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ABSTRACT. The duality theory for compact groups of Doplicher and Roberts
deals with the category of finite dimensional continuous representations as an
abstract C”*-category. We study braided C*-categories for a compact matrix
quantum group to model the non commutativity of the tensor product. Let
Fa be the category of corepresentations of the quantum group Ug(d). We
associate to the Yang-Baxter category YB(F4) a C*-algebra, (Og)V(¥.

We give conditions for an endomorphism of a unital C*-algebra A to
determine an action of the strict braided tensor C*-category of corepresenta-
tions of Uy(d) on A. Such actions correspond to *-monomorphism of the fixed
point subalgebra (Oq)°Y+(%) into A with natural intertwining properties.
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1. INTRODUCTION

The results in this paper were motivated by those of [6], [7], [8] on the abstract
duality theory for compact groups where the basic results rest on endomorphisms
of C*-algebras. Specifically, the authors gave a characterization of compact group
duals as abstract categories. The categories that Doplicher and Roberts studied
arise as dual objects of a compact group. As categories they have objects which
are abstract elements, and the set of arrows are linear spaces which are not given
a priori as spaces of linear operators on finite dimensional Hilbert spaces. They
characterize such categories among the full subcategories of End(.A4), where A is a
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C*-algebra. The class of categories they studied are C*-categories which are the
categorical analogues of C*-algebras, equipped with additional structures. There
is a monoidal structure modelling the tensor product and it is symmetric, which
is equivalent to the fact that the tensor product is commutative.

Each object has a conjugate which is the analogue of conjugate represen-
tations for a compact group. Doplicher and Roberts’ main results characterize
the abstract category of finite-dimensional continuous unitary representations of a
compact group: every strict symmetric monoidal tensor C*-category with conju-
gates which has subobjects and direct sums and for which the C*-algebra of endo-
morphisms of the monoidal unit reduces to the complex numbers is isomorphic to
a category of finite-dimensional continuous unitary representations of a compact
group, unique up to isomorphism. Instead the theory of Tannaka-Krein charac-
terized the category of continuous unitary finite-dimensional representations of a
compact group G within the category Vectc of finite-dimensional vector Hilbert
spaces.

To cover the duality theory of compact Lie groups, it was sufficient to deal
with minimal duals T, where the objects were all powers of a given endomorphism
p of a C*-algebra A. If A is minimal in the sense that the arrows of the category
T generate A as C*-algebra, then the crossed product C*-algebra A x T which
contains 4 as a subalgebra is the Cuntz algebra O4 ([2]), where d is the dimension
of p.

The compact group G appears to be the group of all automorphisms of 4 x T
leaving A pointwise fixed and A is the set of all G-fixed points in A x T. The
action of G is a canonical action, so that the pair {A,p} is identified with the
universal model {Og, 0g}, where Og is the fixed point subalgebra of O under the
canonical action of G and og is the restriction of the canonical endomorphism of
Oa.

One natural question which will then arise would be how to generalize this
construction to an abstract duality theory for compact quantum groups. Thus the
first step should be to study model coaction of Hopf algebras on Cuntz algebras.
Model actions of finite-dimensional Hopf algebra on Cuntz algebra have been in-
vestigated in (3], [16], [18]. Longo in [16] has developed a different approach to
the construction of a crossed product related to the work of Cuntz and based on
the theory of inclusions of subfactors.

There is a history of generalizations of the Tannaka-Krein theory for locally
compact groups by Ernest, Stinespring, Tatsuuma, Takesaki. Generalizations to
compact quantum group have been given by Woronowicz ([23]), and in the setting
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of category theory by Yetter ([25]). A unified treatment covering all those cases
- has been given by Baaj and Skandalis ([1]), based only on multiplicative unitaries.

We should emphasize that all these developments deal with concrete duals
in the spirit of the Tannaka-Krein duality. As shown in [10}, model theories on
a 2-dimensional space time give rise to superselection structures described by a
braided monoidal subcategory ([12]) of End(.A). In [15] properties of conjugation
are developed for finite-dimensional objects in a strict tensor C*-category and a
definition of dimension. It is shown that the braiding gives rise to a central element
and that it is compatible with conjugates and model endomorphisms canonically
associated with an object in a strict tensor C*-category.

In this paper we deal with compact matrix quantum groups which we denote
by G = (A,u) as in [23) and the representation category of G will be a C*-
category, i.e. the categorial analogue of C*-algebras. These C*-categories are
equipped with a tensor product structure and they will be braided to model the
non commutativity of the tensor product. The objects of our category which we
denote by Fyq , are the tensor power of the fundamental corepresentation u and the
arrows are the intertwiners. Out of the braiding of the C*-category F4 we consider
a new category YB(Fg). The objects of YB(Fq) are pairs (V, cv,y) where V is an
object of Fy and ev vy is the Yang-Baxter operator given by the commutativity
constraint, i.e. by the braiding. Let Fy be the category of corepresentations of
the quantum U (d). To this category we associate in a natural way a C*-algebra
(04)Y+() which turns out to be the fixed point subalgebra of the Cuntz algebra
under a natural coaction I' of U;(d) on Oy.

The paper is organized as follows. Section 2 contains main definitions and
results needed about the fixed point algebra under a natural coaction of the com-
pact quantum group U,(d) on Oy4. In Section 3 we give the definition of a strict
braided tensor C*-category and we construct the Yang-Baxter category. The rep-
resentation category of the quantum compact matrix group U,(d) is considered. It
is a strict tensor C*- category and it has a natural braiding given by the R-matrix
associated to U, (d). We associate to the strict tensor braided C*-category YB(Fg)
the C*-algebra (O4)Vs(?). This C*-algebra can be identified as the fixed points de-
noted (0q)V+(9) of the Cuntz algebra Oy under a natural coaction of U,(d). It
carries a canonical endomorphism denoted by oy, 4y which is the restriction of the
canonical endomorphism & of O4. The strict braided tensor C*-category YB(F4)
can be reconstructed from (04)V+(9) and oy (4). This C*-algebra has been studied
in [17] where also the coaction of SU,(d) has been considered.
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In Section 4 we give conditidns for an endomorphism p of a unital C*-algebra
A to determine an action of YB(F4) on A. Such actions will correspond to *-
monomorphisms of the fixed point algebra (O4)SV+(?) into .4 with natural inter-
twining properties.

Our main result, Theorem 4.3, is about endomorphisms p of a C*-algebra A
with braiding of dimension d. Specifically, we specify .A with a representation ¢ of
the braid group Bs,. Our result gives conditions for the existence and uniqueness
of monomorphisms p : (0g)V«(% — A, u(8) = ¢ defining an action of (Oq)Ys(9)
on A.

2. BASIC DEFINITIONS

In this section we give the definition of compact quantum group and in particular
we consider the quantum U, (d) and SU,(d). We state some results about the fixed
point algebra under a natural coaction of a compact quantum group on the Cuntz
algebra. As in [24] we denote by (A4, A) a compact quantum group where A is a
unital C*-algebra and A is the comultiplication. Let u € M,, ® A be a unitary
corepresentation of A, i.e. u is unitary and it satisfies:

(1 R A)u = UyU13.

Write u = 3 e;;®u;;. Since u is unitary we have: ) Upetipg = Spgland Y urp ug, =
8r¢1. From (1 ® A)u = ujzu;3 we obtain the formula for the comul’:;iplication:
A(uij) = 3 tip ® up;-

Cunt}; ([2]) defined the C*-algebra Og4 generated by the isometries Sy, So, . . .,
Sq so that:

(1.1) >SSt =1 and SIS; = 6;1
It has a canonical endomorphism @ such that 7(X) = 3 5; XS

DEFINITION 2.1. Let B be a C*-algebra and 7 be a *-homomorphism from
B to B® A. We say that 7 is a coaction of a compact quantum group G = (4, A)
on B if
(r@id4)r = (id® A)r

where A is the comultiplication. This is equivalent to saying commutativity of the

following diagram: "
BeA "% BoAgA

w1 Tidg® A
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The *-homomorphism I' : Og — O ® A, defined by T'(S;) = Y Sp ® upi, is a
)

coaction. It is the natural analogue of the action of the matrix group U(d) on the
Cuntz algebra.

Recall the definition of the quantum U,(d) as in [14]. It is the algebra
generated by u,, satisfying the relations

Z Rfjlukmulp = E R',:’,pu,-kuj;
kJ kl
for all 7, j, m, p where
Ri=q¢"1, Rj=1, for i#j;
R:j =qt—gq, fori>j Rf;’;p = 0 otherwise.
It is known that R satisfies the Yang-Baxter equations.

DEFINITION 2.2. Let Qg4 be the Cuntz algebra and let ' be a coaction of
the quantum U,(d) on O4. We define the fixed point subalgebra (04)”" (4 of Oy
by T as follows

(0)*D = {2 € 04:T(z) =2z ®1}.

Denote by M, é“ the k-times tensor product of the d x d matrix algebra My
and define a canonical embedding 7 : M§¥ — Qg4 by

77(6-‘11‘1 ® eikik) =8 'Siks;k o 'S.;a

where {e;;}{;_, is a system of matrix units of M. This embedding is compatible
with the canonical inclusion of M¥ into M%+1.

We denote by MS° the UBF algebra which is the inductive limit of {M}}$2,.
Observe that the UHF algebra M$° can be considered as a C*-subalgebra of O
through the embedding 7.

Define u* = u @ --- ® u to be the tensor product of the unitary corepresen-
tation u with itself k times. Clearly u* is a unitary corepresentation if u is. The
restriction of the coaction T to the UHF algebra M$° is also a coaction of the
compact quantum group G on MJ°.

Set ¢ = ['|lunr. Then it satisfies

- *®
‘P(ei1j1®' : '®el'k.‘ik) = E : €arb, & - BCazty Blayiy - “Uagix Uariy ~ Yagsy

- ZURPNN: TN TOTOUN I

for every k positive integer. Therefore ¢ can be represented in the following form

p(2) = u*(z ® La)(u*)",
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for every z € Mj .

In this algebra we have the quantum determinant

D= Z (=) tg,1 - Ugp.
o€S(n)

This D is in the centre. We have A(D) = A ® D, where A(u;;) = 3 uip ® ;.
We obtain U,(d) if we require D to be invertible. Then we get a Hopf x-algebra.
The antipode can be expressed in terms of the u’s and D!,

As [19] and [23] we define the compact quantum group SU,(d) to be the
algebra generated by elements (up,) such that (up,) is a unitary matrix and

> E(ko,ky, .. ) Uigkotky -1k, = E(lo, hy, .., 1)
where E(ko,k1,...,k,) =0 if two indices are equal and otherwise
E(ko, kl, ceay kn) - (—q)“k“’k"""k“)

where I(ko,ky1,...,k,) is the number of inverted pairs in the permutation
(Ko, k1, ...y k).

Set Sq =3 E(ko,k1,...,kn)SkoSk, - - - Sk, . It is easily seen that it is a fixed
point of .

Note that the canonical endomorphism & of the Cuntz algebra Oy leaves the
fixed point subalgebra in 04 invariant under T.

The map

T(S) = 5 ® tips

is a map from H to H ® A. This is a corepresentation of A on H. The trivial
corepresentation isgiven by Ae C - A®1 € C® A.
Observe that a fixed point z € H* can be considered as an intertwiner by

the following diagram:
C — H*

r} 1T
C®A — H:F@A

Let (H", H*) be an intertwiner from H” ~ H*®. Hence an intertwiner (H, H) is
given by a map

T(S) =) alS;
and satisfies

D(T(S:)) = Y _ail(S;) =) el S, ® upj,
(TOUIS;) =(T®1)Y S, @upi =D _alS, ® uy.
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This implies that for all i and p, we have
PILATEDPATY
q i

or
Z Po.. _E: Iy
a"u;q-- G?Up‘y.
£ g

Similarly, an intertwining between H? and itself gives relations between the prod-
ucts u;;u,,. Hence the operator R defined above is an intertwiner between H? and
H2.

Let us recall the following theorem from [17]:

THEOREM 2.3. The fized point subalgebra (04)V+(9) of O4 by the coaction T
coincides with the fized point subalgebra (M$°)SUe(® of the UHF algebra MS° by
the coaction of SUy(d). In particular

(od)Uq(d) - (M?)Uq(d) - (M;O)SUq(d)

with an explicil formula for the isomorphism given in [17].

3. BRAIDED STRICT TENSOR C*-CATEGORY

In this section we give the definition of braided strict tensor C*-categories and
of the Yang-Baxter category built from the braiding. We assume that the tensor
category is generated by tensor powers of a single object and we show that there
exists a unique representation of By in Q4. We then specialize to the category
generated by the tensor powers of corepresentations of the compact quantum group
U, (d) and we show that & of Corollary 7 of [17] gives a representation of By in Og.

Let us now recall a few facts about tensor categories. Let C be a category
and we denote by ® : C x C — C a functor called a tensor product that associates
to any pair of objects (V, W) of C the object V ® W. Thus we say that a tensor
category (C,®,1,a,l,r) is a category which is equipped with a tensor product,
with an object I, called the unit of the tensor category, with an associativity
constraint a, a left unit constraint ! and a right unit constraint r with respect to
I. The following law relating the tensor product and the composition of arrows
holds in the tensor category:

(ToT)®(S08)=(T®S5)(T'8 ).
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The tensor category is said to be stritt if the associativity and the unit constraints
a,l,r are all identities of the category. Hence in strict tensor categories we are not
concerned about keeping track of parenthesis. We say that a category is braided if
there exists a commutativity constraint ¢ such that for each pair of objects of the
category we have an isomorphism cyv : U ®V — V ® U such that if T € (U, V),
T' € (U', V') we have

Cy v o T® =T ®RTo cuu,

i.e. the constraint ¢ is natural on both V,U. In a strict braided tensor category
the commutativity constraint and the associativity constraint satisfy a dodecagon
diagram which can be seen as the categorial version of the Yang-Baxter equation
([13])- A strict tensor C*-category is a strict tensor category with the associativity
constraint and the unit commuting with the *-operation and where each arrow is
a complex Banach space.

Let H be a Hilbert space of dimension d < co. From now on we let Fy to be
the category whose objects are the tensor powers of H, denoted by

H =H®---®H (rtimes), r€& Ng.

The set of arrows from H* to H" is denoted by (H*,H") and they are linear
mappings. The tensor product is defined within the category Fy since the objects
are the tensor powers of the given Hilbert space H.

The tensor product is strictly associative. Hence Fq is a strict tensor cate-
gory, also called strict monoidal category, where the monoidal product is the tensor
product. We adopt the definition of tensor category. Such category Fq4 has a space
of arrows which is a complex Banach space. The composition of arrows denoted
by o gives a bilinear map: A, B — Ao B (with ||4 o B|| < ||Al]||Bl|). There is also
the adjoint denoted by *, which is an involutive contravariant functor acting as an
identity on objects, i.e. * : Fq — F4. If A € (H?,H") then A* € (H",H*). The
identity is H® = C. The norm satisfies the C*-property: ||A* o Al| = ||A]|%, which
makes Fyq a C*-category.

On arrows the tensor product is defined by A x A’ € (H" @ H*, H™ @ H*),
if Ac (H",H™), A e (H*,H*), Ax A = A® A’. We write H"H* to mean:
HT @ H* = HT**,

In our C*-category we have one more element of structure, a commutativity
constraint, i.e. the braiding, which models the non symmetry of the strict tensor
C*-category Fq opposed to the Doplicher-Roberts strict symmetric C*-category
in which the symmetry models the commutativity of the tensor product. Let R
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be any operator from the two fold tensor product of H into itself that satisfies
the Yang-Baxter equation and let 7 be the flip operator. Later we will consider
R to be the solution of the Yang-Baxter equation associated to U;(d). Define the
commutativity constraint ¢y : HQH — HQH by ¢y r(h1®hs3) = a1 (R(h®
h2)), where hy, ha € H. It is shown in [13] that the operator ¢y i so defined gives
a braiding in the C*-category F4. Let us define cyr yo : H" @ H* — H* @ H”
inductively for any » and s as a linear mapping such that cgr geocye gr # idyr 4o
and which permutes the order of the factors in the tensor product. We define
cyr g+ for any r, s, by the following equation

ege g = M, g,y - - L,

U1 = (e mr(R) o Trets gres (R) 0 - -0 Tt go-a (R)),
N,—2 = (rgr.gr(R) o -0 T2 gs-2(R)), ..

I, = e gr(R),

(3.1)

where 7y g+ (R) stands for a copy of R, after the flipping in the r,r+ 1 position.
Hence we define a new category YB(Fg4) from the commutativity constraint cu,u
on the tensor category Fq. It is called the Yang-Baxter category and denoted by
YB(Fq4) = (F4,cq,u). It is a strict braided tensor C*-category, where the objects
of the category are pairs (H",cur gr), with H" objects of Fq and cy~ u- the
Yang-Bazter operator on H™ @ H™ above defined. '

The braid category B is a strict braided tensor category, whose set of objects
is the set N and such that there exists a family of isomorphisms ¢, m : n@m — Mm@
n defined as follows. For any pair of nonnegative integers (n, m), con = id = cn,0;
then

Chymn = (gmgm—l o 'gl)(gm+1gm - '92)(gm+n+1 i 'gn)

where g1, ..., 9m+n+1 are the generators of the braid group Bpim-1.

The family {cnm} is a braiding for B, see [13]. Hence there is a functor
F : B — Fy, uniquely defined on objects, i.e. it must be F(0) = id, F(n) =
H", F(I) = I and there exists an isomorphism

p2(H™, H*) : F(r) ® F(s) — F(r ®s),

which is actually an identity since this tensor category is strict.

Also the ¢; 1 : 1®1 — 1®1 automorphism is a Yang-Baxter operator ([13]),
Theorem 1.3.21, on the object 1 of B. Hence the automorphism ;' F(c1,1)p2
is a Yang-Baxter operator on F(1) in the category Fa. This defines an object
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(F(1), 93 ' Fler,1)p2) = O(F) in YB(F4). Therefore by Theorem XI11.3.3 of [13],
© extends to a functor

Tens(B,Fyq) — YB(F4)

and © gives an equivalence of categories.

Let By be the infinite braid group. One of the usual models for B, is as
follows. Fix on each of two parallel lines in 3 space an “upper” and a “lower” one,
n points labelled by the numbers 1,2, ..., n. We require that this labelling respects
the natural ordering of our index set. A braid is obtained by connecting each of
the upper points with a point of the lower line by a curve going only downwards.
Multiplication of two braids is defined by connecting the lower points of the first
braid with the upper points of the second braid with matching labels.

Similarly Bo, can be realized by countably many points such that all but
finitely many of them go straight downwards. Hence we see that we can realize
B, as inductive limit of the groups By, by the inclusion map

B, C Bayy which sends g, - 9o ® 1

where by the tensor we mean to add an extra label on the “upper” and“lower”
line connected by a straight line.

The shift o : B, — B,4y which sends g — 1® gn = ¢(gn) = gn41, by
the compatibility with the inclusion, then extends to an endomorphism which we
denote by the same letter o : Byy — By.

Consider the subgroup B, of By, generated by g1,...,9n. As a consequence
of the construction of the category YB(F4) we will see explicitly that the braiding
in the category gives rise to a representation of B, on H™ = H®" Now let us
introduce the shorthand notation for the braiding defined above

(3.2) ¢ = Wdyeti-y ® ey i ®idyen-i-n.

Observe that these are automorphisms of H", forevery i = 1,...,n—1,in YB(Fg).
The following result is Lemma XIIL.3.5 of [13].

LeEMMA 3.1. Let C be a strict lensor category and (V, o) an object of YB(C).
Then there ezists a unigque strict tensor functor F : B — C such that F(1) =V
and F(cy1) = o.

Proof. If such a functor F exists, then it implies F(n) = V®" and

F(g:) = F(id?¢ V@ oy, i) = iaf0 Y g 0 a1
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for 1 € ¢ < n — 1. This proves the uniqueness of ¥ in view of the fact that
g1, ..,9n-1 generate By, as a group. For the existence of F we set F(n) = V&r.
Define as above automorphisms ¢y, ..., cp~1 of F(n) by

e =id®¢ "V g o @ id®—i-1)

when 1 €7 € n — 1. Since the automorphism o is a Yang Baxter operator, the ¢;
satisfy the braid group relations. Then from Theorem X.6.5 of [13] there exists a
unique morphism of groups F from the braid group B, to Aut(F(n)) such that
F(o;) = ¢; for all «. The functor F is a strict tensor functor from B to C and
Flegg)=ci=0. 1

From this result, Theorem XIII.1.3 and Corollary X.6.3 of [13] there is a
unique group morphism
€: Bp — Aut(H™)

sending the generator g; of B, to ¢, €(¢;) = ¢, forevery i = 1,...,n— 1. The
representation ¢ is called the breid group representation associated to the braided
tensor category YB(Fq).

The braid group B, is the inductive limit of the subgroups B,’s by the
inclusion B, C Bny1, thus the representation ¢ extends to a representation of
B,

Our next step will be to identify the strict braided C*-category YB(Fq) =
(Fa, cq, ) with End(Oy), where Og is the Cuntz algebra.

The #-algebra over the complex numbers with unit 1 generated by the S; with
the relations (1.1) will be denoted by °Oy the algebraic part of O4. The linear span
of the S; ’sfor i = 1,...,d will be denoted by H and it is the canonical Hilbert
space. The scalar product on H is defined by (S, S’)l = §" 5. Consequently the
linear subspace generated by S;, ---S;, will be denoted by H" and the linear span
of terms of the form S;, ---S;, S}, ... S}, by (H*, H"). '

Fix an object in the category F4. Following [7] we give an alternative
construction of the Cuntz algebra °0;. Now °O4 and hence Og can be de-
rived from the category Fy from the following construction. We consider the
embeddings (H", H*+¥) — (H"+', H"+¥+1) given by the operation of tensor-
ing on the right by the identity , ie. X — X ® 1y which is injective. The
x-algebra structure is given as follows. The product of A € "Of;, B € °0k
can always be defined to be an element of "Oﬁ“ since for r sufficiently large
Be(HT H*), Ae(H™* Ht*+i)and (A®1)o(B®1)= (A0 B)®1. Also
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B* is well defined in °O%, by (B ® 1)* = B* ® 1. Hence we can form the graded
*-algebra
°04 =P °0% with °0f= lim(H", H"+¥).
keZ

Thus the operation of tensoring on the right by the identity identifies Fq with
°0, and induces the identity automorphism on °0,. The operation of tensoring
on the left by the identity on Fq induces the non trivial endomorphism @ on °Qy.
In other words, letting i : X — i(X) be the embedding of (H", H’) into Qg4 we
have

(X x 1) =4X), i(lg xX)=70i(X)

which defines the endomorphism &. Observe that the operation of tensoring on the
left by 1 on F4 and the interchange law:

(X®1)o(1®S)=X®5=(1®5)o(X®1)
induce in Oy, a natural endomorphism & such that
(3.3) ¥C =56(C)¥, ¥e€(C,H), Ce°0,

This rewritten in terms of the generators of °Qg by using relations (1.1) gives

d
#(C)=)_S:C8;, Ce 0y,
i=1
which is the canonical endomorphism of the Cuntz algebra. Pick now S; € (C,H)
such that S; 1, ¢ = 1,...,d is an orthonormal basis of H. It is easy to see that
S; generate °Qy as a *-algebra. Let us now consider °Og equipped with the natural
endomorphism 7(X) = 1y ® X, with X € (H", H’), r,s € Ny, where we identify
arrows between powers of H with their images in Q4. Denote by " with r € Ny
the composition 7 o - -0 & (r times). Hence under this identification we have
(HF,HJ)C(E,T,GS)l rlsENO'
The C*-algebra Oy is defined as the completion of °Og.
Let us summarize our construction. We have associated to the category Fy4
a C*algebra Oy as follows. To each T € (H", H™*!) of F4 there corresponds an
element #(T) of O4. The map T — i(T) is linear and preserves composition and
the adjoint operation. Regarding O; as a C*-category with a single object then

i:Fq — Ogis a xfunctor. The image of the arrows of Fg generates Oq as a
C*-algebra. Also

(Tx1gy=4iT), (lgxT)= a(i(T))
where & represents the canonical endomorphism of Q4. Now, by looking at this

from the strict tensor category of End(Q4) we have the following embedding the-
orem for Fg ([5]).
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TuEOREM 3.2. There is a C*-algebra and a strict tensor =-functori : Fq —
End(0y4).

Proof. Since we have
i(lg) =1, (lg xT)=5iT), (T x 1g)=iT)

we can define 7 on objects by i(C) = id, i(H™) = ™. We need only to check that
if T € (H", H™**) then for A € Oy,

i(T)o" (A) = 6" tF(A)(T).
It suffices to take A = i(S) for S € (HY, Hi*1). Then

{(TYa" (A) = i(T)6" (i(S)) = (T x 1gs4+4)i(ly x S)
= i(Lgwsr x SoT x 1gq) = 651 (3(S))i(T)

since in our category Fg the interchange law holds and gives

Tx1lgireolyge x S=1gi4e x SoT x1gs. 1

Observe that End(Qy) arises from the category Fy as an abstract tensor
C*-category.

‘We consider a strict braided C*-category F4 generated by tensor powers of a
single object p = H and with braiding ¢,. Then €,(p", p*) € (p"**,p"**). Hence
the Yang-Baxter category is generated by the category Fq and the braiding ¢,. In
the next result we use the strict tensor functor defined in Lemma 3.1. Hence we
have

THEOREM 3.3. Let (Fq,¢,) be the braided strict tensor C*-category. Then
there exists a unique representation € : By — Og of the infinite braid group By
in the Cuntz algebra Og such that €(go) = ¢,, e(cg) = 7(e(g)) and ¢ implements
the shift for every g € By,.

Proof. If ¢ exists, it is unique since the infinite braid group is generated
by the element go corresponding to the transposition (1,2) and by the shift o.
Given (Fg4,¢,) we can form the Yang-Baxter category YB(Fy) consisting of pairs
{p,€,) where p is an object of Fq and ¢, is the Yang Baxter operator coming from
the commutativity constraint. By Lemma 3.1 we have that there exists a unique
tensor functor F, : B — Fgq such that F,(1) = p, Fy(c1,1) = €,. Hence F, is
defined inductively on the braid groups B;, Bs, ..., B, since the set of arrows of B
are braid group generators for every n. We denote them by g; for convenience so

each g; € By is sent into the corresponding braiding in Fq i.e. F,(g;) = ¢ ;, where

pix
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we denote by € ; = €,(p', p*) and they are computed by using the formula (3.1).
In particular the ¢ o ’s are solution of a Yang-Baxter equation. By Theorem 3.2
there exists a functor

i:Fg — O4.

To prove the existence, let us set: e(g) = #(F,(g)} for every g € By, for
some n. Hence ¢(g) € (¢”,0") by Theorem 3.2. Since e(g® 1) = i(F,(g ® 1)) =
i(Fo(9) ® 1) = €(g) then £ is compatible with the inclusion By, C Bnyy- Thus it

gives a representation of By, in O4.
Now , £(a(g)) = i(1 ® Fo(9)) = F(i(Fp(g)) = F(e(g)). W

From now on Fy will be the representation category of U,(d) generated by
tensor powers of the corepresentation u. Any intertwiner in the category Fq can
be realized as an intertwiner between tensor powers of a Hilbert space H of finite
dimension d. Let R be the R-matrix associated to the compact matrix quantum
group U,(d) and let cy i be the operator given by the composition of the flip 7
with R. Let us denote by cyr g+ the operator asin (3.1). We denote by cf: """"" .
the matrix elements of cy- g» with respect to the basison H"® H*. Let us remark
that S;, defined in Section 2 by S, = 3" E(ko, k1. .-, kn)Sk, Sk, - - - Sk,, belongs
to (,%) and it is actually a g-determinant.

Let us assume that the self intertwiners of the tensor unit reduce to C. Then
Theorem 3.3 takes the following form.

COROLLARY 3.4. Suppose thal R is an operator on H?2, where H is an
Hilbert space of dimension d < co salisfying the Yang-Bazler equation. Define
0 as

$1-8k
Then @ is a represeniation of Bo tn Q4. Moreover § is the unique represen-
tation satisfying 8(a(g)) = d(8(g)) for every g € Beo.

Proof. Let Fq be the strict tensor C*-category whose objects are the tensor
powers of the Hilbert space H. Then R gives a commutativity constraint for the
category Fyq and denote by cy z = 7(R) where 7 is the flip. The element cy g is
an intertwiner from the two fold tensor product of H into itself in the C*-category

Fq. Let e; be the basis of H. Denote by RI172 the elements of the matrix R,

162

composed with the flip. Then cy # has the following form

) Y = Bip i), .
cH:H(eJl ® e“) - Z R;U': Ciuta) @ €iny-
j1.dz
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Thus

e (ej, ®eja)) = i( Z R;'f;'?]pmeip(z) ®eip(1>) = Z Rz (€5, @€y )

s Jr.d2

Then it follows

. 2 p(2y)
Z(CH,H(eh ® ej:a)) = Z Rjﬁ? ’(1)‘5’.7';»(2) Sjp(l)’
J1,d2

from which

; - plr@ism) ¢ g,
Z(CH’H) - Z R;fj:z ’ SJXSJ?S}»(:)SL(I)'
J1:02
Consider the following composition
l(R‘::f;(eu ® ein)* ° (ejx ® ng)) = ‘(Rﬁf;(eu ® eiz)*) © i( ~£:£:(e.§1 ® e.‘i'a))

where (e;, ®e;,)* denotes the intertwiner between H? and C and ¢;, ®e¢;, denotes
the intertwiner between C and H?. Then i( ~{:{:(e;l ® ei,)* o (ej, ®ej,)) is an
intertwiner from C to C. By our assumption that (C, C) = id in the C*-category
Fq we have that

i(RI (es, ® €1,)" 0 (e, ® £5,)) = A1
where A € C. Observe that the left hand side is
Ri281 St.85,85, = M

1162 2

and so A can be defined to be

A= (RL12S;,50,,5:,50)-
This means that i(cy,g) is identified with an element of Og. Let YB(Fg) =
(Fa, ca mr)-

Hence i extends to 7 : YB(Fq) — Oq4. If 8 exists, it is clear that it is unique
since By, is generated by go and by the shift &. By Theorem 3.3 there exists a
unique representation ¢ from By, to Og such that 8(g) = i(Fr(g)) for every g € By,
for some n.

Recall that the element go of the braid group B, corresponds to the trans-
position (1, 2) and by using the shift o, we can write any generator of By in terms
of go and o as follows: g; = 0(g0) =1 ® g0, 9i = a(i)(gg).
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The image of the operator 8(g,) in terms of the generators of O4 has the
following form:

(3.4) 8(go) = Z cr (S, ®8:,)8; . Sf,m, 90 € Boo

1,83
where we then identify 5;, ® S;, with $;, S;, and p stands for the unique permu-
tation of (1, 2) associated to the element gy € B which in turn implies go € By,
for some n.

Observe that § implements the shift ¢. In fact

6(a(g0)) = 8(1 ® g0) = Z (1 ® e, 1 )(5i55:, 85, )57, 5, 52,0y S

1,528

Z S’a(CHH(SHSI:) ip(2) I,(l))

$3,91,12

= Zs..,e(go)s;; = ((g0))

where on the right side & represents the canonical endomorphism of the Cuntz

algebra O4. Then for a generic r,

8(09) =01®g:) = 3. (1@caru-)Sivys - -SiISE - Shyy St

£r+la-~->':r

= 5(0(s.)).

Now F(g) = cpnp~ for some n, s0 8(g) = i(cznpn) and & has the desidered
form. Then 6(g,) € (",7") by Theorem 3.2. Also

B(gn ®1) = i(ca ® 1) = i(ca) = 8(gn).

Thus @ is compatible with the inclusion B, C Bp4+1. We have thus defined a

representation of By in Og. 1
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4. ENDOMORPHISMS OF A C*-ALGEBRA WITH BRAIDINGS

In this section we apply the results of the previous section for the representation
category of the quantum groups U, (d) and SU,(d) respectively to give conditions
for an endomorphism p of a C*-algebra A to determine an action of the category
on A.

Let A be a C*-algebra and let End(.4) denote the C*-category whose objects
are the endomorphisms of A and the set of arrows (p,p') from p to p’ are the
intertwiners T € (p, p') i.e. Tp(A) = p'(A)T, if A € A.

End(A) has the tensor structure defined as follows: let T' € (p,p’), S €

(0,0'); we define

T x S:=Tp(s) = p'(S)T € (po,p'0’).

Let i be the identity automorphism of A and (7, ¢) = centre(A).
Now we restrict to the case of the category generated by the powers of a

single endomorphism p. As subsets of .4 we have

(0 p*) C (¥, p°tF), (07,0°) = (0°,0"), k.5 € No.

We study the problem of the existence of an action of the fixed point algebra
(04)V4(9 on the C*-algebra A, i.e. the existence of a morphism p : (0g)V+(9) — A
such that po o = po pu, where by fixed point subalgebra we understand under the
coaction of Uy(d) on Oy4, and ¢ is the canonical endomorphism of O4. This is
equivalent to the problem of finding an action of Fq on A where Fy is the strict
tensor braided C*-category of corepresentations of the Hopf algebra associated to
U,(d). Hence there must exist a functor M : Fg — End(A) such that (p,0) C
(M(p), M(0)), the induced maps are linear, the unit of Fyq is mapped onto the

identity automorphism and
M(T) = M(T)", M(p® ') = M(p)M(p'),

M(T®T') = M(T) x M(T").

We want to study conditions such that there exists such action which in turn will

give a representation of the braid group By in A.
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DEFINITION 4.1. Let p € End(A). We say that p has a braiding if there
exists a representation ¢ : By, i A such that if we let ¢ be the shift operator,
(i) e(og) = p(e(g)), 9 € Boo;
(ii) e(g0) € (0%, 0%);
(iii) e(gs )z = p(z)elgr ), if z € (p7, p°*), where g; = *(g0), 9r = " (g0)-

Hence it follows that e(gn) € (p", p"), gn € Bn.

For a given braiding we want to find the kernel of the corresponding mor-
phism ¢ : C*(Bw) — A. This means to find the quasiequivalence class of the
representation of cach B,. As an example we consider (O4)Y+(9), the fixed point
subalgebra of Og4 by the coaction T' of the quantum group U,(d} and the re-
striction of the canonical endomorphism & to (04)Y+(%) i.e. 3|(0 et It is an
endomorphism with braiding given by # as in Corollary 3.5. By Corollary 6 in
[17] (0O4)Y+(¥ is generated by the representation §. The first property is easily
verified. Now 8(go) is an intertwiner between (H?, H2) and we have seen that any
intertwiner T' € (H", H®) by using the identification with its image in Oy, arises
as T € (o7,0°). Thus 6(go) € (¢2,52), where & can be thought of as 0 = 1y ® z.
Given z € (04)V(), since 0(g) o T @ T' = T' ® T o 6(g) holds for every g € B
and T, T" € (04)V+(?), then &(z) is still fixed, it follows that 6(g, )z = &(z)8(g;).
Therefore the third property is satisfied.

We need to observe that the Yang-Baxter operator R associated to the com-
pact quantum group U, (d) satisfies the Hecke algebra relations ([11]). This means
that the representation of the braid group factors through the Hecke algebra. For
¢ not a root of unity ([11]) the representations of By, are in one to one correspon-
dence with Young diagrams. Their decomposition rule and their dimension are the
same as for the symmetric group of order n. Let a Young diagram with one row
correspond to the trivial irreducible representation of the symmetric group and a
diagram with one column to the parity irreducible representation. By extending
this convention to the trivial irreducible representation of B, for ¢ # 1 we have
that it sends each g; into g1 and the parity representation sends g; into —1. The
ideals in C*(By) are specified by giving minimal central projections in subalge-
bras C*(B,,) and they generate the ideals. The minimal projections in C*(By)
are in one to one correspondence with the Young diagram with n squares. The
Young diagram with a single column of length d + 1 gives the fixed point algebra
(04)V(?) as a quotient of C*(Bw, ) by some ideal Iy. The ideal I, is generated by
the g-antisymmetric projection on C*(Bg4) and it is the kernel of 8. Analogously
to the Doplicher and Roberts terminology for permutation symmetry, we say that
the endomorphism El(o‘)u.(q has a braiding of dimension d. This motivates the
following definition.
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DEFINITION 4.2. An endomorphism p has a braiding of dimension d if the
representation € : C*(Bs) — A has the ideal Iz generated in C*(Bs) by the
projection on the totally antisymmetric space in C*(Bg41) as its kernel.

We are now ready to state the main theorem.

THEOREM 4.3. If p is an endomorphism of a C*-algebra A with a braid-
ing of “dimension d” realized by the representation & : ¢ — €(g) of B tn A,
then there is a unique monomorphism p : (0g)Vs®) — A with p() = ¢ and
4o = popu defining an action of (0g)V+®) in A. If there is a R € (i, p?) with
RR* = ,,E%:(d) Eli((—q)#'(”))e(g), then the action extends uniguely to (04)5U+(D if
we require p(S;) = R.

Proof. By definition a braiding of dimension d yields a monomorphism p :
(02)V+ — A with p(6(g)) = &(g) which satisfies u(6) = ¢ and po& =popu. We
want to prove that we have an action of (04)Y+(9) on .A. We know by Theorem 2.3
and Corollary 7 of [17] that (04)Y«® = (M)V«9) = C*(8(g)). Let us recall the
results about the intertwiners:

(M5)Veld = (g € ME :uF(z @ 14) = (2@ La)uF}, i=0,.,k—1.

Mg is the canonical UHF algebra inside the Cuntz algebra O,. Also if z €
(H®, H*) in the fixed point subalgebra, by the identification of the category Fy with
End(Q4) we have that z € (¢%,5*). Since the canonical endomorphism preserves
fixed points, this implies that z € (6%, 3*) is still in the fixed point subalgebra. It
follows that the set (5¥,5*) is the linear span of #(g;), ¢ = 0,...,k—1, by Corollary
6 of [17]). This implies p((3*,5*)) C (p*, p¥), so that y is an action of (04)V+(#) on
A. We want to prove that it extends uniquely to a monomorphism of (04)V+? on
A. From Lemma 7 of [17], we know that (O4)5U+(¥) is constructed from (04)V«(D
and the g-determinant called S,. Note that S; € (i,6%). Then S; induces an
isomorphism of (04)V(? onto a subalgebra. In fact, we define

H{A) = 5,AS;, A€ (0q)79,

(1) = 5,5 = % Y (—0#®5, S Sy Shay
p€S(d)
where #I(p) stands for the length of the permutation p. Thus 7 is an isomorphism
onto the subalgebra 7(I)(04)V+s(®+(I) and 7=}(B) = Sy BS; for B € 7(0g)VeD
since 7(S;BS,;) = 5,5;B5,S; = B, B € (I)(02)VD7(I). (0a)5U«D is the
crossed product of (0g)Vs(9) by the action 7. Since any element can be written
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uniquely as X .S': with X = X7*(I), then the morphism u extends to (04)° Uqld)
with u(S;) = R.
Thus if there is an R € (i, p%) and if A € (04)V+(?), then

Ru(A)R* = p* o u(A)RR* = po 3 (A)u(S5,5;) = po 7(A)

where 7 is the above isomorphism guaranteeing that p extends uniquely to a
monomorphism 4 : (0g)%Ys(® — A with u(S,;) = R and p(3(S,)) = p(R).

To check that we will still have an action by Lemma 7 of [17], we need only
to show that if X € (67,5"1*9) then u(X) € (p", p"t*¢). From Lemma 7 of [17],
we have that any X in (Og)V+(%) consists of X Sk* and S;‘. We have seen that
X8E* € (37,57+*) as an element of (0g)Ve(? while u(S¥) = R* € (p", p"+*%) s0
this gives that u(X) € (p",p"t*9). 1
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