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ABSTRACT. Let A, B be linear operators acting in a Hilbert space, such that
B or ABis in a von Neumann-Schatten class Cp. Sufficient conditions on the
geometry of the spectrum and on the growth of the resolvent are given for
the existence of hyperinvariant subspaces of A + B.
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1. INTRODUCTION

Let H be a separable, infinite-dimensional complex Hilbert space. We denote by
L(H) the algebra of all bounded linear operators acting on H and by () the
ideal of L(H) of all compact operators. Let T be a bounded linear operator of M.
A closed subspace M of H is said to be hyperinvariant for 7' if SM C M for any
operator S that commutes with T

The purpose of the present note is to show the existence of hyperinvariant
subspaces for operators of the form T' = A 4+ B where A is an operator whose
spectrum has an exposed atc (see below) and whose resolvent has a certain growth
and where B or AB is a certain compact operator in a von Neumann-Schatten
class Cp,p 2 1. The results of this note may be considered as a generalization of
Theorem 3.5 and Theorem 3.8 of [1], Corollary 3.3 of [4]. The main 1mprovement
is the fact we deal with stronger growth of the resolvent.
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2. PRELIMINARIES

Throughout this note, if T € L(H), we denote by ¢(T),0,(T),0.(T) and p(T)
the spectrum, the point spectrum, the essential spectrum and the resolvent set
respectively (see [2], Part I, VIL 5). The set of all 4 € ¢(7T) for which uId—T is one-
to-one and for which the manifold (uId—-T")H is dense in but not equal to 7 is called
the continuous spectrum of T' and is denoted by o.(T). As usual the resolvent
function of T is denoted by R(-; 7). For any complex number A and a subset E of
the complex plane, we set d(), E) = inf{|} — 2|, z € E}. We understand a smooth
arc to be such a one that has a continuous second derivative when parametrized
with respect to arc length. We assume a Jordan curve J is positively oriented and
for a fixed Ag on J, where J has a parametrization A = g(s) (0 € s < I(J)), in term
of arc length s from Mg, g(0) = Ag, g(s) = g(s + {(J)), and g(s) is continuous on J
and g'(s), g"(s) are continuous except points Ay = g(sx), sx < sk41,k=1,2,...,n
on J, where I(J) denotes the whole length of J. We denote by J, a Jordan curve,
which consists of a finite number of rectifiable smooth arcs in the complex plane.

DEeFINITION 2.1. If A is a bounded linear operator, then o(A) contains an
exposed arc J if there exists an open disk D such that Dy N o(A) consists of a
finite number of rectifiable smooth Jordan arcs in the complex plane.

The set of all operators A € £L(H) whose spectrum contains an exposed arc
will be denoted by L(H, A.).

If A€ L(H,A.) and if J is an exposed arc of o(A), we make the following
definition:

DEFINITION 2.2. We say that the resolvent of A has the growth condition
(C) near J if:

£

/loglogM(cS) dé < oo
0

for some sufficiently small € > 0, where M(6) is defined by:

M(8) = sup{||(Ald — A)~ |}, d(r, J) = 6, A € D;}.
Now we give a theorem due to [5].

THEOREM 2.3. Let T € L(H,A.) and let J (not reduced to a single point)
be an exposed arc of o(T) such that the resolveni of T has the growth condition
(C) near J. Then T has non-trivial hyperinvariant subspaces.

Before giving our results, for the sake of convenience, we shall list some facts
on the von Neumann-Schatten classes C,, p > 0 established in [3], Part 1I, XL.9.
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Let C be a compact operator on H and [C| := (C*C)E Let Ay, Ag, ..., A, ...
(resp. p1,H3,. .., tn,...) be the eigenvalues of C (resp. |C|), arranged in decreas-
ing order and repeated according to multiplicity. We write A, (C) (resp. gn(C)) for

i

the n-th eigenvalue of C' (resp. |C|). We write Clly - (Eun(C’)p) 0<p<oo.
The class C, is the set of all compact operators C such that IC1], is finite.
THEOREM 2.4. IfC € Cp, p2 1 then:
0 (Sha@P)’ <l

(i) If A € L(H), |ACI, < Il AICH, and |ICA]l, < [IAf{IC],-
(iii) If k 2 p, k € N* and if —1 & ¢(C), the infinite product

0o k-1 ¥
6 (C) := H ((1 + Ai) exp (E(—l)j i‘;“))

=1 j=1

converges aebsolutely,

(iv)Ifk2p2 k-1, (-1 & o(C)) there exists a constant K; depending only
on p such that |§;(C)| < exp(K1|IC|[}).

(v) For each C; € Cp, the function §;(C + 2C1) is an analytic function of z.

THEOREM 2.5. Let 1 < p < oo and C € C, such that -1 ¢ o(C).
Letk 2 p 2 k — 1, and let 6,(C) be the infinite product defined previously.
Then the operator 8:(C)(Id + C)~? depends continuously on C, and satzsﬁes the

inequality:
16:(C)(1d + C) 7| < exp(Ka|ICIp)

where Ky is a constant depending only on p.

3. RESULTS

First of all, we give a Lemma (see Lemma 1 in [7]) which is very useful in the
sequel:

LEMMA 3.1. Let f : B(0,1) — 2 be a biholomorphic map of the unil disk
onfo an open simply connected bounded sel Q with a C? regular boundary. Then
there exist two posttive consianis ¢ and C such that:

e(1~ [2) < d(F(2),32) < C(1 — [2]).

Now we give the first theorem, which can be considered as a generalization
of Theorem 3.5 of [1]. In [1] one considers certain compact perturbations of an
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operator A whose spectrum is contained in a finite union of simple rectifiable
smooth curves J (o(A) can be a singleton) and whose resolvent has the following
polar growth condition near J:

K

. _ =1 <
3Kn >0 - A <

THEOREM 3.2. Let A € L(H, A.) and let J (not reduced to a single point) be
an ezposed arc of a(A) such that the resolvent of A satisfies the following growth
condition near J:

[(Md - A)7H| < (d(2, 7))

&
where ¢ is a positive decreasing function satisfying [logp(z)dz < oo for some
0

sufficiently small € > 0. Then, if B € Cp, 1 € p < 00, the operator T := A+ B
has proper hyperinvariani subspaces.

Proof. Without loss of generality for the existence of hyperinvariant sub-
spaces, we may assume that J is an exposed arc of ¢(T"). In fact, we can suppose
0p(T) = 8. By Weyl’s theorem (Theorem 0.10 in [8]) ¢(T") C o(A) and it is clear
that o.(T) = ¢.(A). Since J consists of accumulation points of do(4) (see for ex-
ample Corollary 1.26 of [6]), J is a part of o.(A). So we get J C 0.(4) = 0.(T) C
o(T) C o(A)} and we easily deduce from this relation that J is an exposed arc of
o(T).

Now we will prove that R(-;T) satisfies the growth condition (C) near J.
Since J is an exposed arc for o(T") and o(A4), if A € 9(J) N p(A), we get d(X,J) =
d(X,a(A)) = d(X, o{(T)) (where 9(J) denotes a neighborhood of J}.

Let A € p(A), A near J and set d(A) = d(}, J). It is clear that (AId — T')~?
is well-defined and that (Ald — 7)~! = (A\Id — A)~!(Id —~ B(AId — 4A)~1)~!. In
particular —1 ¢ o(—B(AId — A)~'}. Upon setting k£ =Ent(p) + 1, by Theorem 2.4
(iii), we obtain that the function 6x(—B(Ald — A)~!) does not vanish. So we get:

_ (Md — A)~18,(~B(\Id — 4)~!)(Id — BAId - 4)~)"!

(Ald —T)~! (= B(MId — A)~1)

By Theorem 2.3 and Theorem 2.4 (ii}, we get:

[l66(—B(AMd — A)"1)(1d — B(Md — A)™*)7Y|| < exp(Ko|[B(AId - A)~(})
< exp(K2|[Bllge(d(2))").
In order to estimate 8 (~B(Ald — A)~!) we use the Borel-Carathéodory theorem.

This result enables us to deduce an upper bound for the modulus of a function on
a circle |2| = r, from a bound for its real part on a larger concentric circle |z = R.
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THEOREM 3.3, (Borel-Carathéodory) Let f(z) be an analytic function reg-
ular for |z| < R, end let M(r) and A(r) denote the mazima of |f(2)| and R(f(2))
on |z| =r. Then for0 < r < R:

2r R+7r
= A(R) + Zo11(0)]

Before using this last theorem we have to do some preliminary work. Let

M(r) <

A = [a, §] be any segment of the curve J, where «, # are not singular points of
J (o precedes B in a positive direction along J). Let us replace J by [, f]. We
define two simply connected domains D; and Dy, whose boundaries are simply
rectifiable and such that 8Dy N3D; = [o, B] (cf. Figure 1). We denote dD; by C;
(i=1,2).

Figure 1.

Set 6(A) = 6x(—B(Md — A)~1). This function is well defined and analytic for all
A in p(A). Moreover,

16(0)] < exp(K1||Bllyp(d(A))"), 6(2) # 0, A € p(A).
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Indeed, by Theorem 2.4 (ii) and (iv) we have

|6 (— BOA ~ A)™)] < exp(K, (|1B(Ad — 4)7(|5)
< exp(Ki [ B[p[|(A1d — 4)~*")
< exp(K1[| Bl o (d(A))")-
Therefore we get 6(X) = exp(a;(A)) where a;()) is a bounded analytic function
on D, 7 =1,2. Thus,
Ra;(A) < K[| Bllpe(d())’-
Let z = ®;()) be the conformal mapping of the domain D; onto the unit disc and
let A = ¥;(z) be the reciprocal mapping for j = 1,2 respectively. Then o;(¥;(z))
are functions analytic in the unit disc, which satisfy the inequality:
Raj(A) = Raj (¥5(2))
< Kil|Bl[pe(d(2))?
< Ki||Bllge(C; (1 - |2)))
for some constant C; > 0 (j = 1,2), thanks to Lemma 3.1 and the fact that ¢ is
decreasing. Let r be an arbitrary real value satisfying 1/2 < r < 1, and let |2] < r.
Using the Borel-Carathéodory inequality, we obtain:
22|

r—|z|

r+ |7

o5 (%5 (2)| < o

Ki||Bllpe(C;(1 —r))° + CACHAWE

If z satisfies |2] = 2r — 1, we get:

: »
st < 2 (G- 1) + 12

for some constant D; > 0 (7 = 1,2).
We recall that for any operator L € L{H) we have:

1

l(Ad ~ 2)7Y)) > Wik

So, obviously, under the assumption that |#| is near 1, we get the following in-

equality:

1 C;
RS et —
1—|z] k‘p( 2 (t Iz]))

where k is a positive constant. Hence, we obtain:

) P41
s (%I < Ko (L1 - 12D)
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for some constant K > 0. Thus, returning back to the domain D; and D respec-

tively and using once more Lemma 3.1 and the monotony of the function ¢, we
find that:

lo; (M) < Dp(D'd(N)Y"*
for some positive constants D and D’. In particular,
Rarj(X) 2 ~Dep(D'd(A)Y T,
so that:
B < exp(Dp(D'd(N)F).

It follows from that:
I(N1d — T) 72| < @(d(2)) exp(K: [| Bl (d(V))*) exp(De(D'd(A)" ).
Therefore we have:
I(M1d — T) 7| < exp(Mrp(Md(2))"*)

for some positive constants M; and M, depending only on p. We easily verify
that:

/ log log exp( My p(Map)**) dp < oo
4]

The proof of the theorem is now completed thanks to the Ljubié-Macaev’s theo-

rem. A

The following corollary presents an explicit majorant of the growth of the
resolvent which is stronger that the one proposed in Theorem 3.5 of [1].

COROLLARY 3.4. Let A € L(HM, A.) and let J (not reduced to a single point)
be an ezposed arc of 0(A) such that the resolvent of A satisfies the following growth
condilion near J:

K}
! 13 . - -1 < f 2 i
AR, KL >0, >0, |J(Md— A)~Y| < K exp (d(,\,J)uogd(A,J)[He)

Then, if B € Cp, 1 £ p < 00, the operator T := A+ B has proper hyperinvariant
subspaces.

The following theorem is a generalization of Theorem 3.8 in [1] where, as
mentioned before, the resolvents have polynomial growth conditions near Ji.
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THEOREM 3.5. Let Ty € L(H, A,) such that 0(Ty) C Ji where Ji, (k= 1,2)
is a finite union of simple rectifiable smooth Jordan arcs, and suppose R(-;Ty) has
the following growth condition near Jy:

1(AM1d — T3e) M| <€ erld(), Jx))

where . 15 a positive decreasing function defined on positive reals and satisfying
&
Jlogpr(z)dz < oo, for € sufficiently small, k =1,2.
0

Then, tf T2 € Cp, 1 < p< o0 and ap € C (k = 1,2), the operator T :=
onTh + a2y has non-trivial hyperinvariant subspaces whenever o(oy Ty + a2Th) is
not reduced to a singlelon.

Before detailing the proof of this theorem, we give the following lemma.

LEMMA 3.6. Let T, S € L(H) such that TS € K(H). Then we have

(T + S) C o(T)Ua(S).

Proof. Suppose this assertion does not hold. Then we can find A € 0.(T'+5)
such that A € p(T) N p(S). Thus, we can find S(A), T(A) € L(H) such that:

STV —T)(A - 8) = 1d.

Since T'S is compact, T'S can not be invertible, which implies A # 0. We have
AA=T=8)=(Id-TSSA)T(A)A-T)(A— ). Since X € 0.(T'+5), there exists
a sequel in H (zn)np1 such that ||z,]| = 1 and nlir{.xo(,\ - T — Sz, = 0. We get
nlL%(Id—TSS(A)T(A))yn = 0 with yp = (A-T)(A—S5)z,. Since T'S is compact, by
dropping to a subsequence if necessary, we may assume that (7'SS(M)T(A)yn)nz1
is convergent. Consequently, (yn)n>3 is convergent. If y = nlirgo yn Ohe obtains
S(A)T(N)y = nlingo 2z, and hence (A — T = S)S(MT Ny = 0, {|SANTNy] = 1,
contradicting the assumption A € ¢.(T+ S). 1

Now we can give the proof of the theorem.

Proof of Theorem 3.5. Let us set oy JyUepJz = J, £ = min(ey,€;3) and d(}) :=
d(), J). Without loss of generality for the existence of hyperinvariant subspaces,
we can suppose o(a; Ty + agTy) = oc(a1Ti + a2T3) is connected. By Lemma 3.6,
we have o (oyThy + a2T2) C o(a1Ti) U o(axT?) C J, thus we get anT1 + a7
belongs to L(H, A.). Let us set V(A) = —ajaa R(A; a2 o) R(A; on T )1 T2, A € J.
We have A(A—a1 Ty — a2 T3) = (A— 0171 ) (A— a2 T2 )(Id+ V (X)), thus —1 € o(V (X))
and by the definition of V/(-) we infer also that:

NV, € Cer(d(A))p2(d(N))
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for some positive constant C. We now proceed along the lines of the proof of Theo-
rem 3.2. We first get upper bounds for ||6x (V(A))(Id+V (A)) || and [|6:(V (X)) 1)
Then, via the equality

RO 1Ty + aoTy) = A6 (VA (Id + V(A) " RN, a1 T RO, a2 Ta)éx (V(A)) 2
(where k =Ent(p) + 1) we obtain:
IR(A, 1 Th + aoTh)|| < exp (Ci(p1p2(C2d(R)))7)

for some positive constant C; and Cs. Now we can apply Theorem 2.3 to finish
the proof. o

REMARK 3.7. One may think of improving the above Theorem 3.2 by “re- -
laxing” the smoothness condition on the exposed arc. In fact, Professor Macaev
(private communication) has pointed out to us that the Ljubi¢-Macaev theorem
(Theorem 2.3) would hold under somewhat weaker than C%-smoothness (loosely
speaking something like “finite curvature”). Nevertheless, via our method, there
still remains the question of how much can be “decreased” the smoothness hy-
pothesis in Lemma 3.1,
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