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ABSTRACT. We use the notions of upper and lower multiplicity, My () and
My (7), for an irreducible representation 7 of a C*-algebra A to investigate
some of the possible structure in point-strong limits of essentially irreducible
representations of A on a large Hilbert space. In particular, this leads to a
generalization of Gardner’s theorem on ‘the third definition’ of the topology
on the spectrum A of A and also to new characterizations of Muy(r) and
ML (7). We also investigate the possiblé gap between My(x) and My(=) by
introducing upper and lower multiplicities for 7 relative to a net in A.
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1. INTRODUCTION

Let A be a C*-algebra and let H be a Hilbert space that is infinite dimensional
and large enough for A (in the sense that dim(H) is at least as large as the
dimension of every irreducible representation of A). Following [7] and [8], we let
Rep(A, H) be the set of all (possibly degenerate) representations of A on H, and
we equip Rep(A, H) with the strong topology (that is, the topology of pointwise
strong operator convergence on H). Let Irr(A, H) be the subspace of Rep(A, H)
consisting of those non-zero representations & for which Ess(c) (the essential part
of o) is irreducible, and let ® be the canonical surjection from Irr(A4, H) onto A
which maps ¢ to the unitary equivalence class of Ess(c).

In [12], Gardner showed that ® is a continuous, open mapping (a somewhat
different approach to the topology on A was subsequently given by Ernest ([9]).
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As a consequence of the open property, if @ = (7a)aea is a net in A which is
convergent to 7 then there exists a net Q; = (o,)uea in Irr(A4, H) and a repre-
sentation ¢ € Irr(A, H) such that ®(Ess(c)) = 7, (®(Ess(c,)))uea Is a subnet of
2, and ¢, — ¢. That is, speaking informally, the convergence of 7, to 7 can be
lifted to Rep(A, H) (at the expense of passing to a subnet and possibly introducing
degeneracy into the representations).

In general, A may fail to be Hausdorff and a convergent net Q in A may have
a large (possibly uncountable) limit set L(Q2). If 7 and =’ are distinct elements of
L(€) then it is not possible to use the same net §2; in the previous paragraph for
both 7 and 7', because Rep(A, H) is always a Hausdorff space. However, one might
naturally ask whether it is possible to find a net Q; = (¢4)uea in Irr(A, H) and
a representation o € Rep(A, H) such that Ess(s) > 7 @ #' (unitary equivalence),
(®(Ess(04))) ,ea 1s a subnet of ©, and o, — 0.

Existing results enable this question to be answered in the affirmative: the
proof of [2], Theorem 1 shows that the convergence of Q to 7 and 7’ can be lifted
to the convergence of a suitable net in P(A) (the weak*-closure of the set of pure
states of A) and then the lifting to Rep(A, H) can be achieved by applying a theo-
rem of Bichteler ([7]). This method can be extended to deal with a finite subset of
L(£2). However, the method of proof in [2], Theorem 1 is not applicable to infinite
subsets of L(2), and the use of Bichteler’s theorem does not permit the introduc-
tion of multiplicity in the direct sum decomposition of Ess(c). This is because
Bichteler’s theorem deals with Gelfand-Naimark-Segal (GNS) representations for
states and therefore cannot be used to obtain non-cyclic representations in the
closure of Irr(A, H) (see also [1], p. 1 in this connection).

One of our main results (Theorem 4.2) enables these problems to be overcome
by a different approach. This shows, in particular, that if § is a convergent net in
A with limit set L(Q) (such that Q is not frequently equal to any point in L(£))
and if {mx| 7w € L(Q)} is a set of non-zero cardinal numbers such that m, < My(7)
whenever the lower multiplicity My, (7) is finite (see [3] and Section 2 below), then
there exists a Hilbert space H which is infinite dimensional and large enough for
A, and representations o and (0,).eca of A on H such that:

(i) o, € Irr(A, H) for each y € A,
(i1) (®(o4))uea is a subnet of 2,
(iii) Ess(o) ~ @ m, -,
TEL(D)
(iv) oy — o in Rep(A4, H).
That is, the simultaneous convergence of {2 to the members of its limit set can be
lifted to Rep(A, H) whilst also taking account of multiplicity.
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Most of the technicalities required for the proof of Theorem 4.2 are dealt
with in Lemma 3.7 which is also applicable to the study of upper multiplicity for
a single element of L(R2) (sce Theorem 4.1). In turn, the proof of Lemma 3.7
depends in a crucial way on two basic lemmas concerning pure states, the first
of which appears to be previously unknown (see Lemma 2.5, Lemma. 2.6 and the
discussion which precedes them).

Theorems 4.1 and 4.2 lead easily to characterizations of My(#) and Mg (=)
(respectively) in terms of point-strong limits of essentially irreducible represen-
tations: Theorems 4.5 and 4.7 characterize My(7) and Myp(#) by means of in-
equalities, whereas Theorems 4.9 and 4.12 give exact formulae in terms of the
multiplicity of 7 in elements of Irr(A, H). The formula for My(#) can easily be
described as follows. Suppose that H is infinite dimensional and large enough for
A. For ¢ € Irr(A, H), let m(r,0) € N U {co} denote the multiplicity of  in o.
(Throughout the paper we use N to denote the non-negative integers, and P to
denote the positive integers.) Then

My(7) = sup{m(r,0o) | o € Irr(4, H)}.

A further consequence of these results is a generalization of Gardner’s theorem that
® is an open map. The openness of ® is equivalent to the fact that if o € Irr(A, H)
with ®(o) = 7 € A, then ® carries the neighbourhood base of ¢ in Rep(A, H) into
the neighbourhood base of 7 in A. In Corollary 4.8 we show that if {n} is not open
in A, ifne PU{oco} and if o € Rep(A, H) satisfies Ess(0) ~ n -7 for some cardinal
realization of n (see Definition 3.6) then ® carries the neighbourhood base at o
into the (possibly deleted) neighbourhood base at = if and only if n < Mp().

The definitions of My(7) and Mp,(7) in [3] may be informally described as
follows. Let ¢ be a pure state associated with 7 € A. Both My(x) and My (r)
are related to the counting of the number of mutually orthogonal pure states,
associated with an element #’ close to 7 in f’f, which are simultaneously close to
®. The number My(x) is related to a maximal count obtained by optimising the
way in which 7’ approaches m, whereas the number Mr(7) gives a guaranteed
minimum count that can be obtained when #' (# 7) approaches 7 in an arbitrary
way. Both My(7) and My,(r) are independent of the choice of ¢ and take values
in PU {o0}.

In order to investigate the possible gap between My (#} and My(#) for = € A,
we introduce upper and lower multiplicities My(w, ) and My (7, §2) relative to
nets Q in A. These are defined by restricting attention to elements of A which
lie in ©. This has the effect of increasing My, and decreasing My (see, however,
Proposition 2.1 and the remarks which precede it). Several of our results (in
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particular Theorems 4.1 and 4.2) are framed in terms of the quantities My (7, )
and My(w, Q), thereby achieving greater precision. For example, as a consequence
of Theorem 4.2, we show in Theorem 4.3 (i) that if Q@ = (74)aeca is a net in A4,
then

(1.1) liminf Tr(7a(a)) > D My(7,Q) Tx(n(a)) (a € AY)
nEA

(where Tr is the usual trace defined on positive operators in Hilbert space). This
strengthens the lower semi-continuity result of [3], Theotem 3.2 in which My({=, Q)
is replaced by My, (n), and the sum is restricted to those limits 7 of Q for which
eventually 7 # 7.
Given 7 € A with {7} not open, there exists a net Q in A\ {7} such that
My (7) = My(, Q) and My(7) = My(r, ) (Proposition 2.2}. It is this fact which
enables us to obtain Theorems 4.5 and 4.7 (concerning My(x) and Mp(r)) as
special cases of Theorems 4.1 and 4.2.
In general, if Q is a net in A and 7 € A then there exist subnets ; and
such that
ML(’IT, Ql) = Mu(‘n‘, Ql) = ML(W, Q),
ML(W, Qg) = MU(ﬂ', Qz) = Mu(ﬂ', Q)

(Proposition 2.3). In particular, it is possible to achieve My{(r) and My() in this
way by taking € as in the previous paragraph. These technigues enable us to vary
(1.1) above as follows: if 7 is any prescribed member of A then we can replace
My (7o, ) by My(mo,2) in the righthand side of (1.1) at the expense of passing
to a subnet on the lefthand side (Theorem 4.3 (ii)).

We close this section by discussing the relationship of Mr,(7, ) and My(7, Q)
with the multiplicity numbers obtained by previous authors. With a view to
applications to group C*-algebras, Fell ((10]), Perdrizet ([18]), Milicic ([16]) and
Ludwig ([15]) have variously considered situations in which

Tr(mo(a)) — z maTr(#(a)} < oo
rEL(R)

for all positive elements a in a dense self-adjoint subalgebra of a C*-algebra A,
where = (T4 )aca is a convergent net in A with limit set L(Q) (necessarily equal
to the set of cluster points of € in this context) and m, is a positive integer for
each # € L(Q). It necessarily follows that

my, = Mp(r, Q) = My(r, Q) (m € L(Q)).

We shall defer the details of the proof to a subsequent paper ([6]).
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2. MULTIPLICITIES AND PURE STATES

Let A be a C*-algebra and let = be an irreducible representation of A. We shall
denote by H, the Hilbert space on which 7(A) acts and we shall adopt the com-
mon practice of using the same symbol 7 to denote the unitary equivalence class
in A of the irreducible representation. Thus if m; and wy are equivalent irre-
ducible representations (7 ~ ;) then m = 73 in A. Note that, in this situation,
Tr(m(a)) = Tr(ma(a)) for all @ € A+ and so we may write unambiguously the
expression Tr(7(a)) whenever 7 € A and a € A¥. '

Unless stated otherwise, we shall always regard (subsets of) A* as being
equipped with the weak*-topology. We denote by A the weak*-neighbourhood
base at zero in the Banach dual A" consisting of all open sets of the form

N={$ea |pa)<el<i<n}

where € > 0 and a1, as,...,a, € A. Let P(A) be the set of pure states of A and let
g: P(A) — A be the continuous, open mapping given by #(p) = 7, where 7, is
(the equivalence class of) the GNS representation associated with ¢ ([8], 3.4.11).
Let 7 € A. We begin by recalling descriptions of the upper and lower multi-
plicities My(#) and My(7). Let ¢ be a pure state of A associated with m and let
N e N. Let
Ve, N) = 0((¢p + N) O\ P(A)),

an open neighbourhood of 7 in A. Foro € A let
Vec(o,0,N) = {n € Ho || n||=1,{c()nn) €Ep+ N}

Note that Vec(e, ¢, N} is nonempty if and only if ¢ € Vi{p, N). For o € V{(p, N)
we define d(e, ¢, N) to be the supremum (in P U {co}) of the cardinalities of finite
orthonormal subsets of Vec(e, @, N). It is convenient to define d{a,¢, N) = 0 for
o€ A\ V(g N).

From [3], Section 2 and Proposition 3.4, we have

My(r) = J\Irreljfv (lll:'n_ilr]p d(o, p, N)) € PU {0}
and, if 7 is not open in 2,

My(m) = jnf ( liminf d(a’,qp,N)) € P U {oo).

CT,aET
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As noted in [3], Lemma 2.1, My(7) and M (=)} are independent of the choice of
¢. Examples which motivate these definitions and illustrate the computations are
given in [3], Section 2.

Now suppose, in addition, that £ = (T4)aca is & net in A. For Ne N let

Muy(p, N, Q) = limsup d(mq, ¢, N) € NU {oo}.
&
Note that if N € N and N' C N then My(p, N',Q) < Mu(p, N, Q). We define
(which is independent of the choice of ¢ by an argument similar to that used in
the proof of [3], Lemma 2.1). Similarly, for N € A, let
ML{p, N, Q) = liminfd(7,, ¢, N) € NU {x}.
o
Then My (¢, N, 2} decreases with N and we define
M = i
L(m,9) = inf Mi(p, V,2) € NU {oo}

(which is, again, independent of the choice of ). Note that it is not required that
§2 converge to m. However it follows from these definitions that My(r,Q) > 0
if and only if 7 is a cluster point of 2, and that Mp(m,Q} > 0 if and only if Q
converges to «.

We remark that in the definition of My (x,) we have not required that
eventually 7o # 7, as might be expected given the definition of My (7) (see, e.g.,
[3], Remark 2.2). This allows us to state our results concerning lower multiplicity
without the burden of requiring that a net eventually be unequal to each of its
limits. However this introduces a small peculiarity into the properties of My (7, )
which we describe below.

Routine topological arguments {which do not require the use of the definition
of d(o, ¢, N)) show that

(2.1) Mp(m, Q) < My(m, Q) < My(n);

if eventually 74 # 7 then

(2.2) My (7) < My(7, Q);

if Q¢ is a subnet of Q then

(2.3) My(7, Q) < Mp(7, Qo) < My(m, Q) < My(n, Q).

However, in certain situations the inequality (2.2) fails. These are specified
in the following result.
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PROPOSITION 2.1. Let7 € A, and let Q = (To)aea be a net in A converging
to m. Assume that {m} is not open in A. Then Mp(rx) > Mr(m, Q) (that is,
inequality (2.2) fails) if and only if the following conditions all hold:

(1) 7q = 7 frequently;
(ii) #(A) contains the compact linear operators on Hyp;
(i1i) My, (m) > 1.
In this case, Mp(m, ) = 1.

Proof. We first assume that conditions (i}, (ii) and (iii} hold. Let £ be a
unit vector in Hy and put ¢ = (n(-}¢,£). By (ii) there exists ¢ € A such that
m(a) is the rank one projection onto C¢. Let N = {y € A | l¥(a)| < 1/4}. ¥
n € Vec(w,p, N) then {n(-)n,n) € ¢ + N, and hence 1 — |(n,£)|* < 1/4. Then,
replacing 7 by e'®n for suitable ¢, we have

lIn =€l = 201~ n,&)D) < 201~ I(n. &)%) < 1.

If 91,12 € Vee(r, p, N), we make the above phase change for each, and find that

lim = m2ll < Nl = €1+ llma — €l < V2.

It follows that n; and 5 are not orthogonal. Hence d(m,,N) = 1. By (i) it
follows that My (7, ) = 1, which is less than My, (7) by (iii).

Conversely, we will show that My(7) < Myp(w, §2) if any one of (i), (ii) or
(iii) fails. If (i) fails, the desired inequality follows from (2.2). If (iii) fails then
Mp(r) = 1 < Mp(7,Q), since § converges to w. Finally suppose that (ii) fails.
Let ¢ be a pure state of A associated with 7. Let £ € P and N € N, and set
Ni = {N. From the proof of [3], Theorem 4.4 (i) it follows that d(m, ¢, N1) = oo,
so there exists an orthonormal set {£y,..., €} in H, with (r(-)&, &) € ¢+ N, for
1< i<k By [3], Lemma 3.1 (applied to Ny withn =1, 7y = 7, my = k and
d; = 1) there exists an open neighbourhood W of & such that if ¢ € W then there
exists an orthonormal set {ny,...,m} in H, such that

(e()mim) € (v()6, &) + N1 (1< i< k).

Let € Asuchthat a 2 8 = 7, € W. Fixa 2> 3. Let {m,..., 9} € Hy,_ as
above. Then

(ra( i) Ep+ N1+ Ny =p+ N (1<i<k)
and so d(7y, 9, N} 2 k. Then

inf d(ra, 0, N) > .
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and hence
ML((P, N, Q) z k.

Since k € P and N € N were arbitrary, it follows that Mp(7, Q) = co. (We note
that in this case My (7, Q) = Mp(7) = oo by [3], Theorem 4.4 (ii).) &

PROPOSITION 2.2. Let A be a C*-algebra, let # € A, and assume that {~}
is not open in A. Then there is a net  in A\ {7} converging to m such that

MU(7I') = Mu(ﬂ',Q),
ML(ﬂ’) — ML(W,Q).

Proof. Fix a pure state ¢ of A associated with 7. Let
A= {(N.0) €N x (A\ {x}) | 7 € V(p, N}}
with direction given by
(N,o) 2 (N',d'y <= NCN'.

For a = (N,0) € A, let my = 0. Then Q = (74)aca is a net in A \ {r}. Since
{V(e,N) | N € N} is a neighbourhood base at 7, and V(p, N) decreases with
N, it follows that m, — 7. For N € N, note that

limsup d(74, ¢, N) = inf sup d(7q, ¢, N)
o P az2p

= inf sup d(o, o, N
PEN sev (o, P)\{r} (@, N)

= inf{ sup d{o,¢,N) | V an open neighbourhood of 1r}
oeV\{x}

(since {V(p, P) | P € N} is a neighbourhood base at )
= limsup d(o,p, N).

O—sx, TET
Thus it follows that
My(7) = inf limsup d(o,9,N) (cf. [3], 3.4 and 3.5)
N =T, oET
= iJI\l/f limsup d(7q, ¢, N)
= Mu(‘n’, Q)

The proof that Mp(7) = Mp(w, Q) is analogous. &
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PROPOSITION 2.3. Let A be a C*-algebra, let 7 € A, and let Q = (Ta)aca
be a net in A. Then there ezxist subnets 1 and Qo of Q such that

(2.4) My (7, Q) = My(r, Q1) = Mp(7, Q),
(2.5) My(m, Q2) = My(r, Q2) = My(r, ).

Proof. Let ¢ be a pure state of A associated with . To prove (2.4) it
suffices to assume that My(7, Q) < oo0; otherwise use Q; = Q. Moreover, by
(2.3) above, it is enough to show the inequality My(m, ;) € My (7, Q). Since
Mp(m, Q) = zs}relfv llg}aﬁlfd(ﬂ'a, @, N), there is Ng € N such that

liminf d(7q, ¢, No) = Mp(7, §2).
€A
Then there is By € A such that
B2z pfo = ;g% d(7a, ¢, No) = Mp(7, Q).
Since M (m, Q) is finite, the infimum in the previous line is attained. Let
A= {a €A l d(?l'a,gO,No) = ML(W,Q)}.

It follows from the above that A; is a cofinal directed subset of A. Define Q; =
(To)aen,- Then Q; is a subnet of ©, and

My(r, ) = inf linéiupd(wa,so,N)-
=0 o 1

Note that for N C Ny, d(7qa, ¢, N) < d(7qa, ¢, No). Hence
limsup d(74, @, N) < limsup d(7q, ¢, No) = Mp(7, Q).
aEAy a€A;
Taking the infimum over N C Ny, we obtain My(7, ;) < Mp(7, Q).
To prove (2.5) it suffices to show that My(7, Q2) > My(m, Q). In order to
include the possibility that My(w, Q) = oo, it is convenient to introduce the set

={k e N |k < Muy(r,Q)}. Let A, = N x A x R, with the product direction.
For u = (N,B,k) € Ay we have llmsupd('lro,,<p,N) k. Hence there exists

a(p) € A such that a(pu) > 8 and d(wa(u} @, N) > k. Note that Qy = (Ta(u))uen,
is a subnet of Q. (For, if 8o € A let po = (No, fo, ko), with Ng and kg chosen
arbitrarily. Then p = (N, 8, k) 2 po implies that a(u) 2 8 2 6o.)

Now fix pg = (No, Po, ko) € Az. For pu = (N,,B,lc) 2 po we have

d(""a(u)y 12 NO) d(ﬂ'a(y) o, N) 2 k 2 ko.
Therefore lirélli\nf d(7a(u), ¥, No) 2 ko. This is true for each ko € R, so
HEA2

linelli\nf d(To(u), 9, No) 2 My(T, Q).
I 2

Since this is true for each Ny € N, it follows that My (7, Q3) 2 My(7r, Q). 1
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Suppose that 7 € A and that {r} is not open in A. We define R(r) to be
the set of those numbers & € P U {oo} for which there exists a net € in A\ {7}
such that €2 is convergent to = and k = My(x, Q) = My(=, Q). It follows from
(2.1) and (2.2) above that

Mp(m) € k € My(w) (k € R(7))
and from Propositions 2.2 and 2.3 that
{ML(7), My(n)} C R(n).

Given that Mp(7) < My(n), elementary examples of the type considered in (3],
Section 2, show that one might have R(w) = {My(#n), My(7)} or, at the other
extreme,

R(w) = {k e PU {co} | ML(x) < k < My(m)}.
The following result is an immediate consequence of Proposition 2.3.

COROLLARY 2.4. Let A be a C*-algebra, let 7 € A and suppose that {r} is
not open in A. Letk € PU {oo}. The following conditions are equivalent:

(i) k € R(m),

(ii) there ezists a net 2 in A\ {r} which is convergent to 7 such that either
k=Mp(m, ) or k = My(r, Q).

Most of Section 3 below is devoted to the proof of Lemma 3.5, which is
crucial for the main results in Section 4. The bulk of the proof of this lemma is

devoted to the approximation of a representation of the form p = ( P m, ~7r) e0
nel
by an essentially irreducible representation ¢. In order to achieve this we need

to reproduce approximately (in the essential space for ¢) the invariant subspace
structure for p. We require, in particular, that for all a € A, {o(a)¢,n) ~ 0 when
either

(i) ¢ and 1 mimic vectors in two different copies of Hy for some 7 € L
or

(i) € mimics a vector from a copy of some H, and 1 mimics a vector from a

copy of some H, where ' € L and 7' # 7 in A.

To deal with these two cases, we require the following lemmas concerning
pure states. The first enables us to deal with case (i) above, whilst the second
relates to case (ii).
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LEMMA 2.5. Let A be a C*-algebra and let ¢ € P(A). Let (7o) be a net
of (not necessarily irreducible) representations of A. Let Hy be the Hilbert space
of Ta, let {€x,n0} be an orthonormal set in Hy, and let oo = {ma( ), Ea}s
Yo = (Tal()Na) Na). Suppose that oo — ¢ and Yo — . Then (Tol@) €arflay — 0
for each a € A.

Proof. We show first that (m4(a)€a,na) — 0 for all a € ker(p). To see this,
let & € ker(ip). Since  is pure, it follows from [14], Theorem 10.2.8 that a = b+c,
where b*b, cc* € ker(y). Then

Ia(B)all® = @alb”b) — @(b*b) =0,
hence {74(b) €, M) — 0 by the Cauchy-Schwarz inequality. Moreover,

|(Ta(c)ea nad|” < limaleImal?
= talec’)
— p(ec*) = 0.

By linearity (ma(a)£a,na) — 0. Note that, so far, we have not needed to use the
assumption that {£,,74) = 0.

Let P, be the projection from H, onto the essential space for 7. Since @ is
a state, ||Pséal|? — 1 and ||Pane|* — 1.

Now let a € A be arbitrary. Suppose first that A is unital. By the first part
of the proof, {7, (¢ — p(a)1) €4, na) — 0. On the other hand

{ra(p(a)1)ea, na)| = le(a)| {Paba — &a, Mo}
< !30(‘1)] ”Po:Ea - fa”

and ||Pabe — £4l] = 0 since ||Pyéal|? — 1. Combining these two cases, we obtain
that {ma(a)és, Na) — 0. B

Now suppose that A is non-unital, and let A = A + C1. Let & be the
unique extension of ¢ to a pure state of A and let %, be the unique representation
of A on H, with essential space PoH, which extends 7. Since ||Paéall* — 1,
(Fo(Nea,€a) — . Similarly, (Fa(-)7a,7a) — @ Hence, by the unital case,
(Fa(b)a,ne) — 0 for all b e A. Taking b = a gives the required result.

The next result is Lemma 2 of [2] and we recall that the proof depends on
a continuity property of transition probabilities for pure states that was observed
in [4]. This same continuity property may also be used to prove Lemma 2.5 in the
case where each 7, is assumed to be irreducible (which holds in our subsequent
application).
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LEMMA 2.6. Let A be a C*-algebra. Lei (m,) be a net of trreducible represen-
tations of A, let H,, be the Hilbert space of 7y, let €4, o be unit vectors in Hy,, and
let o = (Ta(Yara), Ya = (Ta()Na, M) Let @, P be inequivalent pure stales of
A such that ¢, — ¢ and gy — . Then (£4,70) — 0 and (ma(a)a,na) — 0 for
cacha e A. 1

In order to approximate a finite set of vectors (in a Hilbert space) which is
almost orthonormal by a nearby orthonormal set, we shall require the following
well-known version of the Gram-Schmidt process.

LEMMA 2.7. Given a posilive inleger M and 6y > 0, there ezists 63 > 0
(depending only on M and &) such that if 1 < m € M and §,&,...,§m are
vectors in a Hilbert space H satisfying

i, &) = byl < &1 (1 <i,5 < m)

(where the first § in the preceding line is a Kronecker della funciion) then there
exists an orthonormal system {ny,%2,...,9m} in H such that

flni —&ll<d (1<i<m)

This can be obtained from the version for unit vectors (see, for example, [5],
Lemma 2.1) by an elementary scaling argument. Alternatively, a direct proof can
be given by the operator-theoretic method cited in [5].

3. LIMITS OF ESSENTIALLY IRREDUCIBLE REPRESENTATIONS

DEFINITION 3.1. Let A be a C*-algebra and let H be a Hilbert space. We
recall from [12] that H is said to be large enough for A if the dimension of H 1s
at least as large as the dimension of each irreducible representation of A.

NoTtaTioN 3.2. If r is a cardinal number, we let » also denote a set of
cardinality r.

DEFINITION 3.3. Let Q = (7a)aea be a net in A, and let p be a non-
degenerate representation of A.
(1) Property P(S, p) states that for any cardinal number r such that £(r) @
H, is infinite dimensional and latge enough for A, there is a subnet (-n'a(,,))“ ea Of
Q, there is a Hilbert space H, and there are representations o, (¢,)uca of A on
H such that:
(a) Ess(ou) o Taqu);
(b) Ess(a) ~ p;
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(c) (o) converges to o in Rep(A, H);
(d) dim (c(A)H)" =7r.
(2) Property P'(Q, p) states that there is a subnet (‘rro,(p))p ea Of ©, there is
a Hilbert space H, and there are representations o, (¢,}.ea of A on H such that:
(a) Ess(o) = Ta(u);
(v’) p is unitarily equivalent to a subrepresentation of Ess(o);
(¢) (o) converges to ¢ in Rep(A, H).

REMARK 3.4. The significance of the cardinal » in the definition of property
P(S2, p) will be discussed following Corollary 4.8.

In the following result, no assumption is made about the dimension of the
Hilbert space H, but we use the notation Rep(A, H), Irr(A, H) and @ in the same
way as before (see Section 1), bearing in mind that ® might not be a surjection.
The result generalizes the fact that the map & is continuous. It shows also that
if either P(Q, p) or P'(£2, p) holds then ®(o,) — « for any = € A that is unitarily
equivalent to a subrepresentation of p (or ). The proof uses a standard line of
argument.

LEMMA 3.5. Let A be a C*-algebra, let H be a Hilbert space, and suppose
that (04)aea 1s o net in Irr(A, H) which is convergent {o p € Rep(A, H). Then
®(oq) — 7 for any v € A which is unitarily equivalent to a subrepresentation of p.

Proof. If such exists, let mg be an element of A which is unitarily equivalent
to a subrepresentation of p. Let V be an open neighbourhood of 74 in A. Then
there exists a closed two-sided ideal J of A such that

V={reA|n(J)#{0}}.

Since 7o(J) # {0} it follows that p(J) # {0}, and hence that eventually o4(J) #
{0}. Thus eventually ®(cy) € V, as required. 1

In the next lemma, and in several later results as well, it will be necessary
to make a choice of an infinite cardinal in association with a representation whose
(upper or lower) multiplicity is infinite. In view of this we make the following
definition.

DEFINITION 3.6. Let m € NU {oc} be fixed. By a cardinal realization for
m we mean m itself if m € N, and we mean a choice of infinite cardinal if m = co.
Suppose that A is a C*-algebra, that F' is a non-empty subset of A and that, for
cach 7 € F, mr € NU {co}. By a cardinal realization for {m, | 7 € F} we mean
an assignment of a cardinal realization for each m, (more formally, a function f
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from F into the cardinal numbers such that f(7) is a cardinal realization for m,
for each = € F).

The next lemma is the key technical requirement for the main results in
Section 4. By isolating the lemma in this way, we have avoided the need to repeat

broadly similar arguments at various stages of the proofs of Theorems 4.1 and 4.2.

LEMMA 3.7. Let Q = (7a)aea be a nel in /’l\, and lel F be a non-emply
subsct of A. For cach m € F let my € PU {0}. The following are equivalent:
(i) For each finite non-emply subsel Fy C F, for each collection {p, | TE
Fo} of pure states of A with s associated to 7, for cach coliection {ny I 7 € Fp}
of positive integers with ny € My, for cach N € N, and for each o € A, there
ezists B € A with f 2> o such that d(np,pr,N) 2 n, for all 1 € Fy.

(ii) For every cardinal realization for {m, | m € F}, P(Q, B m, -1r) holds.
xEF

(iii) For some cardinal realization for {m, | 7 € F}, P’(Q, &6 my -TI’) holds.
reF

Proof. (i) = (ii): By adjoining an identity, if necessary, we may assume that
A is unital (note that if A is non-unital and if ¢ € P(A) is associated with 7 € 4,
then the unique pure extension ¢ of ¢ to A+ C1 is associated with the canonical
image of 7 in the spectrum of A+ C1). Let K, = £2(m,), with orthonormal basis

{6 | p € my}, and let H = (@ (He ® K,,)) @ £2(r) where r is any cardinal
TEF
number such that A is infinite dimensional and large enough for A. For each

7 € F, let By be a fixed orthonormal basis of H,. For £ € B, and p € m, let

=@ 6 In He ® K». Let By = {&? |£ EBy,pEm,}. Let B= |J B,, and
neF
let € be a fixed orthonormal basis for £2(r). Then B U C is an orthonormal basis

for H.

Let £ be the set of all non-empty finite subsets of BUC, and let § be the set
of all finite subsets of A containing the identity element. Let A = A x S xRt x &,
directed by defining;

(a,5,6,E) 2 (o, 5", ', EV¢ = a2 0 ,SD25,e<e,EDFE.

Let 4 = (o, S,€, E) € A be fixed. Since FE is finite, we can find a finite non-empty
subset Fy of F, and for each m € Fy a positive integer ny < m, and a finite
orthonormal set {&y1,...,&x 4, } in H, such that

EnBC | J{&,|1<i<ts, 1<p<ns}.
TEFy



UPPER AND LOWER MULTIPLICITY 215

Define ¢, = (7(-)ér1,€r,1) € P(A) for each # € Fy. By Kadison’s transitivity
theorem there exist unitary operators u, ; in A such that

T(tni)xt =&xi (€ Fp, 1 i< ty),

and we may assume that u, ; = 1 for all 7 € Fy. Let ¢ = max{|alf I a€ S} 21,
let 6o = €/4c, and let M = 3 ngiy. Then let §; be obtained from &, and M as

7€ Fp
in Lemma 2.7. Let 6 = min{éy,¢/2}.

Now let I' = § x R* be directed by defining:
(T,h) 2 (T )<= T2T, h<h.

For y = (T\h) € T, define Ny, = {4 € A" | |¥(a)l < h (a € T)}. Note that
{N, ] v € T'} forms an open neighbourhood base at zero in A*. Let

Ly = {4 € A" | [¥(u} jaur;) < h (m€Fo, a €T, 1<4,j<tr)}-

Since uz,; =1, Ly T N,.
Assuming (i), there exists B(y) € A with 8(y)} 2 o such that

d(7p(y); ox1 Ly) Z ne (7 € Fo).

Denote mg(y) by py and let Hy be the Hilbert space on which py acts.

For each n € Fg there exists in H, an orthonormal set {7z y,1,- .-, Trvna}
such that
(3.1) (Pr(Vmypi My} E@r + Ly Con + Ny (1€ p<na)
Hence
(32) (Pw(u;,j Ui )y, Thyy,p) € ‘Pvr(“;,j “Uri) + Ny

form € Fp, 1 €4, <ty,and 1 £p < ny. From (3.1),
li;n <p7(')777":'7:l-“n7"v‘7:}7> = <P1I’ (W € F{), 1 g P < n"’)
and so it follows from Lemrﬁa 2.5 that

(3.3) li;n {py(Wr, 7,05 Wrivg) =0 in A7
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whenever 7 € Fy, 1 € p,q € ny, and p # ¢. Also, from (3.2),
(3.4) li;n (Pv(";,;‘ CUn i Mr iy, Nryy ) = S"vr(”:r,j “Un i)

forme Fy, 1 €4,j<ty,and 1 € p € n,. Since Fy and S are finite, it follows
from (3.3) and (3.4) that there exists yp € ' such that for v 2 7o

(3.5) |(P’r(u;,ja“w.i)’7rmm ’71r.'r.q)| < by

forallae 8, m€ Fg, 1 €1, < 1x,and 1 £ p,g € ny with p # ¢, and

(3.6) I(P7(u;,j AUz i )n,y,00 Dryp) — ‘Pr(“;,j au,,l,-)l < b

forallae S, 7€ Fy, 1 €4, € ty,and 1 £ p K ny.
Suppose that 7 and 7' are distinct elements in Fy and that 1 € i € {4 and
1 € j<tg. From (3.4),for 1 <p < ny and 1 € g < ny we have

(3-7) lim (P‘y(“:r,i : “w,i)"?r,'y,p’ 77:,1,3») = @n (“;,i ‘“r.l')
¥
and
(3.8) li,?l (P‘Y(“:",j x5 ) yg At r,g) = ‘Pﬂ'(“:’,j U )-

Since the limits in (3.7) and (3.8) are inequivalent pure states, it follows from
Lemma 2.6 that

li;“ (py (@)py (tr i )1x v,ps Pr(Unr 5) 111 7,9} = 0
for all a € A. Since Fy and S are finite there exists y(u) 2 7o such that

(3.9) l(P'r(u)(a)/"r(u)("r,i)'h.‘v(u),p ; P'Y(u)("f'»i)’?".‘v(#),qﬂ < b

whenever a € S, m and 7' are distinct elements of Fy, 1 € i € 5, 1 €7 < L,
1< p<nyg andl € g < nye. In a minor abuse of notation we let 7, denote
To(v(u)) = Py(u), a0d Mg 4 p denote Ny 4(y)p, for 7 € Fop and 1 < p < na.

Let H, be the Hilbert space for m,. For each m € Fy we have the following
ny X ty array of unit vectors in H:

T 1), 15 -+ o T2, Jm,,0

Ty (uw,l)nt,ﬂ,ﬂnl R 7#(uﬁniw)n"’,#v"r‘
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From (3.5) we have

(3.10) [l @t i) ) g} | < B2

forallae S, 7€ Fo, 1 €£¢,7 €< ty, and 1 € p,q € n, with p # ¢. In particular,
taking a = 1,

(3.11) I(ﬂ'u(u'rr,i)nw,u,pa W#(“”.j)”"’.#.ﬂ)l < &

forall m € Fy, 1< 4,j <tr, and 1 < p, g € ny with p #£ g. (So any two vectors u
and v in different rows of the same array satisfy |{u,v)| < 83.)
From (3.6) we have

(3.12) |(mu(uy 500, n .02 0} = (7 0t} < B2

forallae S, me Fy, 1 €14,j € ¢y, and 1 € p € n,. In particular, taking a = 1
and noting that
(P‘K(u;-,ju'lr,i) = <7r(u1r,i)€1r,1) W(u'ir,j)fr,l)

= <€1r,h€1r,j)
= 8,5y (Kronecker delta)

we have that

(3.13) (s ()0, 15 T ()70 )| < 62

foralla e S, 7€ Fo,l<p<nyandl 4,7 <ty withi # j. (So any two
vectors u and v occupying different positions in the same row of the same array
satisfy {u,v)] < 6;.)

From (3.9) we have

(3.14) |("n(a)”#(“r.i)nr,u.px “u(UW’.J')nvr’.u.qH <6

whenever ¢ € 5, 7 and 7' are distinct elements of Fg, 1 <7 < tr, 1 € j £ tgr,
1< p<ng and 1 € ¢< ng. In particular, taking ¢ = 1,

(3.15) I("'u(“vr,i)’?w,#.m ”u(“vr’.j)"vr’.u,q)l < 8y

whenever 7 and 7’ are distinct elements of Fy, 1 € i <tr, 1 € J <y, 1 < p € 0y,
and 1 € ¢ € ny. (So any two vectors u and v from different arrays satisfy
{u, v}| < &2.)
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Since §; < &y, it follows from (3.11), (3.13), (3.15) and Lemma 2.7 that there
exists in H, an orthonormal set

{ér,p,i,p"’reFOs 1€igty, 1<P<nw}

such that |7, (ux i }x pp—Er pipll < o forallm € Fo, 1S i< ty,and 1 < p < nx.
From (3.10) we have

2
(3.16) |(mu(@)ermiipsErmiisg)] < B2+ 2cb0 S S+ 5 =¢

8o ™

forallae S, r€eFy, 1€, i< ty,and 1 € p, g€ n, withp#g.
From (3.12) we have

(3.17) I(Wu(“)ff,p,i,p,ﬁf,p,j,p) - (W(a)er,iafr,j)l <G+ 2byge

forallae S, 7€ Fp, 1€4,j€ly,and 1 € p< n,.
From (3.14) we have

(3'18) I(wpu(a)étl"hi’pl E":l‘:jlq)l < 62 + 2660 g £

whenever @ € S, m and 7' are distinct elements of Fy, 1 S i € {4, 1 £ j < 15,
1<pSnyand 1< g ng.
We define a linear isometry V, : H, — H as follows. We let

Vilr piip) = Ei,.‘
forme€ Fy, 1 € i € iy, and 1 € p € n,, and we let V, map
(Span{€epip | 7€ Fo, 1<i<te, 1< p<nge})”
to any subspace of H which is orthogonal to
Span{EU{€h,|m€ Fo, 1€i<t,, 1< p<nal}.

Note that V, can be defined because H is infinite dimensional and large enough
for A. We define a representation o, of A on H by

ou(a) = Vumu(a)V, (a € A).

Then
Ess(o,) =0, | VuH, ~ 7,
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Define

o= (@(ﬂ'@ lx,,)) &0

TEF
(note that # ® 1x, = my, - ). It follows from (3.16) that

(3.19) |<‘7#(a)5£,i"§:,j) - (U(a)ﬁﬁ,;,ﬁfr,,-)ﬂ = |<7"#(a)£vrm,i,psEw,u.j.q) - OI <E

forallaec S, 7€ Fy,1<4,5<t;,and 1 € p,¢g € n, with p# ¢q. From (3.17) we
have

(3.20) I(au(a)‘fﬁ,i:fﬁlj) = (U(a)&:,,')fﬁlj)l <€

forallae 5, 7€ Fo, 1 €4,j Str, and 1 < p < ng.
From (3.18) we have

(3.21) |(Uu(a)££.il£;’r',j)' - (0(a)€¥,,-,£f,',,-)| = |<7rﬂ(a)fvr.u.i,p»51'.#,1'.'1) - 01 <€

whenever a € S, m and 7’ are distinct elements of Fy, 1 L i L tx, 1 £ j € t4,
1<p<ny,and 1< ¢ < ngee
It follows from (3.19), (3.20), (3.21), and the fact that

ENBC{&,|n€Fo, 1<i<ty, 1<p<ns},
that

(3.22) [{ou(a)é, n) — (o(a)é, )| <€

whenever a € S and €,7 € ENB.
Now suppose that £ € ENC and 7 € H. Then V}(£) = 0 and so g,(a)f =0

for all a € A. Hence {o,4(a)é,n}, {ou(a)n, &), (c(a),n}, {¢(a)n,£) are zero for all
a &€ A. Combining this with (3.22) we have

(3.23) [{(ou(a)é,n) — (o(a)é,n)| <€ (a€S, &neE).

Up until now, g has been fixed in A. We now show that ¢, converges to o
in the strong topology of Rep(A, H). Let a € A and let £,7 € BUC (the fixed
basis for H). Let € > 0. Choose any ag € A and let So = {1,a} and Eo = {£,7}.
Let po = (o, So, €, Ep). Then it follows from (3.23) that, for p 2 o,

[(eu(a)é, m) — (o(a)é, )| <e.

Thus li;n(a'#(a)f,n) = (o(a)¢,n).
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Since ||lou(a)|] € [|a| for all 4 € A, it follows by linearity and continuity
that o,(a) converges to o(a) in the weak operator topology. As this holds for any
a € A, it follows that ¢, (a) converges to (a) in the strong operator topology ([8],
3.5.2).

(i) = (iii): immediate.

(iii) = (i): Assuming (iii), there exists a subnet Q; = (Ta(u))uea of 2, a
Hilbert space H, and representations o, (¢,),ea of A on H such that

Ess(oy) = maqn) (4 € A),

@ mx - 7 is unitarily equivalent to a subrepresentation of ¢, and
rEF

li;no'u(a) =o(a} (a€A)

where the limit is taken in the strong operator topology. We may assume without

loss of generality that H = (@ (Hr @ K,)) @ K for some Hilbert space K,
mEF

and that ¢ = (@ (m® 1;(,)) @ oo {where the Hilbert spaces {K,} are as in
TEF

the beginning of the proof of (i) = (ii)). Let Ffy C F, {e=|T € Fo} C P(4),
{n«|m € Fo} CP, N € N, and &g € A be given as in (i). For 7 € Fp let & € Hy
be a unit vector such that ¢, = {7(-)¢r,& ). There are ¢ € Rt and a finite
non-empty subset S of A such that N = {) € A* | |[¢(a)| < £ for a € S}. Let

c=1+max{|lal| | a € §} > 1, let 6 = e/4c, and let M = 3" nx. From &, M,
reFy

and Lemma 2.7 we obtain §;.
For1<p<nyletél =€ @6, in Hy ® K,. Let P, be the projection of H
onto Ess(a,). Write nk , = P,£2. For 7 € Fy and 1 < p < n,, we have

(324)  Hm(eu(Int . t,) = lim (0,000, €2) = (60)ER,E8) =
where the limit is taken in the weak*-topology. In particular,
(3.25) lim |z, =1 (7€ Fo, 1<p< na).

We have 1= [IE2]12 = [l9,” + (1 ~ PL)EZI%, so lim | P,€8 —€2l] = 0, for 7 € Fy
and 1 < p < ny. Hence for (7,p) # (7', p') we have

(3.26) i (9 5, 77,) = lim (Pug?, ) = (€8, €%) = 0.
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By (3.24), and the fact that Q; is a subnet of 2, there exists go € A such that

1 .
(327)  {ouw()nmpsmrp) €+ SN (W€ Fo, 1S p<nn, 12 pio in A),

and such that a(u) 2 oo for all ¢ 2 pe.
By (3.25) and (3.26) there is p 2> ig in A such that for 7, 7' € Fo, 1 €< p € 1,
and 1 <p' € g,

M # —
<n7":p’ n”’ypr) 6((“:;’)!(""?‘)) l < 61

(where the first § in the preceding line is a Kronecker delta function). From
Lemma 2.7 there exists an orthonormal set of vectors {f;‘;r“p ] T€Fy, 1<p<ng}
in P,H such that

1k p —nhpll < b0 (m€ Fo, 1Sp< fr).

Fora€e S, € Fy,and 1 < p < ng:

](Gﬂ(a)‘gr‘.m&#,p) - (o'u(a)fh‘:,m n#,;;)' < 2560 = :62'

Hence, using (3.27), we have

1
(UIJ(')E#,pygg,p) € <Jﬂ(‘)n‘;,p’ ﬂﬁr‘,p) + §N Cer+ N.

Since Ess(0,) = Ta(y) it follows that 7o) € V(pr, N), and d(Ta(yu), @r, N) 2 nx,
for w € Fy. Since y > po, it follows that a(p) > ap, and so (i) is established. 8

REMARK 3.8. It will be convenient to extend Definition 3.3 to allow the
representation p to be the zero representation of A on a zero dimensional Hilbert
space. In part (1) we take this to mean that the representation o is the zero
representation on H. In part (2), item (b’) is satisfied for any representation o.
Then, with this convention, P(£2,0) and P/(£2,0) hold for any net {2 in A. To see
that P(Q,0) (and hence also P’(Q2,0)) holds, let H be a Hilbert space which is
infinite dimensional and large enough for A. Let £2 = (7q)aea and let £ be the set
of all finite subsets of a fixed orthonormal basis for H. Let A = A x £ with the
product direction. For g = (3, E) € A let a(p) = 8, and choose o, € Irr(A, H)
such that ®(o,) = a(u) and such that the essential space for oy is orthogonal
to E.
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4. THE MAIN RESULTS

We begin by using Lemma 3.7 to give characterizations of My(r, Q) and Mp(7, Q)
in terms of point-strong limits of essentially irreducible representations (Theo-
rems 4.1 and 4.2).

THEOREM 4.1. Let A be a C*-algebra and leim € A. Let Q= (Ta)aca be a
netin A. Letm e NU {oo}. The following are equivalent:
(i) My(m, Q) 2 m.
(ii) For every cardinal realization for m, P(Q,m - 7) holds.
(iii) There ezists a cardinal realization for m such that P'(Q,m - ) holds.

Proof. Let @ be a pure state of A associated with w. By Remark 3.8 we may
assume that m > 0.

(i) = (ii): Assuming (i), we proceed to verify condition (i) of Lemma 3.7 with
F ={r} Let n € P withn < m, let N € A, and let a € A. Since My(m, Q) > m,
we have My(p, N,Q) 2 m. Thus there exists § > o with d(ms,¢,N) 2 n.
Statement (ii) now follows by Lemma 3.7 ((i) = (ii)).

(1) = (iit): immediate.

(iii) = (i): Assume (iii). Applying Lemma 3.7 ( (iii) = (i) ) with F' = {=}, we
obtain that for each positive integer n < m and each N € A, limsupd(mq,p, N) 2
n. That is, Mu(yp, N,Q) > n, and so My(#,Q) 2 n. It followsathat My(m, Q) 2
m. B

THEOREM 4.2. Let A be a C*-algebra and let @ = (7a)aca be a nef in A
Let F be any subsel of A. Letm : F — NU {oo} be any function. The following
are equivalent:
(1) ML(7,Q) 2 m, for each we F.
(ii) For every subnet Q1 of Q2 and for every cardinel realization for {m.|n €

F), P(Ql, @ m ~1r) holds.
®E

(iii) For every subnet Q; of Q there exists a cardinal realization for {m.|r €

F} such that P’ (Ql, @D m, -7r) holds.
nEF

Proof. If F = @ or if m is identically zero, the result follows froni Remark 3.8.
Therefore we assume that F' # @ and (without loss of generality) that m : F —
P U {oco}. For each 7 € F, let ¢, be a pure state of A associated with 7.

(1) = (ii): Let Q1 = (Ta(u))uea be a subnet of Q. Assuming (i), we have
My(7, 1) 2 Mp(7, Q) 2 m, for each 7 € F. Let Fy C F be finite and non-empty.



UPPER AND LOWER MULTIPLICITY 223

Let N € N, let gy € A, and for each 7 € F let n, € P satisfy n, € m,. We have
for each w € Fy,

lin}/infd(‘/ra(,,),go,r,N) ML{px, N,S) 2 Mp(7, Q) 2

Since Fy is finite there exists v 2 p such that d(wa(,,), or, N) 2 ny forall m € Fo.

This verifies condition (i) of Lemma 3.7, and hence P (Qx, P m. - w) holds.

(i) = (iii): immediate. e

(i) = (i): Fix 7 € F and suppose that My (7, Q) = k£ < m,. Then there is
N € N such that My, (¢, N,Q) = k. That is, lin‘;infd(';ra,tp,r, N) = k. Therefore
there is a subnet Q; = (74(,))uea of Qsuch that d(74(,), pr, N} = kforall g € A.
Assume that (iii) holds. We apply Lemma 3.7 ((iii) = (i}) to the net ©Q;, with
Fy = {n} and ny = k + 1. It follows that there exist (infinitely many) pu € A for
which d(7a(y), x, N) 2 k + 1, a contradiction. 8

The next result is a consequence of Theorem 4.2. It strengthens Theorem 3.2
of [3].

TBEOREM 4.3. Let A be a C*-algebra and suppose that = (7a)aea 15 @
nel in A.

(i) For each a € A*

(4.1) lim inf Tx(m,(a)) > Z My (7, Q) Tr(x(a))
1rEA

(working in [0, 0] with the convention that co x 0 =0).
(ii) Given o € A, there exists a subnet Qo = (Ta(u))uea such that for each
a€ At

(4.2) liminf Tr(ma(u(a)) > Mu(m, Q)Tx(me(a)) + D Mi(r, Q) Tr(r(a)).
neA\{ro}
REMARK 4.4. Recall that Mp,(7,§2) = 0 unless Q converges to w, whereas
My(m, ) > 0 whenever 7 is a cluster point of Q.

Proof. (i) Suppose that (4.1) fails to hold for some a € A*. For this element
a the left-hand side of (4.1) is finite (with value R, say) and there exists € > 0
such that the right-hand side of (4.1) is greater then R+ 2c. There exists a subnet
1 = (Ta(u))uea, of 2 such that

Tr(wa(,,)(a)) <R+e (pne Ay).
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For each 7 € A with Mp(7, Q) > 0, we have that Ta(u) =7 and that My (7, Q) <
ML (7, ;). Hence, applying Theorem 4.2 to §;, with F' = A, there exist a subnet
Q) = (wa(,,) vea, of Q, a Hilbert space H, and representatlons o and (¢, )yea, of
A on H such that:

(a) Ess(o,) =~ To(v)
(b) Ess(¢) ~ @ Myr(m, Q) - 7 (where, for definiteness, if My (7, Q) = co we

TEA
take it to be Rg);

{c) 04 — o in the strong topology of Rep(4, H);
(d) Tr(maqu)(a}) < R+ ¢ for all v € A,.

It follows from (b) that Tr(c(a)) > R+ 2¢ and so there exists an orthonormal
set {£1,€2,...,6,} in H such that

n

Z(C’(ﬂ)&, &Y> R+e.

i=1

By (c), there exists vy € A3 such that for v > v

Z O'u(a' 6::5: > R4e.

Hence Tr(o'y(a)) > R+ ¢ for all v > vy. However, it follows from (a) and (d) that
Tr(c,(a)) < R+ ¢ for all v € Ay. This contradiction establishes (i).

(ii) Let 7o € A. By Proposition 2.3, there exists a subnet Qg = (ﬂ'&(#))yEA of O
such that Mp (g, Qo) = Muy(mo, Q). Since ML(7, o) 2 My(m, Q) for n € A\{vrg},
(i) now follows by applying the result of (i) to the net Q. 1

It is natural to ask whether the inequality in (4.1) above can be reversed if
‘liminf’ is replaced by ‘limsup’. Consideration of elementary examples shows that
the desired result may fail in general. However, it is possible to obtain a result of
this kind under the assumption of an auxiliary finiteness condition. Details of this
will appear in a subsequent paper ([6]).

We show next how Theorems 4.1 and 4.2 specialize to give characterizations
of My(7) and My (7) (Theorems 4.5 and 4.7).

THEOREM 4.5. Let A be a C*-algebra, let 7 € A, and let m € PU{oo}. The
following are equivalent:

(1) My(m) =2 m

(ii) For every cardinal realization for m, and for every cardinal number r
such that £2(r)@(£%(m) ® Hy) is infinite dimensional and large enough for A,
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there are a Hilbert space H, a represeniation o of A on H, and a net (0o)aen 0
Irr(A, H) converging to o in the strong topology, such that:
(a) Ess(o) @ m - =;
(b) dim (c(A)H)* =r.
(iii) For some cardinal realization for m there are a Hilbert space H, a rep-
resentation o of A on H, and a nel (0x)aca in Irx(A, H) converging to o in the
strong topology such thal o contains a subrepresentation unitarily equivalent to

m-T.

Proof. (1) = (ii): M {n} is open, let Q be a net with constant value equal
to m. Then © converges to = in A, and My(r) = My(r, Q). If {r} is not open,
Proposition 2.2 provides a net © in A\ {7} such that Q converges to 7 and
My(7) = My(n, ). Assuming (i), Theorem 4.1 implies that P(£2, m - 7) holds for
every cardinal realization of m. Thus (ii) follows.

(if) = (i): immediate.

(i) = (1): Assume (iii). Let @ = (74)aear Where 7y = ®(04). Then
P'(Q2, m- ) holds, with § itself playing the role of the subnet. Using Theorem 4.1
((i11) = (1)), we have

m € My(r, Q) € My(r). 1

REMARK 4.6. It follows from Lemma 3.5 that, if (i) and (iii) hold, then
$(oq) — 7 in A. Hence, if these equivalent conditions are satisfied, then in (11)
the net (o) can be chosen so that ®(a,) lies in A \ {r} for all a if and only if
{7} is not open in A. With regard to this latter condition, we recall from [3],
Proposition 4.11 that if {r} is open in A then My(x) equals 1 or co.

THEOREM 4.7. Let A be a C*-algebra, let m € 2, and suppose that {r} is
not open in A. Letm € PU {oo}. The following are equivalent:
(i) Mp(7) = m.
(ii) For every net Q in ﬁ\ {n} which converges io =, and for every cardinal
realization for m, P(Q,m . w) holds.
(iii) For every net 2 in X\ {7} which converges to 7, there exists a cardinal
realization for m such that P'(2,m - m) holds.

Proof. (1) = (ii): Let € be a net in A\ {7} converging to 7. Assuming
(i), m € Mp(nr) € Mp(m, Q), and it follows from Theorem 4.2 ((i) = (ii)) that
P(Q,m - ) holds for every cardinal realization for m.

(i1) = (iii): immediate.

(iii) = (i): Let © be a net in A \ {r} converging to = such that My(7) =
ML(m, Q) (from Proposition 2.2). Assuming (iii), we have that for every subnet
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§; of Q there exists a cardinal realization for m such that P/(Q,,m-x) holds. By
Theorem 4.2 ((iii) = (i)), it follows that m € Mp(7, Q) = Mp(=). 1

Let H be an infinite dimensional Hilbert space which is large enough for A.
Recall that Rep(A, H) is the set of all (possibly degenerate) representations of A on
H with the strong topology, and that Irr(A, H) is the subspace consisting of those
non-zero representations o for which Ess(c) is irreducible. Let & : Irr(A, H) — A
be the canonical sutjection. By using a related result of Fell ([11]), Gardner showed
that ¢ is continuous and open ([12]). The fact that ® is continuous is generalized
by Lemma 3.5. The following corollary, which is proved without recourse to the
results of Fell and Gardner, generalizes the fact that & is open.

COROLLARY 4.8. Let A be a C*-algebra, lel @ € A, and suppose that {7} is
nol open in A LtmePu {co}. Let H be an infinite dimensional Hilbert space
which is large enough for A. Let 7 € Rep(A, H) satisfy Ess{(7) ~ m -7 for some
cardinal realization of m. The following are equivaleni:

(i) Mp(7) 2 m;

(i) For each strong neighbourhood U of 7, {w}U®(UNIrr(A4, H)) is a neigh-
bourhood of w in A.

Proof. (i) = (ii): Suppose that (ii) fails. Then there is a strong neighbour-
hood U of 7, and a net Q in A\\({W}UQ(Uﬂlrr(A, H))) converging to #. Assuming
(1), it follows from Theorem 4.7 that if we take r = dim(7(A)H)* then there exist
a subnet (7a(u))uea of Q, a Hilbert space K and representations ¢ and (0u)uea
of A on K such that:

(2) Ess(04) ~ Ta(uy;

(b) Ess(o) ~ m - 7 ~ Ess(7);

(c) (o) converges to o in Rep(A4, K);

(d) dim(c(A)K)L =r.

By (b) and (d), there exists a unitary operator V from K onto H such that

Vo(a)V* = 1(a) (a € A).

By (¢), Vo,V* — 7 in Rep(A, H). From (a) we have that ®(Vo, V") = m4(,),
which gives a contradiction.

(it) = (i): Assume (ii). By Theorem 4.7 it suffices to show that P'(Q, m- )
holds for every net Q in A\ {x} converging to 7. Let @ = (74 )aea be such a net.
Let & be the neighbourhood base at 7 in Rep(A, H). Set A = A x U{, directed by

BB, U)Y<=p<p andUDU".
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For 4 = (B,U) € A there exists a(y) € A such that a(u) > 8 and Ta(u) €

®(U N1Irr(A, H)). Let o, € U satisfy Ess(o,) ~ Ta(u)- Then Qi = (Ta(u))uea

is a subnet of Q. By construction, limo, = 7 in Rep(A, H). This establishes
u

P(Q,m-7). 1

We briefly indicate how the above result implies that ® is an open map. Let
o € Irt(A, H) and let U be any neighbourhood of ¢ in Rep(4, H). If {®(c)} is not
open in A, then ML(®(7)) > 1 and so Corollary 4.8 implies that ®(U NTrr(A, H))
is a neighbourhood of ®(c). If {®(c)} is open in A then the containing set ¢(U' N
Irr(A, H)) is automatically a neighbourhood of ®(c).

The proof of the corollary indicates the importance of the cardinal r in the
definition of property P(S2, p). This acts as a substitute for Gardner’s technique
using ‘too large Hilbert spaces’ ([12]).

Finally, in Theorems 4.9 and 4.12 below, we adapt Theorems 4.5 and 4.7
to give exact formulae for My(#) and M(x) that do not involve the use of nets.
Recall from Section 1 that, for o € Irr(4, H), m(w, o) € NU{oo} is the multiplicity
of 7in g.

THEOREM 4.9. Let A be a C*-algebra and lei H be infinite dimensional and
large enough for A. Let 7 € A.

(1) My(7) = oo if and only if there ezists & € Irr(A, H) containing a sub-
representation untlarily equivalent to an infinite direct sum of copies of .

(i) If the equivalent conditions of (i) do not hold then

My(7) = max{m(r,s) | ¢ € Irz(A4, H)} < co.

Proof. Let m be a cardinal realization for My(r), where if My(7) = oo we
take m = Ro. Then dim(¢2(m) ® Hy) < dim(H). Let » be any cardinal number
such that

dim(£*(r) ® (#*(m) ® Hy)) = dim{H).

By Theorem 4.5 ((i) = (ii)), there exist a Hilbert space K, a representation o of
A on K and a net (0a)qea in Irr(A, K} converging to ¢ in the strong topology
such that:

(a) Ess(0) = m - m;

(b) dim(s(A)K)L =7

In particular, dim(K) = dim(H) and so there exists a unitary operator V
from K onto H. Then Vo V* € Ir(4, H), VooV* — VoV* in the strong
topology of Rep(A, H), and Ess(VoV*) ~ m-r. This establishes the ‘only if’ part
of (i) and shows that, in (ii), My(7) is contained in the set to be maximized.



228 R.J. ARCHBOLD AND J.S. SPIELBERG

To complete the proof, suppose that p € Irt(A, H), suppose that either n € P
or n = Ny, and suppose that p contains a subrepresentation unitarily equivalent
to n - . By Theorem 4.5 ((iii) = (i)), we obtain that if n = Ry then My(7) = o0
and that if n € P then My(#) 2 n. 1

To give an analogous characterization of lower multiplicity, we require the
following lemma.

LEMMA 4.10. Let A be a C*-algebra and let H be infinite dimensional and
large enough for A. LetY C }i, let E=9-1(Y), and letoc € E. Let p € Rep(A, H)
satisfy.

(i) Ess(p) is unitarily equivalent to a subrepresentation of o;

(i1) dim(p(A)H)* = dim(H).

Then pe .

Proof. Let 0 = g9 & o1 with Ess(p) ~ oo, and let H = Ho @ H; be the
corresponding decomposition of H. Let H=H® 22(P), and let & = o @ eyy,
o = (00 D Og,) ® e11 in Rep(A, ﬁ), where {e;; | i,7 € P} is the usual system of
matrix units in L(€2(P)). We will also let {§; | 7 € P} be the usual orthonormal
basis in £2(P). Let W : H — H be a unitary operator, and let py = W*GW in
Rep(A, H). Note that Ess(pg) ~ 0o and dim(po(A)H)L = dim{H), and so po ~ p.
Since E is saturated with respect to unitary equivalence on H, it suffices to show
that py € E.

By hypothesis there is a net (0,) in Irr(A, H) such that ®(o,) € Y and
0o — 0. Let 4 = 0o ®ey1 € Rep(A4, 17) Let V be any unitary operator in L(ﬁ)
We have W*V*G,VW — W*V*GVW in Rep(A4, H). Since $(W*V*G, VW) =
®(0,) € Y, and since E is closed, we have that W*V*eVW ¢ E.

Now let P be the orthogonal projection of H onto H;. Let

Vi = P® (e1x +ex1) + 1 — P ® (e11 + exx)-

Then V; is a unitary operator in L(H). We claim that Vy&Vi — &o. To see this,
letae A. If £ € Hy® 6, then

Vi d(a)Vi€ = V7 G(a)€ = To(a)f.
If € € (Ho ® 6;)*, then since (Ho ® 61)% is invariant for each Vi we have

I5(a)Ve&ll < llall I(P ® exs)Vikl]|
= [lall (P @ ewx )|

— 0 ask — co.
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Hence for all @ € A4, £ € H we have lig]'Vk“E(a)ka = @o(a)f. Thus V;Vi — 0o,

and so since £ is closed,
po = WooW = liin W*VyeViW e E. 1
DEFINITION 4.11. Let A be a C*-algebra and let 7 € A. Denote by W(r)
the collection {Y C A\ {=} | me Y}
THEOREM 4.12. Let A be a C*-algebra and lei H be infinite dimensional
and large enough for A. Let 7 € A and suppose that {m} is not open in A. Then
My, (7) = inf( sup{m(m,7) | T € ®-1(Y)}.

Proof. (£): Let Y € W(x). Then there is a net Q = {m,)q¢a in Y converging
to m. By Theorem 4.7 ((i} = (i1)), P{Q, My(x) - ) holds (where in the case that
ML (7) = oo, we realize it as Rg). Thus there is a subnet (Togu))rea of Q, and
representations ¢, (¢,)uea of A on H, such that

Ess(0u) 2 Ta(y)
Ess(o) ~ My {(x) -«
Oy — 0.
It follows that ¢ € ®-1(Y) and m(r,¢) = My (). Therefore
Mp(7) £ sup{m(:'r T) | Ted- Y)}

Taking the infimum on Y we obtain the desired inequality.
(2): Let k € P with

k< 1nf( sup{m(m, 1) |TE<I’ (M)}

We then have that for each Y € W(r),

(4.3) k < sup{m(m,7) |7 € 2-1(Y)}.

Fix p € Rep(4, H) with Ess(p) ~ k - 7 and dim(p(A)H)* = dim(H). Let Q =
(Ta)aca be anet in A\{r} converging to x. For each 3 € A, let Yg = {mq | « > B}.
Then Yz € W(r), so by {4.3) there exists 73 € ®~1(Yp) with m(r,75) > k. By
Lemma 4.10 we have

(4.4) €TV (B EA).

Let U be the neighbourhood base at p in Rep(A, H), and let A = A x i with
the product direction. For ¢ = (8, G) € A, it follows from (4.4) that there exists
a(p) 2 B and 0, € G with g, € Irr(A4, H) and ®(0,) = 7a(u). Thus P/(Q, k- )
holds. From Theorem 4.7 ((iii) = (i)), it follows that ¥ < My («), and the desired
inequality is established. 1
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