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1. INTRODUCTION

Let H be the operator of multiplication with a real function H(z) in the Hilbert
space H = L%(R™). We shall study the behaviour of (H —2)~! when |Imz| — 0. If
z approaches a real number A which is not a critical value for H (i.e. (JH)(x) # 0
for z € H='({A})), then there are very precise results in this direction (see [9] for
example). One of the ways of proving such type of results is the method of Mourre
([12], [1]). If H satisfies some weak conditions, we are able to prove a Mourre
inequality in the neighbourhood of the regular values (i.e. those which are not
critical). But what can be said if A is a critical value of H ? Some partial answers
to this problem are given in some recent papers (let us quote [3], [2], [7}, [11] and
[15] for example) where global estimates for the resolvent of H are given in certain
particular cases. In fact, these estimates were obtained for partial differential
operators with constant coefficients which are, via the Fourier transform, unitarily
equivalent to multiplication operators. Most of these papers consider the case of
the Laplacian H(z) = |z|? and the proofs make use of its special properties.
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The method we propose in this paper is based on the positivity of the com-
mutator of H with an appropriate operator (so it is a variant of the method of
Mourre). Since in the neighbourhood of the critical values it is not possible to
obtain a sharp positivity (i.e. a standard Mourre inequality), we shall content
ourselves to exploit a weaker positivity and this will force us to introduce some
auxiliary spaces. In the general case, these spaces are rather complicated. But
if H satisfies some supplementary conditions, we are able to describe them more
precisely and to obtain explicit criteria of smoothness.

The paper contains two sections. In the first of them, we shall prove a
general abstract result concerning the behaviour of (H — z)~! when z is in the
neighbourhood of the real axis. The approach is close to that from [5], where
the weak positivity allowed proving a criterium of pure absolute continuity for
Schrodinger operators with anisotropic potentials. In the second section examples
are given of smooth operators with respect to H (for various functions H). As a
consequence of the abstract result we can also solve in spaces of distributions the
equation Hf = 1. If f is in §’, its Fourier transform is an elementary solution of
H(P), with P = —iy7. At the end we indicate possible extensions and comment
on the results.

In what follows, Qo is a fixed, open set in R®. We shall denote by ||f|] the
norm of the function f € L?(Q) = H. If f and g are two measurable functions
on §2g such that f - g is absolutely integrable, then (f,g) will be by definition

f f-gdz. The space B(Xy, X3) is the space of bounded, linear operators from X,
o

to Xz. If z is in R, {z) = (1 + |z|?)}/2.
2. A GENERAL RESULT

The function H : Qo — R is called admissible if it satisfies the conditions:

(i) There is on open subset 2 of 2o with negligible complement (with respect
to the Lebesgue measure) such that H is C* in Q.

(ii) There is a completely integrable C™ vector field F : @ — R™ and a
constant C' > 0 such that for all z € Q:

(2.1) B(z) = (F(z),(VH)(z)) >0
and

(2.2) |(F(=), (v B)(z))| < CB(z).
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Here (-, ) is the scalar product in R®. We denote by & the space of C*® functions
with a compact support included in § and by B its completion in the Hilbert
norm [|f||s = [|B*/?f||. It will be a Hilbert space, generally not comparable with
H. But if we identify W with its topological antidual %* by means of the Riesz
isomorphism, B* will be identical to the completion of O in ||g||z+ = ||B~1/%g]|.
B : O — O is a bijection which extends to an unitary operator: B — B*. It is
easy to give an explicit description of B* (for instance): B* = {g: Qy — Clg is
measurable and B~'/2g € H}. It will be convenient to note that B = (F, v H) is
in fact the commutator [H,iA], where on O the operator A acts as

(23) Af= =3RRI +(B)f), P=-iv.

It is easy to see that, as a consequence of Nelson’s lemma, A is essentially self-
adjoint on O and that its closure is the infinitesimal generator of the unitary group
in H:

(2.4) W) f)(z) = VJe(z) flws(z)) forallteR,zeQ, feX.

Here {w; | ¢t € R} is the C* flow in Q generated by F(F(z) = d/dt|,_, wi(x))
and J¢(z) = det[(7w:)(z)]. It is also useful to observe that (F, 7 B) is the second
commutator [B,iA] = [[H,iA],iA]. From the assumption |(F,7B)| < CB and
Gronwall’s lemma. we easily infer that the operators W(t)|Q extend to bounded
operators in B and B* and, by some standard arguments, that we get co-groups in
B and B*, denoted by the same letter W. Their infinitesimal generators will also
be denoted by the single symbol A, but it will be convenient to distinguish between
their domains by using the natural notations D(A;B) and D(A4;B*). Since this
latter space will appear frequently, it will be denoted briefly by A. It is a Hilbert
space with the graph-norm [|f{la = [[|f||3. + ||Af||5.]'/2%. O is dense in it by a
general form of Nelson’s lemma, to be found in [6] for example.
We can now state our main result.

THEOREM 2.1. Let H be an admissible function.
(i) There ezists a finite constant C such that for all X in R, £ > 0 and f, g
mHNA:
(£, (H = XA Fip) g} < Cllfllallglla-

(i) Let T be a closed operator in M such that T edmits a conlinuous ez-
tension in B(H, A). Then T is H-smooth.
(iil) The limits (f,(H - AF10)"1g) = li\IlI(l)(f, (H = Xxip)~tg) ezist for any
#
f,9 € A, uniformly in A € R.
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REMARK 2.2. As a consequence of (i), we obtain that the sesquilinear form
hy,, defined on H N A by hy u(f,9) = {f,(H — A Fiu)~'g) admits a continuous
extension to a bounded form on .A. This is the sense of the notation {-, -} in (iii).
In particular, the operator (H — X Fiu)~! is in B(A,.A*), which is not a priori
evident.

Proof. Step 1. For A €R, g > 0, e > 0 weset GF = (H-XFigF
ieB)~!. They are smooth functions on Q, which are extended arbitrary on . As
operators, they satisfy GO C . By a simple calculation, they may be extended
as bounded operators: 8" — B, verifying

(2-5) G|

m | =

BraB S

1

uniformly in A and p and (f,G¥g) = (G f, g} for any f,g € B*.
Step 2. For f belonging to O, we write

FIm(GFf, f) = FIm(GEf, (H — AtiptieB)GE f) = ullGE fII” + €l|GF Il
which gives immediately

1 1
(2:6) IGEAlls < Z21F, GZ N1
This extends by continuity to any f € B*. Since we do not rely on B 2 a > 0,
there is no analogous inequality for ||GZ f|| and this justifies the introduction of

the space B.

Step 3. Now, let us fix f € O and set F, = F, (A, p; ) = (f,G. f}, where we
shall prefer the notations G, = G} and G! = G, . By differentiating with respect
to € we get F = (f,iG?Bf). Since B = i[H, A], this can be easily put in the form

(2.7) F{=(G.f, Af) — (Af,G.f) +ie(G:f,[B, AlG. f}.

Step 4. The assumption |(F, v B)] < CB means exactly that i[B, A] €
B(B,B*). By this and by (2.6), we infer from (2.7) the differential inequality

2 )
2.8 Fl1< = Fe|3 + ||[B, Alllg— 5| Fe-
(2.8) |l \/E“f“Al |7 +||[B, Allls— 5+ | Fe|

By a version of the Gronwall lemma given in [4], Appendix B and by (2.5), we
integrate (2.8) to get

(2.9) [Fe(X, w5 ) < ClANZ,
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with C independent of A, g, f. It is easy to see that we have, in fact, for f,¢ in A

(2.9 {F, Gea)l < Cliflla - liglla.
But if f and g are also in H, then li{r(l)(f, Geg) = (f,(H - X —iu)"'g).
€
This finishes the proof of the point (i) of the Theorem.

Step 5. The point (ii) is a direct consequence of (i). For the relevant
definitions about H-smooth operators, we send (for instance) to [13].

Step 6. We prove now (iii); by the polarization formula is enough to take
f =g € O. Let us start with

1
(210) (f,(H =X =i ) = lam Fe( s ) = Fiusi ) = [ Fih s P
0

It is clear that li{rtl) Fi(A p; £} = Fi(M, 0, f), uniformly with respect to A. On the
u
other hand
|F7 (A 5 ) = FL(,0; )]

1 1
= I/'f(”)|23(”) [(H(x) A =BG (HE) A= ieB(:c))z] da]
< C(f) '/"'7-33
for all A € R and from (2.8) and (2.9)

IF7 (s DI+ IFL(0, 09I < C(F)r3
for all A € R. Then, by the dominated convergence theorem, the integral in (2.10)
also has a limit when y — 0 and this limit is uniform whith respect to A. &

REMARK 2.3. Suppose that C7*(R") is a subspace of A. Then The-
orem 2.1 (iii) implies that

(H—/\:}:iO)“1 = ]im(H—/\iip)‘l
N0

exist in the weak topology of D’,,, the space of distributions of order m on R".
Moreover, for a smooth H, (H — A)(H — A £10)7! is well-defined in D’,,, and is
equal to 1. If the supplementary conditions in Section 3 are fulfilled, we can replace
D’ by §’, the space of tempered distributions. Notice that H is not necessarily
a polynomial and may have critical points. Suppose now that v is a rapidly
decreasing distribution and that its Fourier transform H is an admissible function
which satisfies the additional conditions from Section 3. Then, as a consequence
of the previous considerations, we deduce the existence of an elementary solution
for the operator of convolution with ».
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REMARK 2.4. There are some improvements which can be made. First,
instead of the assumption (2.2) we may ask only

(2.11) / d’/

In order to have some insight, we remark that (2.2) is equivalent to the fact that the
application R 3 ¢t — (Bow,) - f € B* is C* in norm for any f € B, but that (2.11)
is weaker than its Holder continuity of order 4 for any 8 € (0,1). Second, the space
A may be replaced by the real interpolation space (B* A) 1 1, Whose definition can
be found for example in [16]. This would have given a sngmﬁcantly better control
upon the behaviour of the resolvent. We give up this possible improvement not
only because the proof of Theorem 2.1. would have become more involved (and

Blw.(z)] _

B(.":) 1|dz < oo.

we want to stress the simplicity of our method) but also because the nature of the
space (B*'A)é.l remains rather obscure even in the fortunate cases when A can
be replaced by some simple and explicit space (see the next section).

REMARK 2.5. In the articles dealing with commutator methods in spectral
analysis, there is a regularity assumption saying roughly that “B is not too big
with respect to H”. The same type of condition appears in [5] — which contains
an abstract counterpart of the present work, directed mainly towards the spectral
analysis of quantum Hamiltonians. The precise form of this condition in our
context is B < C(1 + |H[). The fact that (due to some concrete features of our
case) we are dispensed to use it, is rather amazing and of great help in enlarging
the class of functions H to which Theorem 2.1 applies.

3. EXAMPLES

The main unpleasant feature of the result above is the fact that the norm

i = |51+ I Joneb ]

n
is too intricate for a convenient interpretation. By assuming that divF = 3 0; F;
i=1
1/2
is a bounded function, [|f|| is equivalent to [||(1 IVBYIP + ||(1/vB)(F, P) f|12] ,
but this is not a significant progress. We intend to dominate ||f||4« by a norm of
the form |[y(P)f|| (for a suitable function ), which is much simpler. With this
end in view, we set Qg = R” and introduce the weak L®-space

Li(RY) = {¢ :R" - Clu[{z | |p(z)| > t}] < Ct™® for any t > 0}, pe[l,00)
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where p is the Lebesque measure on R™. We send to [14] for details and notice
only that LE (R™) is slightly larger than LP{(R") (the function |- [~"/? is a typical
element of L% (R"™) which is in no L? space). For p = co we set simply L?(R") =
L*(R™). The relevance of this definition in our context comes from the fact that
if p e (2,00, I/p+1/p' = 1,¢ € LE(R™) and F¢ = the Fourier transform of
¥ is in LZ (R"), then ¢ - ¥(P) extends to a bounded operator on % = LZ(R™)
(see [14]). Hence, suppose that 1/v/B € LP(R")} for a p; € (2,00] and that
a : R* — C is a Borel function such that F(l/a) € J.',ﬁ:‘(ﬂ")(p’1 is conjugated
to p1). Then ||(1/VB)f|| € |I(1L/VB)(1/a(P))| - |le(P)f||. Second, assume that
|F|/vVB € LE?(R™),ps > 2 and B : R™ — C is such that F(1/8) € L2*(R). Then
IA/VBYE, PYAI < CIIFI/VE) - (1/BP) - I IPIB(P)FIl. By setting v(2) =
max{|a(z)|,|z] [B(z}|} we get ||flla € Cly{P)f||, as required. Until now, the
argument was formal. Since it is difficult to describe the image of @ by Fourier
transform, it is simpler to make the calculations on the Schwartz space §. We give
below explicit conditions under which this may be done. They are general enough

for the examples we have in view:

(i) F has at most polynomial growth and divF is bounded;

(i) B~Y2(z){(z)~™ € L¥*(R") for some m € R;

(ii1) (Je(2)| + |B(=)|}{=z})~™ € L?(R") for some m € R;

(iv) 1/a,1/8€ S

Let us denote by D[y(P)] the completion of & in [Jy(P) -||. The dot is
introduced to make the difference with respect to D[y(P)] = the domain in X of
v(P), which is defined in terms of the full graph norm ({|v(P) - (|2 + || - ||*)}/2. We
have proved

THEOREM 3.1. Lel H : R® — R be en admissible function (with respect
to the vector field F') and o, 3 : R® — C Borel functions such that (i), (ii),
(iit) and (iv) are fulfilled and for two numbers py,py € (2,00] one has 1/v/B €
Lo (R™), |FI/VE € Li3(R™), F(1/a) € LY (R™) and F(1/8) € LEA(R"). Set
v = max{|a|, |z| - |8]}. Then:

(1) {fF, (H = A Fip)~ 1) € Cllf”i)[y(P)] . ”9”1'9[7(13)]: with C not depending
on AER, 1> 0 and f,g € D[y(P)].

(ii) y~1(P) is H-smooth.

(iii) For any f,g € D{y(P)], the limits {f,(H — XA F10)~g) (f,(H —

= lim
#N\0

A Fip)~lg) exist uniformly in A.
In spite of the fact that it follows easily from Theorem 2.1, this result is called
“Theorem” because it has the great advantage of having a more transparent conclu-

sion. The function v which appears in the resolvent estimates can be obtained by
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the procedure described above from the properties of B~1/2 and |F|- B~1/2. Since
this procedure is not quite straightforeward, let us indicate a simple particular case.
Set a(z) = |z|® and B(z) = |z|*~1, where a € (0,n/2) and b € (1,14 (n/2)). Then
[F(1/@)] (2) = Caalal="** € L/ =R, [F(1/8))(z) = Caplel "+~ In
consequence, we are allowed to put yz) = max{|z|*, |z[*} if 1/VB € LZ/G(R")
and |F|/vB € L/ ®~V(Rr).

We shall now present some examples. In most cases, we shall content our-
selves with the calculation of the function ¥, leaving the task of formulating results
to the reader.

EXAMPLE 3.2. Let us take a look first at the case when the choice F = G H is

possible. We shall have B = |7 H|? and (£, yB) = 3 8; H -0y H-8;0: H. Hence,

i E=1
we must ask that the closed set of critical points ér(H) ={z | (vH)Nz) =0} is
(Lebesgue-) negligible and take @ = R™ \ Cr(H). B(z) is positive for any z € Q.
Let us also impose that the functions 8;8:H,j,k = 1,...,n are bounded. In
particular, it follows that divF is bounded and F is globally Lipschitz, hence
completely integrable and growing at most as |z| at infinity. Since |F|/vVB =1¢€
Ly (R™) = L*(R"), we may take F(1/8) € LL(R"). But a simpler choice, which
we adopt, is # = 1. Assume now that 1/v/B € Li/*(R") for an a € (0,n/2),
ie. pl{z | (VH)(z)| < s}] < Cs™* for every 5 > 0. Then, if & grows at most
polynomially at infinity and F(1/a) € L%/ ®~®(R"), one can put ¥ = max{a, |z|}.
A particular case is ¥ = max{|z|®, |z|}. Let us consider, for instance the second
order polynomial

(3.1) H(z) = (Dz,z)+ (b,z) + ¢,

where D is a symmetric, non-degenerate matrix, b € R™ and ¢ € R. It obviously
satisfies the conditions above with a = 1 (here n > 3 is needed). The fact that for
H(z) = |z|* the operator |P|~! is H-smooth is known from [8], [11], [3]. In [15]
the best constant in the smoothness estimate is calculated. But for the general
form (3.1), as far as we know, there is no such result. Moreover, Theorem 3.1 (iii)
implies the existence of F~!(H —AFi0)~" in &'; these distributions are elementary
solutions of H(P)— A. The result is a slight generalization of Theorem 6.2.1. from
(9]. Our proof is completely different from that given in [9).

For the degenerate case we send to Example 3.5. Let us notice that the
non-elliptical case can be treated just because we succeeded to avoid the condition
B < C(1+4|H|) (cf. Remark 2.5). We are not limited to polynomials; a large class
of second-order symbols may be treated. It seems difficult to modify the methods
appearing in the literature in order to cover them.
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ExXAMPLE 3.3. Suppose that H is a homogeneous function of order 2a¢ and
strictly positive outside the origin, i.e. H(z) = |z|>*¢(z/||}, where 6 is a smooth,
strictly positive function on the unit sphere. If a € [1,n/2) and F(z} = z then
B = 2aH > 0 and (F,yB) = 4a?H. Since obviously 1/VB € Lz/(anl)(ﬂ"), it
follows that the choice y(z) = |z|* is possible (and this is a quite particular option).
When a € [1/2,1), we must choose a more complicate vector field. Namely, we
take F(z) = z/(z)?, where b € [1 — a,a]. Then it is easy to verify that all our
hypothesis on H are satisfied; moreover 1/VB € rn/e=h (R™) + Lyl *(R™) and
|F|/v/B € LZ/(“H_I)(R")‘ All these lead us to y(z) = max {|z|°%, |=|**?}. It
seems that only the case ¢ = 1 and § = 1 was known before.

EXAMPLE 3.4. If H has a direction of monotony, i.e. there is a unit vector
v such that (v, 7H) > 0 a.e., then we may choose simply F' = v (hence A is the
projection on v of the momentum operator). We leave the details to the reader.

ExXAMPLE 3.5. There may be more than one vector field F fitted to a given
function H. Assume, for instance, that R™ is writen as the direct sum Y & Y+,
where Y is a proper subspace of R" of dimension ny 2 3. For z € R", we set z¥
for the projection in Y and 2¥" for its projection in Y*. Consider
(32  H()= kP4 gl P+ () + 0V ) 4
where b € R*,c € R and § € R (we denoted by (-, -) the scalar product in any of
the spaces X,Y,Y1). If § # 0, this is a particular case of Example 3.2, hence (for
instance) |P|~! is H-smooth. But one may also use the choice F(z) = 2Y 4+ (it
is the gradient of the part depending on zY¥ in H). Then B = |z¥ +b [ and 1/ VB
is in no L?,(R™) space, but it is the tensor product between a function in L3Y (Y)
and the function 1 in the Y *-variable. This entails immediately that [P¥]|~'®1 is
H-smooth (obvious notation) and this is a better result, because |2Y|~! dominates
|z|~! (remark that it doesn’t decay at infinity in the Y1 direction). In addition,
this approach works also in the case § = 0. But for § = 0, we also have the option
of Example 3.4 by taking F = b¥, hence B = [bY *|2. This gives the H-smoothness
of y~*(P), where y(z) = max(1,1® |&¥ *|), irrespectively of the dimension of ¥
or YL. Note that Y may be varried.

We shall indicate now a way of improving the previous results. In the second
section, instead of (2.3) we could have used

(33) A© = S {(F,P—8) +(P-& F)



292 MARIUS MANTOIU AND MiHal Pascu

where £ is an arbitrary element of R®. This amounts to replace (2.4) by

@4 WOONE = ewfi(e, [ Flude)ar) W@ Aw),
0

The trick consists in the fact that the succesive commutators of H with A%) are
the same as those obtained for £ = 0. In fact, one proves easily that Theorem 2.1.
stands true if one replaces A by A%) = D(AK), B*) (obvious definition) and that
the constants which appear in the estimates do not depend on £. This can be used
to integrate over £ with a complex measure. We shall state only a particular case,

easy to prove by arguments already given.

COROLLARY 3.6. Assume that H is admissible for the vector field F, that (i)
and (ii) are satisfied and that there is an a € [1,n/2) such that 1/VB € L3/*(R™)
and |F|/VB € Lai(a_l)(ﬂ“). Let v be a (finite) complez measure on R" and set
ev(2z) = [ v(d€)/|z — £|°. Then the operator ,(P) is H-smooth.

nfa

It is easy to see that ¢, € L,/"(R"). But, unfortunately, not any function
Y E Lya(R") is of the form ¢,. It is tempting to conjecture that, in fact, the
operator (P) is H-smooth for all ¢ in L2/*(R"). We note that [10] give for (3.1)
a Sobolev inequality which implies that p(P) is H-smooth if ¢ € L*/%(R™) (the
special case H(z) = |z|? is also covered from this point of view in [11]). We cannot
obtain this, but we do cover many functions ¢ which are in Ly *(R™)\ L"/%(R™)
and we are not restricted to second-order polynomials.

Finally, let us make some short considerations on scattering theory. Any
time there are smooth operators, there are also statements on the wave operators.
By combining a Fourier transformed version of our result with Theorem XIII.26
from [13], we can indicate various situations when the wave operators Ho = H(P)
and Hs = Ho + 6V(Q) are unitarily equivalent for small §, the equivalence being
implemented by the wave operators. Virtually, any time our smoothness estimates
are new, the scattering results are also new. We shall give only an example. It is
well-known that A (the Laplace operator) and A +8/{Q}? are unitarily equivalent
if n > 3 and § is small. Example 1 shows that this is still true if one replaces A
by H(P), with H given by (3.1). But, by taking into account arguments similar

to those given in Example 3.5, a better result is available.



GLOBAL RESOLVENT ESTIMATES FOR MULTIPLICATION OPERATORS 293

COROLLARY 3.7. Set Hy = H(P), with H as in (3.1) and H; = Ho+6V(Q).
Assume that there is a subspace Y of R™ of dimension ai least three which is
invariant under D, such that the real Borel function V satisfies |V(z)| € C/{z¥)?

for a finite constant C'. Then there ezisis &g > 0 such that if |8| < &, the wave

ltHae

operators Wy = s — . liin e —itHo ezisi and are unilary. In particular, Hs is

— 00

purely absolutely continuous.
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