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ABSTRACT. A local version of the concept of polynomial boundedness for
operators on Banach spaces is defined and its relations to functional calculi
are examined. For certain positive operators on L°°-spaces, especially for
endomorphisms, lack of local polynomial boundedness corresponds to mixing
properties. In particular, we give a new characterization of the weak mixing
property. Some results extend to more general C*-algebras. This is done
by constructing certain topological embeddings of the unit vector base of
1*(No) into the orbits of an operator. To analyze the underlying structure
we introduce the concept of a transition set. We compute transition sets for
the shift operator on ' (Z) and show how to define a corresponding similarity
invariant.
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1. INTRODUCTION

Reading the classical monograph “Harmonic Analysis of Operators in Hilbert
Spaces” by B. Sz.-Nagy and C. Foiag ([15]) provides a strong impression of the
usefulness of large functional calculi in establishing a detailed structure theory
of operators. The property of polynomial boundedness is a necessary condition
for the possibility of defining these calculi. On the other hand, a rather differ-
ent sort of behaviour should be expected if we consider operators which are not
polynomially bounded.
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In the second section we develop the concept of local polynomial bounded-
ness. With the help of this point of view it is possible to obtain spectral properties
of an operator which are equivalent to the existence of certain functional calculi.
Results which are implicit in the work of many authors using functional calculi
can be summarized in a convenient way. Conversely we may characterize those
operators on Banach spaces, which do not allow an approach by large functional
calculi, by their lack of local polynomial boundedness. In fact, the main idea be-
hind our work in the following sections has been to consider degrees of deviation
from local polynomial boundedness and to use the classification evolving in this
manner as a new structure theory of operators.

In the third section we show that for endomorphisms and some other posi-
tive operators on L™-spaces this classification is closely related to the classification
concerning mixing properties, known from ergodic theory. Some of the results ex-
tend to more general C*-algebras. The classical Rohlin lemma and its modern
version by A. Connes are used, and we give an equivalent characterization of the
weak mixing property in terms of local polynomial boundedness, using a result
of H. Furstenberg. The relation between ergodic theory and peolynomial bound-
edness is established by certain topological embeddings of I'{Np} into the orbits
of the operator. A lemma by H.P. Rosenthal and L. Dor becomes relevant for
operator theory as a tool to identify such embeddings. For shift operators these
constructions are particularly easy.

Indeed the existence of such embeddings is completely opposite to any poly-
nomial boundedness properties. We try to encode the information obtained in this
way concerning deviation from polynomial boundedness into the so-called transi-
tion set. The fourth section is devoted to this concept.

For the shift operator on 11(Z) all transition sets can be computed explicitly
from symmetry properties of the set of zeros of Fourier transforms. Extending
the definition of the transition set, we can define an invariant for similarity of
operators. For example, if we find nonempty transition sets for an operator, then
infinitely many cyclic subspaces can be constructed such that its restrictions are
not similar. The complexity of a structure theory for operators of this class is

already evident from that.
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2. LOCAL FUNCTIONAL CALCULI

First of all we fix some notation which will be used throughout the text. The open
unit disk {z € C : |z| < 1} is denoted by D, and for its boundary D we use a
parametrization by [0,27) 3t~ &* € D.

dt denotes Lebesgue measure on [0, 27), and M[0, 27) is the set of all (com-
plex, regular, finite) Borel measures on [0 27). For any suitable function f on 8D

we get Fourier coefficients f(n) := 5 f f(t)e~int de.

We consider the following functlon algebras on 8D:

L*®(8D), the algebra of dt-essentially bounded functions on 8D,

C(8D), the algebra of continuous functions on 0D,

A@D) = {f € C(3D): [Iflla = 3] |f(m)] < 00}, the Wiener-algebra,
ne

and in each case the subalgebra of those functions whose Fourier coefficients with
negative indices all vanish: H*®(8D), Ct(8D), A*(3D). It is also possible to
interpret these subalgebras as algebras of analytic functions inside of the unit disk.
We refer to [8] for these and all further details concerning these algebras.

If T is any contraction on a Banach space X, it is possible to define an oper-
ator f(T') for any f € A*(8D) by f(T):= F(n)T™. For certain contractions

neMNa

on a Hilbert space a H°(8D)-functional-calculus has been defined by B. Sz.-Nagy
and C. Foiag ([15]). An important ingredient of such extensions is given by von
Neumann’s inequality ||p(T)|| € ||pllco, valid for all contractions on a Hilbert space
and all polynomials p € A*(8D). More generally a contraction T' on a Banach
space is called polynomially bounded, if ||[p(T)|| € K ||p||oo is valid for a constant
K > 0 and all polynomials p € A*(8D).

The relations between functional calculi and polynomial boundedness can be
stated in a concise way if the following local version of the concept of polynomial
boundedness is introduced, which to the knowledge of the author has not been
systematically investigated up to now.

DEFINITION 2.1. Let T be a contraction on a Banach space X. T is called
(locally) polynomially bounded in a vector z € X, if

lp(T)=ll € Kallplleo

is valid for a constant K > 0 and all polynomials p € A*(8D}.

If they exist we shall assume K or K, to be chosen minimally. We shall also
speak of a polynomially bounded vector z € X, with respect to the operator T', in
the sense defined above.
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REMARK 2.2. A contraction T is (globally) polynomially bounded if and only
if it is (locally) polynomially bounded in all z € X.

Proof. Apply the principle of uniform boundedness to the set

{p(T) : lIpllc = 1}. m

DErINITION 2.3. Let T be a contraction on a Banach space X and let Abe a
topological algebra of functions on 8D which contains all polynomials p € A*(8D).

A local A-functional-calculus of T in 2 € X is a continuous linear map
F . A — X with the following properties:

(i) F(p) = p(T)z for all polynomials p € AT(8D).

(it) F(pf) = p(T)F(f) for all polynomials p € A*(8D) and all f € A.

We shall write f(T)z instead of F(f), which is consistent with the usual
interpretation of this symbol for polynomials by (i). Now (ii) reads:

(pf)(T)z = p(TYf(T)z) for all p e AY(8D) and f € A.

If we have a local A-functional-caleulus F of T in z € X, then forallge A
the map

Fo: A3 fr (fg)(T)(z) € X

defines a local .A-functional-calculus of T in g(T)z: Continuity and linearity follow
from (i) for F and from continuity and linearity of the multiplication in A. If
p € AY(8D) is a polynomial and f € A, then

Fa(p) = (pg)(T)z = p(T)(9(T)z),
Fo(pf) = (pfa)(T)z = p(T)(f9)(T)z) = p(T)(Fo(F)),

which proves (i) and (ii) of Definition 2.3 for ¥,.

Now in the obvious way the equation f(T)}(g(T)z) = (f¢)(T)z is well defined
and true, which justifies the terminus local functional calculus. Indeed if we have
consistent A-functional-calculi simultaneous for all z € X, then this is just a
functional calculus in the usual sense: a continuous homomorphism of algebras.

In our first theorem we consider C+(8D)-functional-calculi.

THEOREM 2.4. Let T be e contraction on a Banach space X and z € X.
The following assertions are equivalent:
(i) T is (locally)polynomially bounded tn z.
(il There is a (norm continuous) local C+(3D)-functional-calculus of T
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(iif) For every * € X* (the dual of X) there is a measure yz 7+ € M[0,27)
with

27
(The, 2%} = /ei"‘ dpg »e
0

for all n € Np.

Proof. (i) = (ii) For any f € C*(6D) there is a sequence {pplnen C
C*(8D) of polynomials such that [|p, — f|| = 0. By (i) the sequence {pn(T)z}nen
is a Cauchy sequence in X. We define f(T)z to be the limit of this sequence. It is
now easy to see that this limit does not depend on the choice of the polynomials
and that the map f = f(T)z is normcontinuous. Definition 2.3 (i) is valid and
Definition 2.3 {ii) follows from

PINAT)Z) = p(T)( lim pa(T)z) = lim p(T)pa(T)z
= lim (pp,)(T)z = (pf)(T)z.

(it) = (iii)) The map C*(8D) 3 f — (f(T)z,z*) is a continuous linear
functional which can be extended to C(8D) by the Hahn-Banach theorem. This
functional corresponds to a Borel measure whose image g z» by the parametriza-
tion of 8D satisfies the condition above.

(i) = (i) Regard {p(T)z : ||pllc = 1} as a set of linear functionals on

2 .
X*. We have (p(T)z,2*) = [ p(e")dpz,o+ < ||p|ecl|ttz,z||. Now the principle of
0
uniform boundedness implies K, = sup {|p(T)z|| < c0. 1
Plloc=1

REMARK 2.5. We can also conclude that f{7T")z is also polynomially bounded
and I{f(T)w < .Kz“f“w

REMARK 2.6. The measure pi; ;- is obviously not unique. By the theorem
of F. and M. Riesz ([8], p. 47) the difference between two choices is absolutely
continuous with respect to Lebesgue measure.

We consider now local H®(dD)-calculi. Remember that H*(8D) carries a
weak*-topology inherited from the duality (L!, L*°).

THEOREM 2.7. Let X be a Banach space which carries a weak™-topology
induced by a predual X, and let T be a weak*-continuous coniraction on X and
zeX.

The following asserlions are equivalent:

(i) If a sequence {pn}neN C H®(8D) of polynomials is weak™- Cauchy, then
the sequence {pn(T)z}neN is also weak*-Cauchy.
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(ii) There is a (weak*-continuous) local H*®(8D)-functional-calculus of T
tnh .
(i) For every 1 € X. there is a function gz ¢ € L1[0, 27) with

2r
(T'z,¢) = /ei"‘gx,¢(t) dt  for alln € Ng.
o

(iv) nl_i*ngo [ sup |(p(T)T"x,¢}I] =0 for all Y € X,.
llpllen €1

Proof. (i) = (ii} For any f € H*(8D) choose a sequence {pn}nen C
H®>(0D) of polynomials which converges to f in the weak*-topology. By (i) the
sequences {{pn(T)z,%¥)}nen are convergent for all ¢y € X,. By the principle of
uniform boundedness the sequence {pn(T)z}nen converges in the weak*-topology
to an element of (X,}* = X which we call f(T)x. Approximation by polynomi-
als shows that this definition of f(T}z is independent of the choice of sequences
and that the map f — f(T)z is sequentially weak*-continuous. The complete
weak*-continuity follows from that because of the separability of the predual of
H®(0D) which can be identified with a quotient of L!(8D). This is a general fact
for weak™-topologies ([2]). 2.3 (i) is true by definition. Because T and therefore
also p(T') are weak*-continuous, we can prove Definition 2.3 (ii) by

P(T)(F(T)2) = p(T)( Jim pa(T)z) = lim p(T)pa(T)z
= lim (ppa }(T)z = (pf)(T)=,

where now the limits are weak*-limits.

(i) = (iii) The weak*-continuity of the map F : f +— f(T)z implies the
existence of a preadjoint 7, : X, — H*®(8D).. Again H*(8D), may be identified
with a quotient of L(8D). For any ¢ € X, we choose gy to be a representative
of the equivalence class of F.1 (more precisely we still have to transfer it to [0, 27)
via parametrization).

For any f € H®(0D) we have

T
(F(T)z,9) = (F(f), ) = (£, Fo) = (f, gog) = / F(E)92. (1) dt.

Choose f(e'*) = & to get (iii).
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(ii)) = (i) Let {pn}nen C H®(OD) be a weak*-Cauchy sequence of polyno-
2

mials. For all ¢ € X. we have (p,(T)z, %) = [ pn(e'*)gs4(t) dt. The conclusion
0

follows by the defining property of the weak*-topology of H*(8D).
(iif) = (iv) By (iii) there is a function gz y(t) € L![0,27) with

2
DT, 8) = [ B ga (8
)
for all polynomials p € H*(8D).
For every ¢ > 0 there is a number M € N and a function § € L![0, 27) with

gt) = ‘Z are*t and |lgz ¢ — §l| < €. For example take Césaro means of partial
k=-M
sums of the Fourier expansion of gz 4.

Tor all n > M 4 1 we have

27 27
| [reremaut ] = | / ()™ [5(0) + (2.0 — (O] )

0+||P||ool|9x,¢ gl < llplleoe

and therefore sup |[(p(T)T"z,¥)| < €. This proves (iv).
P Pol,
Ipllco €1

(iv) = (i) Let {palnen C H*(8D) be a weak”-Cauchy scquence of polyno-
mials. For every M € N, £ > 0 the set

M= {g e H2@D): [fR)I< o fork=0,...,M~1}

is a weak*-neighbourhood of 0 in H*(8D) because the maps g — g(k) (k € No)
are weak*-continuous linear functionals.
If § = pn — Py We have for all p € X, and all M € N:

M-1 00
Ko@)z, 9} = |{ 3 50T 2, 9) + (D2 ’g“(k)T'“m,«p)i
k=0 k=M
M-1
<3 Bl 9+ Y 50 sup [(p(T)T™ 2, ¥)]
k=0 k=M Irlles <1
M-1

M-1
B = 191+ (lallo + 3 1808)]) sup |p(T)T 2, 9)1.
=0 k=0

fielloo €1

bl
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By (iv) it is possible to obtain sup |(p(T)TMz, 9} < € by choosing M € N

p Pol.
plloo 1

large enough. Take now also ng L-‘_ N large enough so that for all n,m > ngy we
have p, — pm € UM, in particular Z lg(k)|

Summarizing we have for all n,m > ng:
(2 = 2 (D)2, 931 < el ]+ (2508 illn + €)

(sup |Ipallc < oo because {p,}nen is weak®-Cauchy). This implies that
kEN
{pn(T)2}nen is weak™-Cauchy. 1

REMARK 2.8. A global version of (iv) (i.e. simultaneous for all z € X) was
discussed in a somewhat different context in [1]. (iv) should be interpreted as a
version of the Riemann-Lebesgue lemma on the Fourier coefficients of L!-functions.
See the following:

PROPOSITION 2.9. Suppose p € M0, 27).

The following essertions are equivaleni:

(i) u is absolutely continuous (with respect to Lebesgue measure).
31 N ity ant —

(i1) Jim [ sup fp Je d,u] =0.

r Pol.

Nrlico €1

Proof. Regard the multiplication operator M(expity on L2([0,27), ) and
choose z = ¢ = 1 to apply Theorem 2.7. We only have to observe that the
steps (iii) = (iv) and (iv) = (i) in the proof of the theorem are valid for every
single 1.

Considering this the implication (i) = (i1) follows immediately from (iii)
= (iv) in Theorem 2.7. To prove the implication (ii) = (i), let {pn}nen be a
weak* Cauchy sequence of polynomials. (iv) = (i) in Theorem 2.7 shows that the

sequence

{{pn(T)L, V) }en = {/Pﬂ(eit)d!‘}ne~
0

.
is convergent. We infer that the map p — [ p(e")dy extends to a weak®-

0
continuous linear functional on H*°(3D). If we represent this functional by an
absolutely continuous measure, we know (see Remark 2.6) that its difference from

1 also has to be absolutely continuous. &
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DEFINITION 2.10. If the conditions of Theorem 2.7 are satisfied the operator
T is called absolutely continuous in z € X. We shall also call = € X an absolutely
conlinuous vector with respect to T in this case.

Xpb := {z € X : T is polynomially bounded in z},

Xac := {z € X : T is absolutely continuous in z}.

We call T (globally) absolutely continuous if X = X,.. This is consistent
with the definition in [13]. Whenever we speak of absolute continuity we shall
implicitly assume that the setting of Theorem 2.7 is given.

Xpb and X are linear subspaces of X, and we have X, C Xpp because the
weak*-continuity of the local functional calculus F implies its norm continuity.
Therefore the property of local polynomial boundedness is a necessary condition
for more advanced calculi. This has been our first motivation for a detailed study
of this concept.

REMARK 2.11. If 2 € X is absolutely continuous with respect to 7 then
T"z — 0 in the weak™-sense. This follows from Theorem 2.7 (iii) and the Riemann-
Lebesgue lemma. A partial converse is the following:

If T is (globally) polynomially bounded and ||T"z|| — 0, then z is absolutely
continuous.

This follows immediately from Theorem 2.7 (iv).

Many well known facts about Hilbert space contractions fit naturally into
this frame:

It is easy to see that a vector is absolutely continuous in the sense defined
above if and only if its spectral measure with respect to a unitary dilation is abso-
lutely continuous. Because for completely nonunitary contractions all these spec-
tral measures are absolutely continuous ([15]), we can obtain the H%°(8D)-calculus
of B. S5z.-Nagy and C. Foias mentioned in the beginning from our Theorem 2.7.
We give another result which also generalizes some well known facts of Hilbert
space theory:

PRrROPOSITION 2.12. Let T be a contraction on a Banach space X.
(i) The map =z — K. is a norm on Xpp.
(i1) If Xpp s (norm-)closed so is Xe.

Proof. Remember that we agreed to choose K, minimally. Thus K, is the
norm of the operator C+(9D) 3 p— p(T)z € X. This proves (i).

We now prove (ii): If Xy is closed then T X, is (globally) polynomially
bounded: there is a number K > 0 with ||p(T"|Xpb)|| € K|lplloo (see Remark 2.2).
Again we choose K minimally. For all ¢ € X, we have (|p(T)z|] € K ||z|| ||plloo
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and therefore K. < Kl|z|| (so the original norm is finer than the one defined in
part (i)).

Let now z € X be in the (norm-)closure of X,.. By assumption we have
z € Xpp. Take a weak”-Cauchy sequence {p,}nen of polynomials and £ > 0. Fix
now % € X, and choose y € X, with ||z — y|| small enough so that:

1
[{(Pn = P (T)(x — v), )| < 2 sup llonlloo Kl — wil [[4]] < 5e.

On the other hand by Theorem 2.7 (i) there is a ng € N so that for all n,m 2 ng

we have [{(pn — pm {(T)y, ¥} < 3¢ and thus [{(pn — pm)(T)z, ¥} € . This proves
26E Xge. 1

In the case of Hilbert space contractions (where X = X, by von Neumann’s
inequality) it is a well known result that X, is closed.

EXAMPLES 2.13. Let T be a contraction on a Banach space X.
(i) For an eigenvector z of T™ with eigenvalue A, |A| = 1, we have ¢ €

Xpb \ Xac and K, < nl|z||.
Proof. Let p(z) = Z 7;2' be a polynomial. Then p(T)z = (Yo + TaA +

Yon A2+ Yz + (N +‘)’n+1)l+72n+1)~ +- )Ta:+ +(‘rn—1 + Y1 A+ )T 1z
We have |70 +9n + 720 + - Z p(e?™ )] <

||Plloo, and by evaluatlng

similar sums we also get |7; + ‘rn+1)« + 72,,.”)\ +- | € |plloo for 0K j < n—1.
Now it is ecasy to establish the assertions in (i).

(1) If the spectral radius of T is strictly smaller than 1, then T is absolutely
continuous.

Proof. We can define a H*(dD)-functional-calculus as a subcalculus of the
usual Dunford-calculus. &

(iii) Let (2, X, pu) be a measure space and T = M; a multiplication operator
with a function f € L®(Q,Z,pu) on X = LI(Q,Z,u), 1 < ¢ < c0.

If[|fllc €1 then M; is polynomially bounded.

Ifl<qg< o and |f| < 1p-a.e., then My is absolutely continuous.

Proof. [Ip(M;)ally = l(p > £) - zlly < lIplleslizll, proves the first part.

For the second part we define 7 : H® — L7 by F(h) := h(M;)z := (ho f}-x
for all h € H*® (because |f| < 1 pg-a.e. this is defined p-a.e.).

We now show that F is indeed a H*-functional-calculus. For the nontrivial
part it suffices to prove: if {hn}nen C H*(3D) converges to 0 in the weak*-sense
then {hn(My)z}nen C L? also converges to 0 in the weak*-sense.
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Suppose %+ } =J]andy € L".
Then (ha(Mp)z,¢) = [ho(f(w))z(w)(w)du(w). If |f(w)] < 1 then
lim h,(f(w)) = 0, and this isnthe case p-a.e.. Because the integrand is domi-
;;t:d by sga [alloo |2(w)tp(w)} € L, the assertion follows by Lebesgue’s theorem
n

of dominated convergence. &

Note that for q=2 this is exactly the case of complete nonunitarity.
3. RELATIONS TO ERGODIC THEORY

In this section we shall examine certain contractions on L*-spaces and C*-algebras
and develop methods to prove the existence of vectors which are not, polynomially
bounded. We shall see that this problem is closely related to the ergodic theory
of these operators.

Let (€, X, pt) be a probability space and T an endomorphism of the algebra
L*(Q, X, u) which is induced by a measure preserving transformation 7 : Q s Q,
i.e. Tf(w) := f(rw) for all f € L®(Q, T, p).

(If (Q,Z, u) is a Lebesguc space, every automorphism is induced as above,
see [11], Theorem 1.4.7.)

If 7w = w and n € N is minimal with that property, then we say that 7 has
period n in w. Define Q, :={w € Q: 7w =w}, n €N.

The (global) period of 7 is equal to n if 4(Q\ Q) = 0 and n is minimal} with

that property. 7 is called aperiodic ifu( U Q.) =0
neN
There is an obvious decomposition of an arbitrary measure preserving trans-

formation into periodic parts with certain periods and an aperiodic part which
can be examined separately. A periodic part of an endomorphism is polynomially
bounded. This can be subsumed under Example 2.13 (i) in the last section. For

the aperiodic case we need the

ROHLIN LEMMA. (sce [6]) If T is aperiodic then there is for every J € N
and € > 0 a set £ € X such that E,7E,7°E,... 7' E are pairwise disjoinl and
WMEUTEUT!EU---UT?E)> 1—¢.

This result of ergodic theory translates directly into a result about polynomial

boundedness:
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THEOREM 3.1. Let T be an aperiodic measure preserving transformation of
the probability space (Q, X, ) and T the induced endomorphism of L®(Q, X, p).

J ) J
For any polynomial p(z) = 3 v;27 we have ||p(T)|| = X |7l = llplla.
j=0 i=0
In particular: T is not (globally) polynomially bounded.

Proof. If J is the degree of a polynomial p given as above, then by the Rohlin
lemma there is a set E € £ with y(E) > 0 and E,7E,7%E,..., v/ E pairwise
disjoint. We define a function f € L®°(Q, E, p) (with |||l = 1) by

f) '={'% € riB({ =0, )

0 elsewhere.

Then we have for every w € E:

J J J
PO f(w) = 75T fw) =D v f(riw) = |yl
=0 j=0

=0 i

J
We conclude that |[p(T)|| 2 3 |v;|- The reversed inequality is just the triangle
i=o

inequality of the norm. #

Important examples of aperiodic transformations are given by ergodic trans-
formations on probability spaces without atoms (see [11]), for example rotations of
the unit circle with irrational angles. It is interesting to reinterpret Theorem 3.1
in this case from the point of view of Fourier analysis.

Let T be the automorphism of L®(AD) induced by 7z := e?"®z with «
irrational. For any f € A(8D) an eigenvector expansion shows K; < ||f||a (the
norm of the Wiener algebra). In particular: Any f € A(8D) is polynomially
bounded with respect to 7. On the other hand we can prove Theorem 3.1 directly
in this special case without using the Rohlin lemma, by defining the set E to be
a small segment of the circle. This shows that the function f defined in the proof
of Theorem 3.1 can be extended continuously (instead of the extension by 0 used
there). We conclude that even T|C(dD) is not polynomially bounded and (using
Remark 2.1) there is a function f € C(8D) which is not polynomially bounded
with respect to 7. We give an application.

PROPOSITION 3.2. There is a function f € C(0D)\A(9D) with the following
property: For any M € N there is an almaosl periodic sequence {pn}nez C C with
lpn] € 1 for all n € Z, so that the function g with Fourter coefficients g(n) =
f(n)pn for n € Z belongs to C(8D) \ A(OD} and ||gllc > M.
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Proof. Choose a function f € C(3D) \ A(8D) which is not polynomially
bounded with respect to the irrational rotation (see the discussion preceding the
proposition). If p is any polynomial we get (p(T)f)"(n) = F(n)p(e2™*") for all
n € Z If any M € N is fixed, we can find a polynomial p with |[p|lec < 1 and
I2(T) flloo > M. Now define p, := p(e*i®?) for alln € Z and g := p(T)f. 1

Open question: is this valid for all f € C(8D)}\ A(8D) 7

A version of the Rohlin lemma was proved by A. Connes in the context of W*-
algebras. For the terminology of this mathematical topic which is not explicitly
defined here we refer to [14].

Let A be a finite W*-algebra and g a faithful normal trace on A with
#(1) = 1. For any z € A we have the C*-norm ||z|| and the norm ||z||s := p(z*z)3.
A family of pairwise orthogonal and nonvanishing projections {p;} C A with
2_pi = 1is called a partition of unity.

A x-automorphism T : A — A is called aperiodic if there is no projection
p € A with T"|pAp inner for any n € N.

(If A= L®(Q,X, p) this coincides with the definition above because in this
case an inner automorphism acts as identity. We also have the following general-
ization: if A is a W™*-algebra without minimal projections and 7 : A — A is an
ergodic *-automorphism then T is aperiodic, see {14], Proposition 17.7.) We can
now cite the result of A. Connes.

LeEMMA 3.3. (Rohlin-Connes) (see [14], 17.17) Let A be a finite W*-algebra,
o faithful normal trace on A with p(1) = 1 and T : A — A an aperiodic
*-‘automorphism with poT = p.

For ecvery J € N and € > 0 there is a partition of unity {po,p1,...,ps} in
A such that ||T(po) — pill2 < &, ||IT(p1) — p2llz € & ..., [|T(ps-1) — psll2 < &,
IT(ps) — poll2 < e.

With the help of this lemma we can now prove the following analogue of
Theorem 3.1.

THEOREM 3.4. Let A be a finite W*-algebra, p a faithful normal trace on A
with u(1) = 1 and T : A — A an aperiodic *-automorphism with yoT = u. For

J _ J
any polynomial p(z) = Zo'yjz] we have ||p(T)|| = .an'yj[ = {|pl|a-
j= i=
In particular: T is not (globally) polynomially bounded.

J .
Proof. Let the polynomial p(z) = ¥ ;27 be given. For any fixed § > 0
i=0

J
choose € > 0 such that (E |v; |j)(J + l)%s € 8, and for J, ¢ let a partition
j=0
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of unity according to the lemma of Roh]in—Connes be fixed. We may assume

lipollz 2 (J + 1)~ % because we have E lip;ll3 = 1.

Define now f := E a;p; where the complex coefficients {o; }3-’=0 are given
=0
by the equations

Yoo = |70l,

7jaJ+1~j=|7J'|s J:L)J
We have f € A and ||f|| = 1. We can now perform the following computation
where we indicate in brackets the justification of the main steps:

J

|Str = S, < 3 S esom = i,
j=0 =0 =0

i=
J

Z s (T pr)Po = ¥ @k P(j+k)mod(J+1) Pollz-
jk=0
[Because of the orthogonality of the projections in the partition of unity we have
P(j+k)mod(3+1) Po = 0 if (j + k)mod(J + 1) # 0]

J
< > Inlie
§.k=0
[Here we used the inequality [|T7px — p(j+rymodr+1)llz € je for ik = 0,...,J
which follows from the lemma of Rohlin-Connes by induction.]

J
= (Cwli)( + e <8+ 75
ji=0

We can conclude from that

J
oD Allipalls > (T -polle > 3~ s lpella (7 +1)7 > (Zim— ) llpoll2-

Jj=0

J
Considering arbitrarily small values of § we get the inequality [|[p(T)]| = 3 |

The reversed inequality is the triangle inequality of the norm. &

REMARK 3.5. In particular we can infer immediately that the Banach al-
gebra in B(A), the bounded operators on A, which is generated by {T"}nez is
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isomorphic to I1(Z). The (Gelfand-)spectrum of this algebra is 8D, and we con-
clude that the spectrum of T in B(A) is 8D (see [14], 14.12).

The algebra {1(Z) (isomorphic to the Wiener algebra A(8D) via Fourier
transform) which made their appearance in the last remark as well as its subalgebra
11(No) (isomorphic to A*(8D)) will play a prominent role from now on. We shall
need some well known results about embeddings of I'(No) into Banach spaces
which we summarize now for the convenience of the reader. Proofs for the facts
quoted below may be found in {3], in particular in Chapter XI.

A basic sequence in a Banach space is a sequence which is a Schander base
for its closed linear span.

A bounded basic sequence {z;};en, is called equivalent to the unil vector
base {e;}jen, (ej(k) = ;1) of I'(Np) if there is a constant ¢ > 0 so that

J J
e Inl< ||Z'Yi”—"||
§=0 §=0

for all (v0,71,..-,7s) € C/*! and all J € N,

This is just a necessary and sufficient condition for the map z; — e; (5 € Np)
to extend linearly to a topological isomorphism of the corresponding closed linear
spans.

The following method to identify basic sequences in I®(Q2) (where £ is any
set) which are equivalent to the unit vector base of I1(Ng) is due to H.P. Rosenthal
and L. Dor in connection with their embedding theorem. First we have to prepare
some terminology.

A sequence of subsets {2, }nen of 2 is called a tree if @ = Q and if for all
n € N the sets s, and Q5,41 are disjoint subsets of Q,,.

A sequence {(E;, O;)};eN, of pairs of disjoint subsets of {2 is called indepen-
dent if for any given disjoint finite subsets P, N of Ny the sets ﬂ E; and 'nNOj
are not disjoint. € *

REMARK 3.6. If a tree {{2;}nenN of §2 is given then we can form an indepen-
dent sequence of pairs of disjoint subsets if we define E; to be the union of all 2,
with n = 2741 27+1 4 1 29%2 _ | and n even and O; to be the union of all Q,
with n = 2/+1, 2+ 4 1 2/+2 _ 1 and n odd. This may be interpreted as an

imitation of the stochastic independence of Rademacher functions.
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LEMMA 3.7. (Rosenthal-Dor) (see [3], Chapter XI) Suppose {z;}jen, C
1°(82) to be a bounded sequence, Dy, Dy C C to be closed disks with diameler d
and distance 8, d< %6.

If {(Ej,0;)}ieN, ts an independent sequence of pairs of disjoint subsets of
Q with z;(w) € Dy ifw € E; and z;(w) € Dy if w € O; for all j € Ny, then we

have 5 , |
§§l"rjl < ]’jzz:owtj”m

for all (vo,11,...,7s) € CT* and all J € Ny. In particular: {z;}jen, 15 equiva-
lent to the unit vector base of I'(Ng).

REMARK 3.8. The proof of the lemma given in [3] shows that the following
modifications are legitimate:

(i) If we have only finite sets {z;}/_, and {(E;, 0;)};=o with the relations
given in the lemma, then for this particular J the inequality remains valid:

J J

6

sl <[ D,
i=0 i=0

for all (y0,71,-..,7s) € CT*1.

In this case we adapt the terminology given above in the obvious way.

(ii) If we consider the essential supremum norm on L®(Q, X, u) instead of
(), then we can use an analogous essential terminology and prove an esseniial
Rosenthal-Dor lemma.

We shall now use the lemma to continue our examination of endomorphisms
with respect to polynomial boundedness. Recall that a measure preserving trans-
formation 7 on a probability space (R, X, 1) and its induced endomorphism T' of
L*(Q, T, ) are called weakly mizing if all eigenvectors of T are constants. Weak
mixing implies ergodicity, but the converse is not true as can be seen from the
irrational rotation considered above (see [11], 2.6).

THEOREM 3.9. Let (,X, u) be a probability space and T an endomorphism
of X = L=(Q, L, u) which is induced by a measure preserving transformation 1.

The following assertions are equivalent:

(1) T is weakly mizing.

(ii) Every vector which is polynomially bounded with respect to T is a con-
stant, i.e. Xpp = C1.

Proof. All constants are eigenvectors and therefore polynomially bounded
(see Example 2.13 (i)). If T' is not weakly mixing then there are other eigenvectors
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than the constants. It remains to show: if T is weakly mixing and f € L=(f, T, )
is not constant (a.c.), then f is not polynomially bounded with respect to 7.

Because f is not a constant there are at least two different values ¢g,¢; in
the essential range of f, i.e. in particular: if Dy, ; C C are disks with centers
co,c1 and diameter d (where it is possible to choose d < %6 as in the lemma of
Rosenthal-Dor if § is the distance of the disks) then we have u(f~1D;) > 0, i=0,1.
Define £ 3 Ag := f~1Dy, 3 A; := f~1D,.

Suppose now that p is a polynomial, p(z) = E v;21. We shall use a result of

H. Furstenberg (see [11], 4.3 or [5], Chapter 4) showmg that the following assertion
about 7 is equivalent to the weak mixing property:
There is a set J C N of density zero so that for any sets Cp,Cy,...,Cr € &

lim o wCoNT™™CLNT™IMCyN - N T ™) = p(Co)p(Ch) - - - u(Cy).
m—oo,m
Using this property of weakly mixing transformations we conclude that there
is a number M = M(J) € N so that for all possible choices C; € {A, B}, j =
0,...,J (there are a finite number of possibilities for that; J is the degree of the
given polynomial) we always have

wCont™MCinr=MCyn...nr=iMC)) >0 (0<j<J).

-1

7 .
We can now see that the following finite tree of subsets {Qn}i:; consists

of sets of positive y-measure (see Remark 3.8):

(21 = f),
(22 = /40)
Q3 := A,

Q4:= AN T‘MAO,
Qs :=AgnNr M4,
Qs 1= Ay N~ M4,
Qr=A Nt M4,
Qg :=Ao Nt MAN 7™M 4o, .. ete.

The general formulaforn = 2,3,...,27#2-1: ifn = 2+ 4 27, 429 1¢;_, +
261 + €9 (where g € {0,1} for all ¢) then we have Q, := Ag; N M4 n
rMAL A M

£5—1
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As in Remark 3.6 we can use this tree to define a finite independent sequence
{(E;j, 0j)} =0 of pairs of disjoint sets:

22—y

B=U %= {J
n=2i+1 n=23+14...42¢,40
n cven
2743

o= U %= U Q.
n=25+1 n=23+t14... 2,41
n odd

If we have w € E; (j = 0,...,J) then there is a number n = 29+ 4 ¢, 4+
2"'1£j;1 4+ 2e1 + €9 with £¢ = 0 such that w € Q,, in particular w € r=IM 4, i.e.
TiM f(w) = f(rPMw)e Dy (7 =0,...,J).

In the same way we conclude TV f(w) € D, ifw € 0; ( =0,...,J).

Now we are in a position to apply the Rosenthal-Dor lemma.

Define p(z) := p(2M). Note that [|pllec = [|flleo. If we assume f to be
polynomially bounded (so we aim to get a contradiction) we get the following

inequalities:
6 & .
Sl < | S HT M| < K e = K lpleo
=0 j=0 had
& as well as K; are independent of p. Therefore with ¢ := =% we get for any

BK;

J I3
polynomial p with p(z) = ) v;2%:
3=0

J J
e bl < llplloo (€ 3" 51)-
j=0 j=0

This implies the supremum norm to be equivalent with the norm || - ||4 of the
Wiener algebra on the space of all polynomials. This is clearly false, and we have
reached a contradiction. &

It is possible to extend the definition of the weak mixing property to ar-
bitrary contractions on L*®(}, X, x). A contraction T is weakly mixing if any
eigenvector with an eigenvalue whose modulus equals the spectral radius of T is
necessarily a constant. The question arises whether Theorem 3.9 may also be
generalized. Without further conditions this is of course true for restrictions of
endomorphisms. We now prove a less trivial result in this direction with the use
of dilation techniques.
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THEOREM 3.10. Let (2, %, u) be a probability space and X = L*®(Q, T, p).
Suppose T to be a positivily preserving and weakly mizing coniraction,
TL1=1, poT = pu.
Let f € L®(0, 3, p) be decomposed in the form f = ¢-1+f,c € C, ffd,u = 0.
)

Ifnlingo ||T"f||2 # 0 then the vector f is not polynomially bounded with respect
to T. (|| - ||z is the norm of L*(, T, p)).

Obviously this is an extension of Theorem 3.9.

Proof. The operator T' may be locked upon as a transition operator of a
Markov process. From the point of view of operator theory we can speak of a
(minimal) Markov dilation, i.e. there is a probability space (€, &,7) and on that
space a measure preserving transformation 7 which induces an automorphism T
of X := L (>} #) such that the following diagram commutes for all n € Ny:

T't

X — X
il 1P
x Iz

Here j denotes an injective algebra homomorphism and P, := jP is a condi-
tional expectation of X onto its subalgebra jX, and we have the following addi-
tional properties:

_fj(f)dﬁszdpforallfeX.
a Q

~ If the conditional expectation of X onto f"‘(jX) is denoted by
EeND

P(_w0,0]; then for all g € ’fk(jX) the Markov property Fi_ 019 = Fog is
kEEN
valid. °
- \/ Tk(jX) = X (Minimality).

[Here “V” denotes the W*-algebraic hull.]

A more detailed discussion of the concept of a (minimal) Markov dilation
which we have introduced here in a very short manner can be found in [10]. We
shall need the following result in the sequel: if 7' is weakly mixing then also T is
weakly mixing (see [12] or [10]).

Returning to the proof of Theorem 3.10 we infer from the preceding discussion
that we can apply Theorem 3.9 for f, and we shall now derive Theorem 3.10 from
that. If we form the closures with respect to || - ||2 in the diagram above and if we
use the same symbols for the Hilbert spaces formed in this way, then the diagram
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describes a (nonminimal) unitary dilation T on L2(&, £, 7) for the contraction T
on L¥(, T, ).
We infer for all f € X the existence of the limits Af := lim T~"j;T" f (with
1—+C0

respect to || -||2). Indeed, Aj~1|; X is just the orthogonal projection of X onto the
+-residual part of the dilation restricted to 7X. We have used here the terminology
of [15], Chapters 11.2, I1.3, where also a proof for the existence of the lirnits may
be found. (In [15] minimal unitary dilations are examined, but this is not relevant
for the result in question.)

From the definition of A we get immediately the following properties:

- A € B(X, X) with ||A|| < 1 for [| - ||2 as well as for || - {|oo;
- AT =TA, Al =1, A({1}4) C {1}*;
- Af = 0 is equivalent to lim ||T™ f|]» = 0.

Tt OO

To finish the proof we need the following compatibility between polynomial
boundedness and similarity of operators which is stated in the next remark.

REMARK 3.11. Suppose Y, Z to be Banach spaces end R € B(Y), S € B(Z)
to be contraclions. If there is an operator A € B(Y, Z) such that AR = SA, then
for any y € Y which is polynomially bounded with respect {0 R, the tmage Ay € Z
15 polynomially bounded with respect {0 S.

If A is a similarily between R and S (i.e. AR = SA and A is invertible)
then y € Y 1s polynomially bounded with respect o R if and only if Ay € Z is
polynomially bounded with respect to S.

Proof. If y € Y is polynomially bounded with respect to R, i.e. ||p(R)yl|| <
Ky(R)||pllo for all polynomials p, then we have

lp(S)Ayll = IAp(R)yl| < Al Ky (R) [|Pfloo

therefore Kay(S) < [|A|| Ky(R). The second part follows by applying the first to
Aand A71. 1

We can now finish the proof of Theorem 3.10: if we have the decomposition
f=c-14+f,ceC, ffd,u =0forany f € X = L°°(Q}, £, i), we conclude (using
a

the properties of A listed above) that if lim |7 f]j # 0 we get Af =c-1+ Af
n—00

with 0 # Af € {1}, i.e. Af is not a multiple of the identity.

If f would be polynomially bounded with respect to T, then by Remark 3.11
also Af is polynomially bounded with respect to 7. Because A f is not a multiple
of the identity and Tisa weakly mixing automorphism, we conclude on the other
hand by Theorem 3.9 that Af is not polynomially bounded with respect to T. To
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avoid a contradiction we have to admit that f is not polynomially bounded with
respect to T'. This proves Theorem 3.10. 1

REMARK 3.12. In [10] it is also shown that for a transition operator T' we
have ﬂli‘rroxo IT"fll2 = 0 for all f € {1}+ if and only if a corresponding minimal
Markov dilation is a K-system in the sense of ergodic theory. The transition
operator T is called compleiely mizing in this case. This establishes a nontrivial
range of applications for Theorem 3.10. An explicit construction of vectors for
which Theorem 3.10 is applicable can be found in [12], p. 113ff.

If we try to find generalizations of these results for more general C*-algebras
(as we succeeded in Theorem 3.4 for Theorem 3.1), there are difficulties arising
from the complexity of noncommutative ergodic theory. In particular the author
has not been able to give a necessary and sufficient condition for endomorphisms
to fulfil Xp, = C1 as we have succeeded to give for commutative algebras in
Theorem 3.9. We can show however that this phenomenon also exists in the
noncommutative setting if we assume very strong mixing properties. This is the
intention of the following considerations.

Let A be a C*-algebra with a unit and A := @ A the infinite minimal
neEMNg
C"”-tensor product.

The tensor shift T : 4 — A is the C*-endomorphism which is defined by

N N1
T( ®01®z®1®1®1---) = ®01®x®1®1~-forallNandall:cE.A.
n= n=
THEOREM 3.13. Let A be a C*-algebra with a unit, A:= @ A and T the

nENg
tensor shift. Every vecior which is polynomially bounded with respect io T is a

maultiple of the identity, i.e. Ap, = CL.

In the proof of Theorem 3.13 we shall need the following modification of the
Rosenthal-Dor lemma.

LEMMA 3.14. Let H be a Hilbert space, {qn},zl::"l C B(H) a family of
nonvanishing projections with gon < @n, g2n4+1 € Gn, @2nfons1 = 0 foralll < n <
27+ — 1.

Let {a:j}}’=0 C B(H) be a sequence of normal operators, Dq, Dy C C disks
with diameter d and disiance &, d < %6, furthermore pp,(z;) and pp,(z;) the
corresponding spectral projections of z;,

29423 29+2 1
E; = V In, 0; = v gn, 7=0,...,J.
n=27+1 n=23+1

n even n odd
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If E; € ppo(z;) and O; € pp,(x;), 7=0,...,J then we have

fO‘l" all (70:711'”17-1) € CI+1.
J42
Note that the projections {(,1,,},,2‘:1 ~! necessarily commute, while this need
not be the case for the normal elemenis {z;}I_, or their spectral projections.

» Proof. To apply the original Rosenthal-Dor lemma we give a functional rep-
resentation of the operators on the unit sphere H; of the Hilbert space H: for any
z € B(H) let Z be the function

£:H; —C, #(h):={zh,h)

We have (|z|| = ||Z]|oe-

To every projection p we can associate the image
p(H))={heH, :ph=h} ={h €H, : p(h) = {ph,h}) = 1}.

From the assumptions we infer

2.7'+9_1 2.!'4'3_1

U @) cEH), |J w@EH)cojH), i=0,...,J
n=27+1 n=274+1
n even n odd

Suppose h € E;(H;) C pp,(z;)(H,).

Then Z;(h) = {(z;h, h) = {zjpp,(z;)h, h}. This is an element of the convex
hull of the spectrum of z;pp,(z;) and therefore belongs to Dp. In an analogous
way we infer Z;(h) C D, if h € O;(H;). We can now apply the Rosenthal-Dor
lemma (respectively Remark 3.8 (1)} and obtain

J J 52
| e = [ wail, > 5 bl
Yi=o i=0 & §=0

for all (yo,71,...,7s) € CItL. n

Proof of Theorem 3.13. We shall proceed in several steps. Some results are
interesting in their own right. It is convenient to give the following definition.
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DeFINITION 3.15. Let X be a Banach space, T : X — X any map.

For any ¢ € X we define the transition set trans(z) (with respect to T) to
be the following subset of N: trans(z) := {n € N : {T™z};cN, is equivalent to
the unit vector base of I*(Np)}.

Obviously a vector z with a nonempty transition set trans(z) cannot be poly-
nomially bounded, and the transition set may be regarded as a coarse measure of
deviation from polynomial boundedness. We shall give a more detailed discussion
of this in the fourth section.

We return now to the proof of Theorem 3.13.

Suppose Ag ;= A®1C A (i.e. A at position zero in the tensor product),

n

An :=T"Ag, Aimn) i= V Ai (C*-algebraic hull).
k=m

For any element z of a C*-algebra we denote by #(z) the diameter of its
spectrum, i.e. §(z) := max{|A — p| : A, 4 € sp(z)}.

Step 1. If z € A r-1) \ C1 is normal then [L,o0) C trans(z). We can use
a common constani ¢ = f%l.

Proof. To apply the Lemma 3.14 we start with a faithful representation
(7, H) of A, L-1). By forming suitable finite tensor products we are able to repre-
sent products of spectral projections of z and of its translates by TF as elementary
tensors.

It is possible to choose disks Dp, D7 C C with diameter d and distance §,
d < %6, so that the spectral projections p; = pp,(x), ¢ = 0,1, do not vanish.
Indeed for any §’ > 0 we can choose § > §(z) — §'.

We are now able to define a tree {g,} as it is used in Lemma 3.14:

q =1,
g2 = Po,
q3 '*= P,
g4 := po - TEpy,
gs := po - TEpy,
g6 := p1 - TEpo,

g7 :=p1- TLPL, ... ete,
in general:
n = Pe; - TLPC;‘—; : Tszfj—z " 'TJLPtu
if
n=2+ 4 2j€j + 25_1€j—1 + -+ &q.
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We may also write gn = pe; @ Pe,, ® Pej_, ® - Q@ Pe, € T(App,z-1))" ®

T(AiL,20-11)" @ - ® T A 5 +1)L-11)"-
This representation shows clearly that the assumptions of Lemma 3.14 con-
cerning {gn} are valid here. In particular all g, are nonvanishing. We also have

233

Ej:= \/ g0 STEpg = pp,(T'%2)

n=2J+1
neven

29¥2_y
0; = \/ gn £ Tijl = le(TjL:L').

i=25+1
n odd

Applying Lemma 3.14 we conclude

5 J J )
oSt | Surs]

j=0 §=

for all (yo,...,7s) € C’*! and J € Ng. The same argument is also possible for
L+1,L+2,... instead of L. This proves Step 1. 1§

Step 2. Ifforz € A there is a normal element y € Apo,z-1) with ||lz—yl| < ¢,
then we have for alll 2 L:

(8 -0) Sy < 3]
ji=0 =0

Jor all (yo,...,vs) € CI+! and J € N,.

Proof. By Step 1 we get for the normal element y

§(y) ZJ ZJ s
8 lTjIg” 'y_,-T’yH
i=0 j=0

forall! 2 L, (70,-..,74) € €7*! and J € Ny. Because of ||z — y|| € € we infer
J . J . J .
[ o> [l - [
=0 7=0 j=0

J J J
> 505 gt =l bl > (B2 - ¢) Tl
=0 i=0 j=0

This proves Step 2. 1
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Step 3. If z,y are selfadjoint then |6(z) — 8(x)] < 2|z — wl|-
Proof. Choose 0 < A € R large enough so that z + A1 > 0, y+ A1 >
0, =M <0, y— A <0.
For selfadjoint elements norm and spectral radius are equal. We infer §(z) =
maxsp(z)—minsp(z) = (||z+AL]|| =)= (=llz=AL1||+]) = ||z +AL||+{|z—AL]|-2A.
Analogous for y. Therefore we have
18(z) — ()| = I(llz + AL + [z — A1Y| = 2X) = (lly + AL]| + |ly — AL|| - 22))
< (@ + A1) = (y + A + [[(z = A1) = (y — AL)l| = 2|z — y]].
This proves Step 3. 1
Step 4. Ifz € A\C1 is selfadjoint then N\ trans(z) is finite. More precise:
if we choose L € N minimal with the property that there is an element y € App 1—1)
with {lz — yl) < 15—%1 then [L,00) C trans(z).
Proof. Tz € A\C1is selfadjoint then we have 8(z) > 0. Because |J Apo,n-13
LeN

is (norm-)dense in A we can find a L € N minimal with the property that there
is an element y € App r_1) with ||z — y|| < 6—%2. We may assume that y is also
selfadjoint: otherwise replace y by %(y +y*).

Using Step 3, an easy computation gives

6(y)

1
I — ol < 5(6(2) = 2ll= - ll) < =

Now Step 4 follows by an application of Step 2. 8
Step 5. Ay, = C1.

Proof. By Step 4 we already know that a selfadjoint element which is not
a multiple of the identity is not polynomially bounded. Suppose there is any
z € ﬁ\ C1 which is polynomially bounded with respect to 7. Then z* is also
polynomially bounded:

(0ol = | S o] = | Sy = | S wr ] < Kl
j=0 i=0 i=0

J ) )
with ¢(z) = ‘207_]-23. Obviously {|Plles = l|¢]leo-

We conclude that the selfadjoint elements z 4 z* and i(z — z*) are also
polynomially bounded, and the decomposition z = $[(2 + 2*) —i(i(z — z*))] shows
that at least one of them is not a multiple of the identity. This is a contradiction
to the assertions established above. ‘

Theorem 3,13 is now completely demonstrated. 1
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REMARK 3.16. If we specialize A := C™ then Theorem 3.13 deals with the
symbolic shift with » symbols. This shift is weakly mixing for suitable measures
(for example product measures) and we could have achieved the result of Theo-
rem 3.13 in this special case by using Theorem 3.9. But the proof of Theorem 3.13
shows that the stronger mixing properties of a symbolic shift allow to construct a
lot of topological embeddings of the sequence space I'(Np) into the orbits of the
shift, while in the proof of Theorem 3.9 we only worked with (arbitrarily long)
finite sections. These embeddings correspond to what we have called nonempty
transition sets. In regarding the symbolic shift or the easy generalization of the
result to (irreducible and aperiodic) subshifts of finite type (see [11]) we can in-
deed notice a natural relation between transition sets and transitions for shifts or

subshifts in the usual sense. This motivates our terminology.

4. THE TRANSITION SET

Let T be a contraction on a Banach space X and z € X. Recall Definition 3.15 of
the transition set: a number n € N belongs to trans(z) if and only if {T™ z};en,
is equivalent to the unit vector base of I*(Np). Using this concept we shall define
a similarity invariant for T-invariant subspaces, and by actually computing this
invariant in concrete examples we can perform some classification.

We first extend Definition 3.15 above.

DEFINITION 4.1. Let T be a contraction on a Banach space X.

For any subset Y C X we define the {ransition sef trans(Y') to be the union
of all trans(y) with y € Y.

In particular for any ¢ € X we can speak of the transition set of the cyclic
subspace C(x) generated by z (i.e. C(z) := In{T™z}nen,)-

Let us first state some useful properties of transition sets.

LEMMA 4.2. Let T be a contraciion on a Banach space X.

(i) Ifr € X and S : C(z) — X is a bounded linear operator which commutes
with T, then trans(Sz) C trans(z).

(ii) Let Y be any subset of X. Then trans(8Y) C trans(Y) = trans(Y).

Proof. Ad (i): Because of trans(0) = § we may assume S # 0. If we have
n € trans(Sz) then there is a constant ¢ > 0 so that for any polynomial p we get
cliplla < [lp(T)Sz|| = [1Sp(T™)=zll < ||| |Ip(T")z|| or equivalently ||p(T™)|| >
c|lSII=*|lplla which implies n € trans(z).
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Ad (ii): Suppose n € trans(3dY}. There is an element z € Y such that
n € trans(z), i.e. there is a constant ¢ > 0 so that for all polynomials p we have
cliplla € ||p(T")z||. Choose y € Y with [z — y{] < £. Then we find

(™)l > (Tl = (1T} = 1) > ellplla = Sllplla = Slplla.

We infer n € trans(y) and therefore n € trans(Y'). Because the boundary set
dY adds nothing to the transition set of Y, the equation trans(Y) = trans(Y) is

an immediate consequence. &

We can now prove the announced relation between similarity and transition
sets. As an abbreviation let us call two T-invariant subspaces of an operator T’

similar if the respective restrictions of 7" to these subspaces are similar.

THEOREM 4.3. Let X be a Banach space, T : X — X a coniraction on X.

(1) If Cy, Cy are similar subspaces of T then trans(Cy) = trans(C3), i.e. the
transition sel is a similarity invariant for T-invariant subspaces.

(it) For all z € X we have trans(z) = trans(C(z)), i.e. the transition sel of
a cyclic subspace can be calculated as the transiiion sel of any cyclic vector.

Proof. Ad (i): If A : C; — C4 is a similarity of T'|C; and T|C5, then apply
Lemma 4.2 (i) for all elements of C; and C, with S = A respectively S = A~
We infer trans(z) = trans(Az) for all z € Cy, and the assertion follows because A
is bijective.

Ad (ii): Suppose y € C(z). If there is a polynomial p with y = p(T)z, then
from Lemma 4.2 (i) with S := p(T} we infer trans(y) C trans(z). Any element
y € C(z) can be approximated by elements of this special form. Using Lemma
4.2 (ii) we see that the inclusion trans(y) C trans(z) remains valid also in the

general case. This proves (ii).

REMARK 4.4. If we have a bounded inverse T~ of the operator T in The-
orem 4.3, then (ii) remains valid for a two-sided cyclic subspace lin{T"z}nez and
its (two-sided) cyclic vector z. This follows by an easy modification of our proof

above: use polynomials in 7" and 7!,

We now turn to methods which allow us to compute transition sets. Some
notation for certain subsets of 3D will be useful: for any n € N and o € [0,1)
define A% := {exp [27ri(£ +a)]:k=0,...,n—1}. Geometrically AZ is the set of

vertices of a regular n-gon.
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LEMMA 4.5. Let T be 4 contraclion on a Banach space X and z € X. If
o €[0,1) and if p is a polynomial with p|AZ =0 then n ¢ trans(p(T)z).

Proof. We first assume & = 0. Because of its zero set we conclude that p
contains a factor ¢ with ¢(z) = 2" — 1. By Lemma 4.2 (i) it is enough to show
that n ¢ trans(¢(T)z), and to prove this we show that {T™/¢(T)z};en, is not
equivalent to the unit vector base of I'(Np) (for all z € X).

For any (vo,-..,7s) € C'+! we get:

J 7
Z'ij"jq(T)z = Z'ij‘j(T"‘z —z)

j=0 i=0
= (—10z) + (10 = )Tz + -+ (ys=1 — 72)T "2+ T+,

Choose v; := _11_ if j # 0 (and 0 otherwise).

J - J )
Setting ps(2) := ) vj2! = 3 Jl,z-’ we get
i=0 j=0

1 1 1
Is(T)a(T)ell = [~ 1o+ (1= ) Tkt [ - ] 7
+‘}‘T'(J+1)n17
1
1+ - — = Hlzll = 2||=]].
( ,El:[:' ]+1]+J)“ = 2=

This is bounded if J — oo, but
‘1
Jim (lpy|la = Jim ,-Z_:J =

The assertion is now proved for & = 0. For o € [0 1) we can use the same
proof with some modifications: ¢(z) := 2™ — e27i@n ; = 3 e~ 2mani if £ 0. 8

The lemma shows that sets of zeros of the form Aﬁ are obstructions for
the natural number n to belong to certain transition sets, independent of the
operator T or the vector 2 under discussion. The following detailed determination
of transition sets for a concrete operator shows that it is possible that there are
no other obstructions.

Consider the shift operator S on [}(Z) defined by (Sz), := zn—; for all
z = {Zn}nez € 1'(Z). Equivalently (via Fourier transform) we may consider the
multiplication operator M, on the Wiener algebra A(8D).
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THEOREM 4.6. Suppose X = A(8D), T:= M, and f € X. Foranyn € N
the following assertions are equivalent:

(i) n & trans(f).

(i) There is @ number a € [0, 1) such that fIJAZ = 0.

Proof. (ii) => (i) This is proved above for polynomials. In the general case
we use the following approximation argument.

We shall restrict ourselves again to the case o = 0 and leave the modifications
necessary in the other cases to the reader.

The set AJ is finite and therefore a set of spectral synthesis (see [9], Chap-
ter V.1) and we conclude that there is only one closed ideal in A(8D) whose zero
set is exactly AJ. In particular the ideal of all functions vanishing in A (which
includes f) coincides with the closed principal ideal generated by the polynomial
g with ¢(z) = 2" — 1. Thus there is a sequence {g;}ren C A(8D) such that
Jim 17 - gralla = 0.

Successive application of the lemmata yields n ¢ trans(g),n € trans(gxq)
and n ¢ trans(f).

(i) = (ii) Suppose that AZ is not contained in the zero set of f for any
a € [0,1). To any z = z; € 8D we can associate the numbers {2;}7_, with the
same n-th power, i.e. 2 = 2§ = ... = z!. There is at least one k € {1,...,n}
such that f(zx) # 0. We call this a suitable choice of k.

We consider an operator I' : A(GD) — A(8D),(Tg)(z) := g(2")f(z). Obvi-
ously T is bounded. It is also injective: if g # 0 then g(z") # 0 for some 2z and for
a suitable k € {1,...,n} we have (Tg)(2x) = g(z")f(z) # 0.

The range of T is closed in A(8D):

Suppose h € A(OD) to be in the closure of ['(A(8D)). We can choose a
sequence {h;}jen C T(A(8D)) with Jl_l_'l’l{;lO”h — hj|]la = 0. There are functions
{g9i}ieNn C A(OD) such that h;(z) = g;(2") f(z) for all z € 8D.

We have g;(2") = %’é"—:f for any suitable k. Because of [|h — A;||la — 0 we
also have ||h — hj|lcc — 0, and thus it is possible to define a continuous function g
on 8D such that for all z € 8D (and corresponding suitable k):

ny _ 1: (2™ = 1 h(zk) _ h(zk)
g(z )—Jllglogj( )_jl_l’ngo ;(Zk) —f(zk)

or equivalently h{zr) = g(z™)f(z).
The equation h(z) = g(2")f(#) remains also true if f(z) = 0 because of

h(z) = Jim hy(z) = lim g;(z")f(2) = 0,
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Thus it only remains to show that ¢ € A(8D): for any zy € 8D we have
g(z}) = ";J(:—:% for a suitable k. There is a neighbourhood U of z such that
flzez7 ' U has no zero value. We can extend f|z27'U to a function f € A(0D)
with no zero values on 8D: for example we can take f = f + ¥ where ¥ is any
C'-function on 8D which is zero on z; 27U and differs from —f on 8D\ 227U

By a theorem of Wiener {see [9], Chapter V.2) £ is an invertible element of
A(OD). We have g(2") = hf~(zxzy ' 2) for all z € U.

We have proved that the function z — g(2") belongs locally to A(8D), i.e.
for every z € 8D there is a neighbourhood of z inside of which the function
coincides with the restriction of a function in A(8D) to this neighbourhood. By
another theorem of Wiener (see [9], Chapter 1I.4) this implies that the function
z — g(2™) actually belongs to A(8D). But then we have also ¢ € A(8D), and
indeed the range of I' is closed.

We can now finish the proof of Theorem 4.6. We conclude from the consid-
erations above that the operator I has a bounded inverse, i.e. there is a constant
¢ > O such that ||T'g||a 2 ¢||g||a forall g € A(8D). In particular for any polynomial
p = g we have [jp(T")f|la = |ITplla = clip||a. This shows that n € trans(f). 1

PROPOSITION 4.7. Suppose X := A(8D), T := M,. For a subset A CN
the following assertions are equivalent:

(i) There is a function f € X, f £0, such that A = N\ trans(f).

(ii) A is finite and contains all divisors of its elements.

Proof. For (i) = (i) observe that if A = N\ trans(f) is infinite then the zero
set of f contains sets of the form AJ with arbitrarily large n. Thus the zero set is
dense in @D and by the continuity of f we infer f = 0.

The condition concerning divisors is trivial for cosets of transition sets with
respect to N in general.

To prove (ii) = (i) define a polynomial with a suitable zero set such that
A =N\ trans(p). 1

PROPOSITION 4.8. Suppose X := A(3D), T := M,. There are infinitely
many stmilarity classes of cyclic subspaces (one-sided or two-sided). The only

two-sided cyclic subspace similar to X is X ilself.

Note that in this case a two-sided cyclic subspace is the same as a closed
principal ideal of the algebra A(GD) (see [4], 11.1). It is not known to the author
if the problem of similarity of such ideals has been considered before.
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Proof. By the proposition above there are infinitely many elements of A(8D)
with pairwise different transition sets. Using Theorem 4.3 (respectively Remark 4.4)
we conclude that the cyclic subspaces generated by these elements belong to pair-
wise different similarity classes. If a cyclic subspace is similar to A(GD) then its
transition set is N. We conclude that any cyclic function has no zeros on 8D and
is thus invertible in A(8D) by Wiener’s theorem. Therefore the ideal generated
by it is A(OD) itself. 1

REMARK 4.9. It is easy to check that the assertions in Theorem 4.6 and
the propositions following it remain valid if we consider 7' = M, on A*(8D). Of
course in the last proposition we can here only consider one-sided cyclic subspaces
which are in this case the same as closed principal ideals of the algebra AT(0D).
The result that there are infinitely many different similarity classes of cyclic sub-
spaces for the one-sided shift on {*(Np) should be compared to the totally different
situation for the one-sided shift on I?(Np), where Beurling’s theorem states (among
other things) that the restriction of the shift to cyclic subspaces is always unitarily
equivalent (and therefore also similar) to the shift itself (see [7]).

For the shift on I*{Ng) we can give the following characterization of the cyclic
subspaces which are similar to [*(Ng) itself.

PROPOSITION 4.10. Suppose X := AT(dD), T := M,, f € X. The follow-
g assertions are equivalent:
(1) C(f) is similar to C(1) = X.
(ii) trans(f} = N.
(iii) f # 0 everywhere on 8D.
(V) C(f) = X or C(f) = (z—21)" (z — 22)"2 - - - (2 — 2 )"+ - A (8D), where
z1,..., 2k are finitely many compler numbers in D and n1,...,ny € N.

Proof. (i) = (ii) follows from Theorem 4.3 and (i1) => (i) is immediate from
the definition of the transition set.

(i) < (iii) follows from Theorem 4.6 and Remark 4.9.

The equivalence of (iii) and (iv) is more or less implicit in [9], Chapter XI1.3.
We give the main arguments: the function f being analytic in D and nonvanishing
on 8D by (iii), can only have finitely many zeros in D. If there is no zero at all
then f is invertible (by Gelfand theory for the Banach algebra AT(6D)).

So assume we have zeros 21, ..., zy. Let nj be the maximal number such that
all functions in C'(f) contain the factor (z — z1)"*. Then the set of all functions
g € AY(OD) with the property that the function z — (z — z1)**g(2) belongs to
C(f) is an ideal whose set of zeros does not contain z;. Iterating this procedure
we obtain the representation (iv). 1
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REMARK 4.11. If trans(f) # N the classification of the corresponding simi-
larity classes of cyclic subspaces remains an open problem.

REMARK 4.12. Some of the results above can be transferred to other op-
erators: If T is any contraction on a Banach space X and for z € X we have
trans(x) # @ then in the cyclic subspace C(x) there are cyclic subspaces belong-
ing to infinitely many different similarity classes. For a proof observe that if
n € trans(z) then for any f € A¥(8D) we have jn € trans(f(T™)z) if and only if
j € trans(f) with respect to M, in AT(8D) (j € N).

For example this remark is applicable for the tensor shift analyzed in Theo-
rem 3.13.

Acknowledgements. The present paper is a revised version of the author’s disser-
tation which was written under the advisership of B. Kimmerer. I would like to thank
B. Kimmerer and the C*-group at Tibingen University for their support and constant
interest.

This paper is part of a research project which is supported by the Deutsche
Forschungsgemeinschaft.

REFERENCES

1. C. AprosToL, Functional calculus and invariant subspaces, J. Opcrator Theory 4
(1980), 159-190.

2. S. BrRown, B. CHEVREAU, C. PEARCY, Contractions with rich spectrum have in-
variant subspaces, J. Operator Theory 1(1979), 123-136.

. J. DIESTEL, Seguences and Series in Banach Spaces, Springer-Verlag, 1983.

4. R.E. EDWARDS, Fourier Series, vol.2, Springer-Verlag, 1982.

. H. FURSTENBERG, Recurrence in Ergodic Theory and Combinatorial Number Theory,
Princeton University Press, 1981.

. P.R. HALMOS, Lectures on Ergodic Theory, The Mathematical Society of Japan,
1956.

. H. HELSON, Invariant Subspaces, Academic Press, 1964.

. K. HOFFMAN, Banach Spaces of Analytic Functions, Englewood Cliffs, 1962.

9. J.P. KABANE, Séries de Fourier absolument convergentes, Springer-Verlag, 1970.
10. B. KUMMERER, Markov dilations on W*-algebras, J. Funct. Anal. 63(1985), 139-177.
11. K. PETERSEN, Ergodic Theory, Cambridge University Press, 1983.

12. M. ROSENBLATT, Markov Processes. Structure and Asymptotic Behaviour, Springer-
Verlag, 1971.

13. M. SCHREIBER, Absolutely continuous operators, Duke Math. J. 29(1962), 175-190.

14. S. STRATILX, Modular Theory in Operator Algebras, Bucuresti, Editura Academiei,
Turnbridge Wells, Abacus, 1981.

w

w

[=2]



A SPECTRAL CLASSIFICATION OF OPERATORS 281

15. B. Sz.-Nagy, C. FolA§, Harmonic Analysis of Operators in Hilbert Spaces, North
Holland, Amsterdam 19470.

ROLF GOHM
Mathematisches Institut
Universitit Tibingen
Auf der Morgenstelle 10
D-72076 Tibingen
GERMANY

Received April 3, 1995.



