also [1], [15] and {16].)

The degenerate Cauchy problem (2.1) is expected to have unique solutions
only if Ker M NKer A = {0}, and it is this case which we want to investigate
further.

EXAMPLE 2.7. Let = & = L?(R), A = d?/dz? on its natural domain
D(A) = {z € L?| 2,2’ absolutely continuous, z” € L*} = W>*(R).

Let I be the open interval (—1,1) and M be multiplication by the charac-
teristic function of R\ I. Clearly, Ran M is closed and consists of all L2-functions
vanishing on I. Hence D4 consists of those functions z € D(A) which are linear
on [ and thus satisfy

(2.7 Z(+1) - Z(-1) =0, z2(+1) = z(—-1) = 2'(-1).

The set P2, C Ran M consists of all functions u € L? vanishing on I,
which together with their derivative u’ are absolutely continuous on R\ I, such
that u” isin L?(R \ I), and such that the boundary conditions (2.7) are satisfied
for u. On this domain we define the operator

{0 ifzel, o
(2.8) (Aou)(z) = {u,, (o) ifogr orelue D(Ao) = P-D 4.

D(Ao) is the set of all u € Ran M for which there exists a unique v € Ker M
such that z = u+ v € D4. (The function v interpolates linearly on / between
the boundary values of u and vanishes outside I.) Moreover, Aqu = Az. This is
the situation described in Case (B) above. Hence the degenerate Cauchy problem
(2.1) is equivalent to the ordinary Cauchy problem

(29) %u(t) = Ag U(t), U(O) = PJ-ZO
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in the Hilbert space L2(R\ I). It is easy to see that the operator Ag = d?/dz?
with the above boundary conditions is self-adjoint and negative. Hence for each
2o € D4, (2.9) has a unique solution u(t) € D(Ag) (¢ 2 0) from which it is easy
to obtain the unique strict solution of (2.1).

The restriction to an ordinary Cauchy problem in (Ker M)* is sometimes
even possible, if the operator A does not leave this subspace invariant. In order
to investigate this case further we make the following assumption.

AssuMPTION 2.8. PD,4 C D(A) and the operator (QAP)IPD,4 has a
bounded inverse (which is an operator from Q& to PD4).

ExaMPLE 2.9. Let 6 = L%(R)? = L%(R,C?), and let

10 0 £
M= = oz )
(0 0)’ A (ai a)

The matrix differential operator A is defined on its natural domain, the
Sobolev space W12(R)2. Assumption 2.8 implies a # 0. We find that

.= {(1) ew ®@loa) = -1 1)}

We see that z = (;) € D4 implies f € W22(R). Moreover, z € D, is

uniquely determined by its part f = PYz in (Ker M)*. This is also the content
of the next lemma.

LEMMA 2.10. Under the Assumplions 2.2 and 2.8 a vecior z € § is in the
subspace D 4 if and only if

z€D(A) and Pz=—(QAP) 'QAP"z.

Proof. By definition, z € D 4 iff z € D(A) and QAz = 0. By Assumption 2.8
the vectors Pz and PLz are in D(A). Writing z = Pz + Ptz gives QAPz +
QAPLz = 0 from which the result follows immediately, since QAP is invertible
on the range of the projection @. &

REMARK 2.11. According to Lemma 2.10, any z € P D4 C (Ker M)+
uniquely determines z € D 4 such that z = PLz:

(2.10) z=(1—-(QAP) 1QA).

Hence the set (P+)~!'{z} N D4 contains precisely one element, which is just the
Case (B) described above.
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REMARK 2.12. From Lemma 2.10 above we conclude for 2 € Ket M ND 4
that £ = Pz = 0 and hence z = 0 by (2.10). Therefore Ker M N D, = {0},
and the condition (A) described above is satisfied in a trivial way. In particular,
because of (2.2), we have

Ker M NKer A = {0}.

REMARK 2.13. Example 2.7 is a counter-example for Assumption 2.8, be-
cause in this case PD 4 ¢ D(A). (Note, however, that M and — A are non-negative
and thus Remark 2.6 applies.)

According to Remark 2.11 we define the operator Z4 by
(2.11) Zs =P+ — P(QAP)"1QAP*.

This operator is defined on D(Z4) D P1D4. The restriction Z4[PL1D 4, given
by 1 — (QAP) 'QA on P1D,, is the inverse of the projection P+ D 4:

(2.12) ZaPt=1on®D,, P*Zys=1onPiD,.
Now we simply set

(2.13) Ao = AZ4 on D(A¢) = P1D,4

and for all z € D4 we find, writing © = Pz,

(2.14) Aoz = Az.

Since Az = Q+ Az for all z € D4, the operator Ag can be written in the more
symmetric form

(2.15) Ag = QTAPL — QAP (QAP) Y QAP on D(Ao).
Obviously, we can also factorize Ag with the help of the operator
(2.16) Ya=Ql - QtAP(QAP) Q.

From Y4AP = 0 we find Y4APL = Y4 A and

(2.17) Ao =YaA on D(Ag) = P+Dy4.

REMARK 2.14. For the Example 2.9 above Ag can be identified with
~18?/82? on W2%(R) and M* = 1 on L%(R). Hence for a <.0 the factor-
ized system defines a well-posed (non-degenerate) Cauchy problem (in the Hilbert
space L?(R)).
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REMARK 2.15. In the finite dimensional case, it is well known that (2.1) has
only unique solutions if the matrix pencil (A, M) is similar to (4; & 1,1 & N),
where N is nilpotent (see [2]). This is equivalent to (A, M) being a regular pencil,
which means that there exists a Aq € C such that A — AgM is invertible. We are
going to assume this type of regularity.

AssuMPTION 2.16. The operator A has a bounded inverse.

REMARK 2.17. Under Assumption 2.2 this is equivalent to A injective with
Ran A = &. By (2.2), this implies that A{® 4 has a bounded inverse as an operator
from D4 to QL &. In particular, AD 4 = @+ A. In this case the operator Ag is also
invertible, the inverse operator

(2.18) Al = (AZa)" = PLA~I Q4R
is bounded and defined on all of Q+A.

REMARK 2.18. Whenever z(t) is a solution of (2.1), then y(t) =exp(—Aot)z(t)
is a solution of (2.1) with A replaced by A — AgM. Hence if (A, M) is a regular
operator pencil, then Assumption 2.16 means no further restriction.

LEMMA 2.19. Under the Assumptions 2.2, 2.8, 2.16 the operator Aq defined
in (2.13) is closed on D(Ag) = P1D4.

Proof. Let (z,) be a sequence in D(Ap) which converges to z in P1$, such
that Aoz, = AZ4z, is also convergent. By continuity of A™! (Assumption 2.16)
the sequence z, = A"'AZaz, = Z42, is convergent, and for each n, z, € D4.
Since Az, converges and since A is closed on D4 we find z € D4 and

(2.19) Az =limAz, = limAZ,z,.
The projection P is continuous, hence
Ptz =limPLz, = limPtZ42z, = limz, = z.

From z € D4 we therefore conclude that z = P12z € PLD,4 = D(A4p).
Moreover, by (2.12), 2 = Z4P*z, which implies Az = AZsz. Together with
(2.19) this implies the result. 8

By construction, for all z € D4, we have Az = Agz, where z = Ptz
Moreover, for z € D(M), Mz = MLz with the invertible operator M+ defined in
(2.3). Hence we can replace the degenerate Cauchy problem (2.1) by

(2.20) %M"‘x(t) = Ag z(t), z(0) = Ptz

How to proceed now depends on the precise assumptions on M.
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AssUMPTION 2.20. Let D4 C D(M) and assume that at least one of the
following statements is true:

Case (a) The operator M has a closed range.

Case (b) The operator M has a closed domain.

REMARK 2.21. If M is closed and densely defined (Assumption 2.2), we can
give the equivalent formulation (using the closed graph theorem):

Case (a) (M)~ is bounded and defined on all of Q+ 4.

Case (b) M1 is bounded and defined on all of P1$.

If Assumption 2.20, Case (a) is fulfilled, we may define the operator
(2.21) Ay = Ag(M*)™?
on the natural domain
(2.22) D(A) ={ye QLR | (MY) 'y e D(4o)} = ML PLDy = MDy,

where it is closed, because it is the product of a closed operator Ag and a bounded
operator (M+)~!. The operator A, is densely defined in the Hilbert space

(2.23) fo = (MD,)".

If Assumption 2.20, Case (b) is fulfilled, we define instead

(2.24) Ay = (M*)"1A,.

This operator is closed on

(2.25) D(A2) = {z € P D4 | Aoz € Ran M} = A;'Ran M,

because it is the product of a boundedly invertible operator (M1)~! with a closed
operator Ag. The operator A; is densely defined in the Hilbert space

(2.26) Ao = (P1D4)°.
ASSUMPTION 2.22. A; (resp. A;) generates a strongly continuous semigroup

in &g (resp. $o).

THEOREM 2.23. The Assumptions 2.2, 2.8, 2.16, 2.20, 2.22 imply the follow-
ing statements:
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Case (a) For each initial value zo € D 4 the degenerate Cauchy problem (2.1)
has the unique strict solution

(2.27) 2(t) = Za(ML)~tetr* Mz,

Case {(b) For each initial value zo € A™'Ran M the unique sirict solution of
(2.1) is given by

(2.28) 2(t) = Zpe?? Pl

Proof. Case (a) Let 29 € D4. Then Mz € D(A;), f. (2.22). By Assump-
tion 2.22 the Cauchy problem

(2.29) U =MD, w0) =Mz

has a unigue solution y(t) = exp(Ait)y(0) which is continuously differentiable
and is in D(A,) for all ¢ > 0. Since (M*)~! is bounded, &z = (M*)~'y is again
continuously differentiable with z(t) € P1D,4. Define z(t) = Zaz(t). Then
Mz = M*'z = y is continuously differentiable and

Az(t) = Aow(t) = Ary(t) = %y(t) = %Mz(t).

This shows that Az is continuous, and since A~ is bounded, z is also continuous.
Hence (2.27) is the unique strict solution of the degenerate Cauchy problem (2.1)
in the sense of Definition 2.3

Case (b) For zp € D4 with Az € Ran M we have P12, € D(A2), cf. (2.25).
Hence the Cauchy problem

(2.30) %z(t) =Aya(t), z(0)= Pl

has the unique solution 2(t) = exp(Ast) #(0), which is continuously differentiable
and in D(A) for all ¢ > 0. Hence 2(t) = Z4z(t) € D4, and M2(t) = MLz(t) is
continuously differentiable, because M+ is bounded. Hence

?.% Mz(t) = M Aza(t) = Aos(t) = Az(t)

is continuous. This implies (by the boundedness of A~!) that z is continuous.
Therefore (2.28) is the unique strict solution of (2.1). &
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REMARK 2.24. If M1 is bounded and has a bounded inverse, then Case (a)

and Case (b) are equivalent and
D(A2) = (M) 1D(A)), A= (M) AM*L,
eA;" — (M‘L)—leAltM.L‘

REMARK 2.25. If, in addition to the assumptions of the theorem, A is self-
adjoint in $ = R, and M 1s self-adjoint and positive, then it is useful to factorize
the degenerate Cauchy problem in a more symmetric way. If M is bounded and
has a bounded inverse, then the same is true for the positive square root (M+)1/2,
Write u(t) = (M1)!/2z(t) to obtain the ordinary Cauchy problem u(t) = Aau(t)
with

Az = (ML)~ Ag(M1)~%,
Here the generator Aj; is self-adjoint, if it is densely defined.

The conditions necessary for Assumption 2.22 to hold are usually given in
terms of the resolvent of the generator (Hille-Yoshida theorem). In the next lemma
the resolvents of A; and A; are expressed in terms of the operators A and M.

LEMMA 2.26. Under the Assumptions 2.2, 2.8, 2.16, 2.20 we find, if Case
(a) holds, for X in the resolvent set p(Ay) of Ay
(A= N)71Qt = M(A-aM)~1Qt,
and, if Case (b) is satisfied, for A € p(A3)
(A2 = X)71PL = PLA-AM)'M.

Proof. We note that D(M) D D4 and hence D(M*) D D(Ap). Thus we
calculate in Case (a)

(A; — A)-lQJ. — (AO(MJ.)—l _ AM.L(M.L)-l)'“lQJ.
= M*(Ag — ML) 1Q*
= M*((A-AM*PY)Z,) 7 Q"
= M(A— M) 'Q*.
In Case (b) we obtain
(A = A)"1PL = (ML)~1 4 — MM 1M4) 71 PL
= (Ao — AML)IMLPt
= (A= AM*PY)Z,)"!
= PLHA-IM)M.

In these calculations we used (2.12). 1

(2.31)
M
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Hence the assumptions on the resolvents of A; (or 4;) can be expressed in
terms of the operators

SA) = M(A=AM)"Y, or R(\)=(A-IM)M.

If, for some X € C, the operator S(A) is bounded and everywhere defined, we say
that A belongs to the generalized resolvent set ps(A). If the same holds for R(}),
we say A € pr(A). The operators S(A) and R()) are pseudoresolvents, i.e., they
satisfy the resolvent equation

S(A) = S(u) = (A = w)S(A\)S(u), all X and 1z in ps(A),
and similarly for R. Thus the generalized resolvent sets are open subsets of C. If
Assumptions 2.2, 2.8, 2.16, 2.20 hold, then
ps(A) = p(A1), or pr(A) = p(4s)

(in Case (a) or Case (b), respectively). From general semigroup theory we find,
e.g., the following sufficient condition replacing Assumption 2.22:

AssuMpPTION 2.27. Let {A € C|Re) > w} C ps(A) for some real constant
w, and assume that there exists a constant 1 > K > 0 such that

- K
(239 IM(A-M)TQM < o

(or assume a similar condition on P+(A — AM)~*M in Case (b)).

for all A with Re A > w,

REMARK 2.28. In view of Remark 2.18 we can assume without loss of gen-
erality that the constant w in (2.32) is negative.

REMARK 2.29. The operator A; is invertible, its inverse is given by
(A1) ' = M (A) = MATL QY R

Since (A;)~! is closed and defined on all of Q1 £, it is bounded. The operator
T = MA~? is the object of investigation in Favini’s paper [5] and, e.g., in [7], [11].
Instead of (2.1), Favini considers the equation

%Tz(t) = z(t)
under suitable assumptions on T'. These assumptions are formulated in terms of
the operator A(A — AM)™! and insure analyticity of the semigroup generated by
the inverse of T'1Q* & (which is just A;).

In the general case we expect no continuous dependence on the initial con-
ditions, because the operator Z, in (2.27) and (2.28) is not continuous. In special
cases, however, the time evolution defined in Theorem 2.23 extends to a bounded
operator.
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ExaMPLE 2.30. For simplicity, we assume that ML is bounded and has a
bounded inverse. Hence ps(A) = 1p;:;(A). Let Ay be the generator of a bounded
holomorphic semigroup (see [12], Section IX.1.6). This is the case, if pr(A) con-
tains a sector |argz| < £+ 6,6 > 0, and if

1 K T
(2.33) A =AM M| < DI for |arg A] < §+6——e
holds for any € > 0, with a suitable constant K > 0. Thus exp A3t is given by a
Dunford-Taylor integral (where I is a suitable path within the sector mentioned
above, see [12], p. 490)
(2.34) et = 1 M (A2 — M)~ Tda

27
T

Inserting this into (2.28) and using
Za(A2— A" Pt = (A~ XM)"'M = R())

(cf. (2.31)) we obtain immediately

(2.35) () = -5}5 ( / e R(}) dA) z0.

r

It is clear that this defines a bounded evolution operator on all of $3. In this case
z(t) depends continuously on the initial value. Ast — 0, 2 might be discontinuous
(in t), but PYz(t) — PLlz,. For 29 € D4, however, z is a strict solution and is
therefore continuous in ¢,

3. EXAMPLE: THE DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT

In this section we show that the Dirac equation of relativistic quantum mechan-
ics has a singularity in the nonrelativistic limit which can be understood in the
framework of degenerate Cauchy problems. The Dirac equation is a system of lin-
ear partial differential equations which has the following abstract structure {after
subtraction of the “rest-energy” mc?, see [18], Chapters 5 and 6 for details)

3.1) %g,(t) = —i(eD + meX(r — 1) + V) 9(t).
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Here m > 0 denotes a mass, ¢ the speed of light. 7 is a unitary involution (which

2

means 7° = 7°7 = 77* = 1) in the given Hilbert space §, the operator D is

self-adjoint and anticommutes with 7,
™D(D) C D(D), Dr+7D =0 on3(D).
The operator V is symmetric, commutes with r,

(V) C D(V), Vr—rV =0 onD(V),

and is relatively bounded with respect to D (but not necessarily with relative
bound less than 1).

REMARK 3.1. Here we work in a setting which is much more general than
relativistic quantum mechanics. In [18] it is shown how the concrete special cases
fit into the abstract approach. Here we only mention that the Dirac equation in
its usual form is obtained in the special case $§ = C*® L%(R%), D = —ia - V,
T = [3, where a3, ag, a3, and 3 are the famous Dirac matrices. In this case V is
multiplication by a diagonal matrix-valued function (electric or scalar potential).

The Hilbert space decomposes into a direct sum of the eigenspaces belonging
to the eigenvalues +1 of 7, § = H, @ H_. We write H1 = Pe$H, where Py are the
orthogonal projections

(3.2) Pi=2-(1%7).

DO | b

In order to investigate the nonrelativistic limit (¢ = co) we make for 0 < ¢ < co the
transformation 9 (t) — 2(t) = (P4 + cP-)y(t) and multiply (3.1) with P, + P_/¢
from the left. This gives the following equation for z:

(Pt Z) sty =-i(D+ VP, —2mP_+

Vc}:”) z(t).

In the nonrelativistic limit ¢ = oo this becomes formally

d

(3.3) =

Py z(t) = —i(D + VP4 — 2mP.) z(t).

This is a degenerate Cauchy problem of the form (2.1), where M = Py is a self-
adjoint projection operator (hence it is bounded and has closed range and both
Case (a) and Case (b) in Assumption 2.20 apply here). The theory described in
Section 2 gives the tools for the factorization of the degenerate equation (3.3).
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THEOREM 3.2. Under the above assumptions A= —i(D+V Py —2mP_) is
closed on the domain

1
(3.4) Da={:€9|PzeD(D?), P.2= 5—"—1DP+z}.

For a{l iniltal values z9 € D4 the degenerale abstraci Dirac equation (3.3) has a
unique sirict solution z(t) which is in D4 for allt. Moreover, z(t) is given by

1
(3.5) 2(t) = (1 +5m D) exp(Aot) Py 20,
where

¢ D?
(3.6) Ag = _l(ﬂ + V) P+.

The operator iAg is self-adjoint on D(Ag) = P1D 4 = D(D?)Pt C H5.

Proof. First we note that V is bounded relative to D? with infinitesimal
relative bound, hence D?/2m + V is self-adjoint on D(D?). The self-adjointness
of iAq follows immediately. In the notation of Section 2 we have Q = P = P_,
because M = P, is a self-adjoint projection. Note that D maps Ker M N D(D)
into Ran M and Ran M N D(D) into Ker M. We find

QAP* = P_AP, = —iDP, = —iP_D,
PYAQ = P,AP_ = —iDP_ = —iP, D,
QAP = P_AP_ = 2miP_,

QAP+ = P AP, = —iVPy.

The domain D4 = {2z € D(4) | QAz = 0} is according to Lemma 2.10 character-
ized as the set of all z with Pz and P_z in D(A4) = D(D) and

1
P__Z—- -é?n-DP.‘.Z'

From this we may conclude that P,z € D(D?). Hence D4 can be described as in
(3.4), PyD4 = PyD(D?), and we can define the operator Ag as in (2.15) to end
up with (3.6). For all z € D 4 we have Az = Ap P,z and the closedness of A on Dy
follows easily from the self-adjointness (and hence closedness) of Ag on Py D 4. We
have Ag = A; = A because M+ = (ML)~ = 119,. Let z(t) = exp(Aot)Py 20
be a solution of the factorized problem with an initial value Pyzg in D(Ao). Let
Z4 be defined as in (2.11) as the operator which maps P+D(D?) onto Dy,

Za= (H%{D) Py
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We note that Z, is well defined (but generally unbounded) on D(D) D D(Ay).
In order to show the continuity of the solution z(t) = Z4z(t) of the degenerate
problem, we had to assume that A~! is bounded (see Assumption 2.16). This is
not true here, but a somewhat tedious calculation shows that

(A —AM)™' = (D + (V = A)Py — 2mP.) "
= (24 + %lp.‘) RN + Za (RO) = Bo(3) - P-,

where D2 - D2 i
R(\) = (E+VP+—,\) . R} = (-ﬂ— )

Since D?/2m is nonnegative and V is infinitesimally relatively bounded, R(})
and Ro(A) are bounded for X sufficiently negative or for A with ImX # 0. This
implies also the boundedness of (1A —AM)~}, because DR(A)D and DRg(A)D are
bounded. Hence there exists a Ao € C such that (4 — Ao M)~ is bounded and we
can apply Theorem 2.23 with A replaced by A — AoM (cf. Remark 2.18). Note
that Za_x,m = Z4 and Ag has to be replaced by Ag — Ap. Theorem 2.23 now
implies that y(t) = Z4 exp(Aot ~ Agt) Pz is a strict solution of the degenerate
problem with A — Ag M. The solution z(t) of the original problem is, according to
Remark 2.18, finally given by exp(Aot)y(t). 8

REMARK 3.3. For the applications in quantum mechanics the reduced
Cauchy problem in $4 = (Ker M)* is the Schrodinger equation: If D is defined as
in Remark 3.1 above, then the properties of Dirac matrices imply that D? = —A
is the Laplace operator.

REMARK 3.4. The time evolution 2(t) = Z4 exp(Aot) P12y can be defined
for all initial values 2o € D(D?) and z(t) is even a strict solution if zp € Da.
Nevertheless the time evolution operator is unbounded and cannot be extended to
all of 9.

For example, if V = 0, Z4 commutes with exp(Aot) and

. D? 1
Z(t) = exp (—lmt) (l + -% D) P+Z(]

implies that

1
(37) I = 1Py 20ll> + 5= IDPy 20

Hence the domain of the evolution operator cannot be extended to initial values
zo € D(D). (3.7) implies that (in the case V = 0) Z4 exp(Aqt) Py is continuous
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from (D), equipped with the graph-norm, into the Hilbert space $. A more
detailed investigation of the time evolution of the Dirac equation in the nonrel-
ativistic limit, scattering theory and relativistic corrections in the framework of
degenerate Cauchy problems will be published elsewhere.

4. THE INHOMOGENEOUS EQUATION

In this section we briefly discuss the modifications necessary in order to treat the
inhomogeneous equation

(4.1) %M #(t) = A(t) + £(t).

We make the following simplifying assumption.

AssuMpTION 4.1. In addition to Assumptions 2.2, 2.8, 2.16, 2.20, 2.22 let
ML = M[PL$% be bounded and have a bounded inverse. Furthermore, let Ag be
densely defined in P1$.

Some consequences of this assumption are described in Remark 2.24. We
also have $p = P19, and £, = QL 4, f. (2.23) and (2.26).
A necessary condition for z to be a solution of (4.1} is now given by

(4.2) #(t) = ZoPLz(t) — (QAP)"'Qf(t), forallt>0

where Z4 is defined as in (2.11). This is an immediate consequence of the require-
ment that Az(t) + f(t) be in Ran M. We can easily restrict (4.1) to

(4.3) ad;M ta(t) = Ao=(t) + (@1 — QL AP(QAP)1Q) £(¢)
= Ao x(t) + YA f(t)9

where Ag = AZ4 = Y4 A is given as in (2.13) and (2.17). Under the assumptions
made above there are two equivalent methods of dealing with (4.3) (¢f. Cases (a)
and (b) described in Section 2}, either by transforming to

(44) SU(0) = A yld) + Ya 100,
(where y(t) = ML«(t)) or to

(4.5) %z(t) = Ay z(t) + (M1)"1Y4 £(2),
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where (as in Section 2)

Ay = Ag(MY)™ Ay = (ML) A,.
Since we assume that A~! is bounded, we can define g(t) = P+ A~ f(t) and write

(4.5) as

(4.6) ©2(t) = 42 (=(0) + 9(0).

Whenever g(t) is in D(A;) = PLD 4, a solution of this equation is given by:

t
z(t) = e Prz + /e"‘(‘“’)Azg(s) ds
0

t
=et? Ply 4 A, /e“"(t")g(s) ds.
o
Tt is well known (see [12], Section IX.1.5) that the expression
1
4.7 h(t) = AZ/eA’("’)g(s) ds
0

is well defined whenever g(t) is a continuously' differentiable function of ¢ {which
is the case if f is continuously differentiable). In order to obtain a solution of the
original degenerate problem we have to build the expression

(4.8) #(t) = Zaz(t) — (QAP)'Qf (1)

which is only possible if z(t) € D(Z4).

REMARK 4.2. In the important special case where the factorization operator
Za is bounded, the solution 2(t) is well defined for all initial values zo and for
all continuously differentiable functions f. It is a strict solution in the sense of
Definition 2.3 only if 2(t) € D4 and 20 € D 4.

REMARK 4.3. Another special case, where z(t), given by (4.8), is well defined
is obtained if A and M satisfy (2.33) (see, e.g., [11]). In this case A, generates a
bounded analytic semigroup and A(%) is in D{A3), because A2 exp(Ast) is bounded.

Finally we discuss the inhomogeneous degenerate equation for functions f
with values in Ran M. The following theorem is a direct analogue of Theorem 2.23.
Under the simplifying assumptions of this section (cf. also Remark 2.24) it can be
formulated as follows.
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THEOREM 4.4. Let f be a continuously differentiable function with values
in RanM. Under Assumption 4.1, (4.1) has a unique strict solution z for each
initial value 29 € D 4. I is given by

2(t) = Z4 z(t) — (QAP)'Q f(t) = Za z(2),

z(t) = e?* PLy + /eA’(“") (ML) 1 f(s)ds.
0
Proof. For every initial value P*zy € D(Az) = PLD, the function t — z(t)
is continuously differentiable, and z(t) € D{A2) = PLD4 for all t > 0 (see [12],
Section 1X.1.5). Therefore z(t) = Z4z(t) is well defined. Using the continuity of
M?' we find that Mz(t) = M*tz(t) is continuously differentiable with

%Mz(t) =Mt %x(t)
= M* (A 2(t) + (M) (1))
= Az(t) + f(t).

This shows that Az(t) and hence z(t) = A~1Az(t) is continuous. Hence z is a
strict solution in the sense of Definition 2.3. This finishes the proof. Let us finally
note that £(t) can be defined for all 2q, and for each t > 0

10 = [ A0 ()71 1(s)ds
4]

is in D(Az) and hence Z, f(t) is well defined. But Z, exp(Azt)P* need not be
defined for initial values not in ® 4, because Z4 may be unbounded. A

5. SOME REMARKS ABOQUT CONTROL THEORY

In this section we make some remarks concerning the basic concepts of control
theory under the simplifying assumptions of the previous section. Leaving a more
exhaustive treatment of degenerate control problems to further investigation, our
purpose here is to illustrate the possible usefulness of our approach by discussing
a special case to be described in the following.

In order to define a degenerate control problem, we need an operator B
mapping a control space U into K, and an operator C mapping §) into the output
space V, U and V being suitable Banach spaces. The system of equations

(6.1) % M z(t) = Az(t) + Bu(t),



FACTORIZATION OF DEGENERATE CAUCHY PROBLEMS: THE LINEAR CASE 141
(5.2) v(t) = Cz(t)

will be called the control problem defined by the ordered quadrupel (M, A, B, C).
Besides the Assumption 4.1 we assume that B and C are bounded and satisfy

(5.3) Ran B C (Ran M), Ker C D Ker M.

Hence Theorem 4.4 applies to this situation and (5.1) has a unique strict solution
2(t, u, z0) whenever Bu is continuously differentiable and zp € D 4.

REMARK 5.1. The output v(t) = Cz(t) is well defined and continuous in ¢
for all initial values zp € §5. This is because by (5.3) Cz = Cz holds for any z and
z = Pz. Hence CZ4 = CPLZ, = C is bounded and CZ, exp(Ast) P+ extends
to all of 9.

We will also consider the “dual problem” defined by (—M*, A*, C*, B*). Be-
cause of (5.3) we find that
(5.4) Ran C* C (Ran M*)*, Ker B* D Ker M*.
Under the Assumptions 2.2, 2.8, 2.16, 2.20, 2.22 of Section 2 we can easily restrict
(56.1), (56.2) to

(6.5) % M* z(t) = Ao 2(t) + Bu(t),

v(t) = Cx(t).

where Ap is given as in (2.14} and (2.15).

Because of (5.4), the dual problem can be restricted in a similar way. When
defining the factorization operators Z,+ and Y4« for the dual system one has to
take into account that the roles of Q and P are interchanged. Hence

Zae = QY = Q(PA'Q)'PA'QT = (Ya)',  Ya- =(Za)
and we can define (A*)g = A*Z4+ = Y4 A*. We see immediately that
(5.6) (A*)g = PLA* QL — PLA*Q(PAQ) " 1PA*Q* = (Ao)".

With Assumption 4.1 the two formulations Case (a) and Case (b) of Sec-
tion 2 are equivalent, and we have two equivalent methods of dealing with (5.5):
Method (a) shows that the control problem (M, A, B,C) in $ can be reduced to
(1, A1, By, Cy) in Q* &, where

Ay =Ag(MYY Y, 'By=B, Ci=CcMt)y~L
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On the other hand, by method (b) we obtain an equivalent problem in P*$ which
is defined by the operators (1, As, Bz, C2), where

Ay =(MY)Ay, By=(MY)'B, Cy=C.

The dual problem (~M*, A*, C*, B*) can be factorized in a similar way. This leads
to an ordinary control problem (—1,(A*);,{C*)1,(B*)1) in PL% (= factorization
by method (a)) and to (—1,(A*)2,(C*)z, (B*)2) in @+ & (method (b}). Using (5.6)
and

(M) = (M1),
we obtain the following relations

(A) = (A")o(M**)™! = (M*) 1 Ao)* = (42)",

(Ch=C"=(Cy)",

(B*)1 = B*(M**)™! = (M*)7'B)* = (B2)",
and by similar calculations

(A)2= (A1), (C)2=(Cr)", (B")2=(By)"

In the control theory dealing with nondegenerate systems it is customary to define
a dual system for each control problem. According to this definition, the dual of
the ordinary control problem (1, A;, By, Cy) obtained by method (a) is given by
(—=1,(A1)",(C1)*,(B1)*). From the result above this dual system is the same as
(~1,(A*)2,(C*)2,(B*)2), which is just the control problem obtained from (—M*,
A*, C*, B*) by factorization via method (b).

Hence we find the following diagram which exhibits the compatibility of
duality and factorization:

(M,4,8,0) X (-M,4,CB)
(a.)I I(b)

(1, A1, B1,Ch) dpeltty (—1,(A*)2,(C*)2,(B*)2).
There is, of course, a corresponding diagram with (a) and (b) exchanged:

duality
f—

(M,A,B,C) (-M*,A*,C*, B*)
® ] [@

(1, Az, B3, Ca) dglity (=1L, (A" )1, (C* ), (B )).
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This shows that methods (a) and (b) are dual methods of factorization.

In control theory one is also interested in the possibility of feedback control.
This is achieved by an operator K defined on a domain ©(K) C $ and mapping
into the control space U. The feedback-control system is now defined by

(5.7) % M z(t) = (A + BK) z(t).

We assume that D(K) D D(A), hence the operator BK is relatively bounded
with respect to A. We can factorize (5.7) as in Section 2. The range condition
(5.3) implies that @B = 0 and hence Dayppx = D4. We define (A + BK)o =
(A+ BK)Za4px on P+D,, where

Zaypk =1— (Q(A+ BK)P)'Q(A + BK)
=1- (QAP)—lQA‘—‘ ZA on P'LDA.

For the factorized problem we therefore obtain (by method (a)) the generator
A1 + B1 Ky, where K; = KZ,(M*)~! and (by method (b)) A; + B2K3 where
K3 = K (here A; and Bj, j = 1,2, are defined as above). The solution of the
degenerate feedback-system (5.7) is therefore given by

2(t) = Sa+pr(t) 20
with the (possibly unbounded) evolution operator
SA+BK(t) = ZA e(A2+BzK2)t P_L — ZA (Ml)‘le(Al""BlKl)i MJ_ P'LA

The standard notions of control theory can now be generalized to degenerate
problems as follows.

DEFINITION 5.2. The degenerate control system (M, A, B,C) is called ap-
prozimately conirollable, if for all € > 0, all T > 0 and all z,21 € (Da)° there
exists a control function u such that ||2(T,u, 20) — z1|| < €.

It is called observable, if the dual system (—M*, A*, C*, B*) is approximately
controllable.

The degenerate control system is called stabilizable, if there exists a bounded
operator K such that Sqypx(t) is bounded for ¢ > 0 with ||Sat+Br(t)| <
pexp(—wt), p21,w>0

The degenerate control system is called detectable, if the dual system is sta-
bilizable.
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THEOREM 5.3. Let (M, A, B, C) salisfy the assumptions formulated in this
section and assume thal the factorizalion operator Z, is bounded. Thén the de-
generate system (M, A, B, C) is controllable (observable, stabilizable, detectable) if
and only if the ordinary control system (1, Aj, B;,C;) (7 = 1 or 2) is controllable
(observable, stabilizable, detectable).

Proof. The proof is immediate after the observations made in this section.
If Z4 is bounded, then it extends to a bounded operator defined everywhere on
(P1D,4)° = P*$ and maps this subspace onto (D 4)°. A solution of the degenerate
problem can thus be defined according to Theorem 4.4 for all initial values 2y and
is given by
2(t,u,20) = Z4 2(t,u, P+ ),
t
z(t,u, z0) = e 2o + /e‘*’("") Bo u(s)ds.
0

Here z(t,u,zo) is a solution of the system factorized by method {b). For con-
trollability, we just note that ||2(T, u, 20} — z1]| € ||Zall||=(T, u, 20} — z1}|, where
zo1 = PYzp;. Hence if z; can be approximated by a solution (T, u, o) of the
factorized system, then Z4z(T, u, zo) is a solution of the degenerate problem which
approximates the given vector z;.

If the factorized system is stabilizable this means that there exists a bounded
operator K3 such that (A + B2K3) is the generator of an exponentially stable
semigroup. Hence ||[Sa+pk ()] € ||Z4ll 2 exp(—wt), where p 2 1 and w > 0. The’
result follows since [|Z4[| = 1.

In the same way one shows that controllability and stabilizability of the
system factorized according to method (a) implies the corresponding properties
of the degenerate system. In a similar way controllability (stabilizability} of the
degenerate system implies these properties for the factorized systems.

Concerning the properties observability and detectability, which are defined
with the help of the dual system, the commuting diagrams above together with
the preceding part of this proof show the equivalence of the degenerate and the
factorized systems. 8

REMARK 5.4. Under the assumptions of the theorem and according to our
observations in Section 2, the degenerate control system is stabilizable, if there
exists an operator K and constants p 2 1 and w > 0 such that

[ — -1 < ﬂ : N
{I(A+ BK — AM) M“\——Re/\—-w for all A with Re X > w,
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