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ABSTRACT. We obtain sufficient conditions for the convergence of infinite
series of quantum spectral stochastic integrals. The resulting operator-valued
processes are used to drive quantum stochastic integro-differential equations.
Unitary solutions of these equations implement quantum stochastic flows and
give rise to a new representation for the generators of a class of completely
positive semigroups. As an application, we are able to construct a class of
flows on algebras of operators which are driven by multidimensional Lévy
PIrocesses.
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1. INTRODUCTION

The quantum stochastic calculus of R.L. Hudson and K.R. Parthasarathy ([13],
[14]) has been developed into a highly effective tool for building non-commutative
analogues of a number of important probabilistic notions such as Markov processes
and stochastic flows and has given new insights into the nature of irreversible
processes in quantum theory (see the monographs {21] and [19] for a panoramic
view). The theory takes place in a Hilbert space $ = Ho®@'(L?*(R*, K)) where $o,
the initial Hilbert space allows for the representation of operator algebras which
then interact with noise in the symmetric Fock space I'(LZ(R*,K)). The basic
noise martingales are built out of certain annihilation, creation and number-type
operators therein. In the standard theory, the space K is, at most taken to be an
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infinite direct sum leading to a countable number of independent noises. In an
earlier paper ([2]), the first author began the process of extending the Hudson-
Parthasarathy theory to a continuum of noises where K is a direct integral with
respect to a finite measure. From the point of view of stochastic integration this
means that we introduce an additional integration over a space variable — which
is described by a convenient projection-valued-measure, as well as the usual fime
variable. The resulting objects are called quanium spectral stochastic integrals. A
related construction can be found in [7].

In the current paper, we take K to be an infinite direct sum of such direct
integrals and so we consider infinite series of quantum spectral stochastic integrals.
A further extension allows us to consider such integrals defined (spatially) over R"
rather than R as in [2]. We obtain three interesting applications for these integrals:

(a) Semigroups. Quantum stochastic integro-differential equations driven by
our series of integrals give dilations of a class of quantum dynamical semigroups
whose generators can be given a finer structure than the canonical one of {18];

(b) Quantum physic. The coupling between system and neise is more detailed
than in the usual theory;

(c¢) Probability. The Hudson-Parthasarathy theory contains, as a special
case, stochastic integration with respect to a countable number of independent
Brownian motions and Poisson processes. The theory of [2] allowed us to extend
this to Lévy measures with finite intensity measure. The theory contained herein
enables us to include the most general Lévy process taking values in R® and also
some Lévy processes with infinitely many degrees of freedom. Indeed we close
the paper by constructing a class of algebraic Lévy flows whose generators are a
subclass of those discussed in (a) and which yield an algebraic generalisation of
the Hunt-Courrége formula ([16], [10]) for the generators of Markov semigroups
associated with semigroups of measures on R" (this construction should not be
confused with that of [6] which is from a different point of view and is far more
general).

The organisation of this paper is as follows. In Section 2, we review the
construction of quantum spectral stochastic integrals in [2] and indicate how to
extend these to R™. Convergence of series is described in Section 3 and in Section 4
we prove existence and unitarity for a class of integro-differential equations with
bounded operator coefficients and obtain the semigroups discussed above. Sec-
tion § is an interlude where, using ideas about current group representations due to
H. Araki, K.R. Parthasarathy and many others we explain how Lévy processes can
be naturally represented in Fock space. Finally in Section 6 we combine the results
of the previous two sections to obtain a non-commutative generalisation of a class
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of Lévy flows of diffeomorphisms of manifolds constructed in [1] and extend the
operator theoretic construction to include a class of flows driven by Lévy processes
with infinitely many degrees of freedom.

NoTaTioN. Einstein summation convention will be used throughout. If x is
a column vector then =T is its transpose. If V; (j = 1,2) are vector spaces then
Vi®Vz is their (algebraic) tensor product. U($)) denotes the group of all unitary
operators in a Hilbert space $. If T is a densely-defined closeable operator in §
then T is its closure. B(S) is the Borel o-algebra of a topological space S.

2. QUANTUM SPECTRAL STOCHASTIC INTEGRALS

Let I'(J) denote the symmetric Fock space over the complex separable Hilbert
space J. If M is a dense linear subspace of 7, we note that the linear span £(M)
of the exponential vectors {e(f), f € T} is dense in I'(F).

In the sequel, we will always take 7 to be L2(R*, K) (which we identify with
L*R*) ® K) where X is infinite dimensional and M to be the algebraic tensor
product of the locally bounded functions on R with a dense linear subspace C
of K (C will be specified below). The inner product in K will usually be denoted
as (-,-).

Fix z,y € J and let H € B(J) be self-adjoint. We denote by Al(t) the
creation operaior at(x[g,t) ® z), by Ay(t) the annihilation operator a(X[o:) ® ¥)
and by Ap(t) the conservation operator A(xjo) ® H) which are all densely defined
linear operators in I'(J) with £(M) contained in each of their domains.

Now let Dy be a dense linear manifold in a complex separable Hilbert space
$Ho and write H = Ho @ I'(J). We assume that for j = 1,2,3,4, E; = (E;(t),t €
R*) are regular processes in ) i.e.

(i) Do®E(M) C Dom(E;(t)) for each t € R*;

(ii) each E; is adapted and locally square-integrable in the sense of [21].

We will assume familiarity with the construction and elementary properties

of quanium stochastic integrals of the form

M) = / (Ex(s)dAl (s) + Ba(s) dAx(s) + Ba(s) dAy () + Ea(s) ds)

0

and we note that the process M = (M(t), t € R*) is itself regular in $ (see {13]
and [21] for further details).
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Let S be a Borel subset of R* which we equip with the Euclidean norm || - ||,
and let B(S) be the o-algebra of Borel subsets of S. P will denote a projection
valued measure on B(R") taking values in the lattice of projections in K.

Now let E = {E(f,)), t € RT, X € §} be a family of densely defined linear
operators in $) which satisfies the following conditions:

(i) each process E(A) = (E(t, A), t € Rt) is regular in §;
(ii) the map A — sup ||E(s, \)(u ® e(f))]| from S to R* is bounded for all
\Jx(.
u €Dy and f € M,

(ii1) for all t € RY, u € Dg and f € M we have that given ¢ > 0, there
exists § > 0 such that whenever A, u € S with [|]A — gl < § then sup ||(E(s, A) -
£t

g
E(s, p))(u® e(f)) < e.

Such families will be called admissible.
Let {E;, j = 1,2,3} be admissible families and assume that G € B(5) is
such that

P(G)z#0 and P(G)y#0.

By imitating the argument of [2], where S was taken to be R, we can construct
quantum spectral stochastic integrals to be regular processes M¢ = (MS(t), t €
R*) having the symbolic form

M) = f (Ei(s, \) AT (ds, P(dN)z) + Ea(s, \)A(ds, P(dN))
(2.1) Gx[0,1)
+ Es(s, A)A(ds, P(dA)y).

The procedure is as follows:
By a partition P of G € B(S) we will mean a family of subsets {G;, i € I}

wherein each G; € B(S), |J G: = G and all but a possible finite number of the G;’s
i€l
are mutually disjoint. Such a partition is firife if the set I has finite cardinality

and in this case we will always assume that all the G;’s are mutually disjoint. First
assume that G has finite diameter.

Now let P be a finite partition and define the operators M5 (t) on Do ®E(M)
by

22) ME() =Y [ (Ex(s, 1) dAL (5) + Eals, 1) A, (s) + Es(s, 15) d Ay, (5))
j=1 0

where each u; € G, H; = P(Gj) and z; = Hjz, y; = Hjy.
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Let (P,,n € N) be a sequence of finite partitions of G with each P, =
{G$™,1 < j < my) such that lim [Py| = 0 where |Py| = max{diam(G{™); 1 €
7 € m}, then we define

MO()(u® e(f)) = lim ME, (O)(u ® e(f))

for cach u € Dy, f € M.

In the case where diam{G) = co, we consider a sequence (Gn,n € N) where

each G, € B(5) has finite diameter, G, C Gp4) and Ej Gr. = G and define
n=1

ME(W)(u®e(f) = lim M (t)(u ® e(f)

for each u € Dg, f € M. MY = (MY(t), t € RY) is a regular process for all
G € B(S).

The details of the above are a straightforward generalisation of the arguments
of [2]. For an alternative point of view see [8], [9]. We refer to these two papers
for a discussion of further properties of the integrals (2.1). For the next section,
we will need the following result for a restricted class of these integrals.

THEOREM 2.1. For 3 = 1,2, let (E’, k = 1,2) be admisstble families such
that for all t € RT

M) = / (Ei (s, ) AT (ds, P(d)\)z) + Ei(s, \)A(ds, P(dN)y)

G x[0,t)
then for u,v € Dy, f,g9 € E(M), we have

(M (€)(u @ o)), M2 (D)0 @ e(9)))
= [ {rewe ), N6, PeN)

Gx[0,t)
(2.3) + E3(s, \)(P(dN)y, 9(s))](v @ e(9)))
+ ([BL (5, \)(g(s), P(dN)2)
+ B} (s, N(P(dN)y, F())](x @ e(£), M*(s)(v © e(s)))
+ (BL(s, M) ® (1)), B3 (s, \(v & e(9))(z, P(dX)y) } ds.

Proof. See [2], Theorem 3.4. n
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3. CONVERGENCE OF INFINITE SERIES
OF QUANTUM SPECTRAL STOCHASTIC INTEGRALS

We fix a partition {G,, n € N} of S and choose a sequence of vectors (vn, n € N)
in K such that each

(3.1) P(Gpvn = v,.

We extend (vn, n € N) to a total set 7 in X and from now on we take C to
be the linear span of 7. Hence for any f € M and for all t € RY, f(¢) is a lincar
combination of at most n;y members of 7 with n; < oo (cf. [20]).

We define M; = max{{|v/||?, 1 € r € ny}. We are interested in sequences

(En, n € N) of admissible families satisfying the integrability condition

(3.2) Z / 1En(s, M(u ® e(fNIZ | P(dA)un|l ds < oco.
n=1 gL x[0.0)

Such sequences will be called Lévy-integrable (for reasons that will become clearer
in Section 6).

Now let £ and F be Lévy-integrable sequences. We wish to investigate the
convergence of the sequence of quantum spectral stochastic integrals (M,,, n € N)

where each

(3.3) M,,(t):ij f [E.(s, ) AT (ds, P(dA)v,) + F,(s, \)A(ds, P(dN)v, ).
r=1 G.x[0,1)

LEMMA 3.1. For each f € M, there exisls a monotonic increasing funclion
B; on R such thai for all u € Dy and for n 2 ny we have

(34) IMa()(u@ (NI’ < By (1) D / e (s, Ay, £, B, F)||P(dN)vr]|* ds

r=1 G x[01)

where 901‘(3: ru f, E, F) = ma.x{||E,(s, )‘)(u ® e(f))HZ’ “F"(s) )')(u ® e(f))llz}

Proof. By Theorem 2.1 and several applications of the Schwarz inequality
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(see also Lemma 1 of [8]), we have

1M (8)(u @ e(£))If?

<f {2 Re() [ (a0 ® e(9), (PN F(6),v0)En(o, )

0 ra=1 G,

+ (v, PEANF(5)Fo(s, M](u ® e(£))))
+3 | nEf(s,A)(u®e(f))u2up(df\)vruz}ds

r=1 G,

<f {ZnMn(t)(u@em)uz
Pt r=1

+ i H / [(PAXF(5), vr)Br (s, 3) + (or, PEANF()Fr (5, N](u @ e(f)|
=t

+2 BN we e(f))u‘*nmdnvru?}ds
r=1 ¢,

< / {"fHMn(t)(u®e(f))“2+

¢

ny
+23 Mol [ 1P (s, 3,0, £, 2, PP (@Yo
Gr

r=1

n

+3 [IEGNwe E(f))HzHP(dA)vrltz}d&
r=1 G, i

The result now follows by a standard use of integrating factors and we have

By(t) = et (1+2M; sup [IF(S)I).
0Ks<t
THEOREM 3.2. For each u € Dy, f € M, T € RY the sequence (M,(t)(u ®
e(f))neN converges uniformly for t € [0,T].
Proof. Replacing My, (t} in (3.4) by (M, (t) — M, (t)) we obtain the estimate

(Mo (1) =M () (u@e(FDI° < Bi(T) Y / er(s, A u, f, B, F)|[P(dA)ve |2
r=m+l g, x[o,T)
for each ¢ € [0,7] and since E and F are Lévy-integrable sequences it follows

that (Mn(t)(u®e(f))nen is uniformly Cauchy and hence uniformly convergent on
[0,77. »
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We define M(t)(u ® e(f)) = lim M,(t)(u ® e(f)). Clearly each M(t) is a
linear operator in § with Do®&(M) C Dom(M (t)) for each ¢ € R*. Furthermore
(M(t), t € R*) is a regular process in $ and from Lemma 3.1, we deduce the

estimate

(15) IMO@ONIE<BOY, [ orlshuf. B DIP@w]?ds.
r=1 g, x[o,1)

On Dy ® £(M), we have the representation as a strong limit
(16) MO=Y [ (Bls AT (ds, PN + Fuls, )A(s, P@X)u)
r=1 ¢, x[0,t)

We leave as an exercise for the reader the derivation of appropriate extensions of
Theorem 3.4 (i) and (i) of [2] for matrix elements of the M (¢)’s and of their weak
products.

In the sequel we will be concerned with regular processes in $) of the form
(N(t), t € R*) where

3.7 N(@)=M(t)+ / G(s,A)A(ds,P(d)\))+fH(s)ds
Sx[0,t) [0.,t)

where G is an admissible family and H a regular process.

On combining (3.5) with the results of [2] or [8], we obtain the estimate

(3.8) IN(t)(u® e(N)I* < Cf(t){ > / er(s, X, u, £, B, F)[|P(dX)v, | ds
=1 g, x[0,1)
+ [ 166 e dnIFIP@ P s+ | NH(s)(u@e(f))lPds}
§x[0,1) fo.1)

where each C; is a monotonic increasing function on R*.
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4. EXISTENCE AND UNITARITY FOR SOLUTIONS
OF QUANTUM STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS

We define a o-finite measure v on B(R") by

(4.1) WG) =" IP(G)vall?

and we will in this section take § to be the support of the measure v.

For j = 1,2, let {LE")(,\), X € S,n € N} be families of linear operators in g
satisfying the conditions:

(i) Each L{™(2) € B(50).

(i1) The map A — LE")()‘) is strongly continuous from S to B()o) for each
n €N.

(iii) sup |[L§-")(/\)|| < oo for each n € N.

(iv) ’)Fhire exist D; < oo (j = 1,2) such that for each u € Hg,

[«¢]
> 1L QPP @w. | < Dyl
G

n=1

We will also require a family {£L3()), A € S} of linear operators in S satisfying

(i), (ii) and (iii) above only and we write
Dy = sup [ILs(WIP.
reS

Finally we will have need of Ly € B($o) and we will write Dy = || E4||2.
Our aim in this section is to give meaning to quantum stochastic integro-
differential equations of the form
(4.2)
[>o]
Xty=1+Y / X(s){L$M (AT (ds, P(AN)va) + L8V (W) A(ds, P(dX)va)}
n=1 Gnx[0,t)

+ / X(5)La(VA(P(dN) + 0/ X(s)Lads.

§x[0,t)

We will use the standard approach of Picard iteration (cf. [13], [2]).
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LEMMA 4.1. There ezists a sequence of regular processes (Xm, m € NU{0})
such that Xo(t) = 0 for allt € RT and for m 2 1, (i) and (ii) below hold:
(i)

Xm(t) =T + i / X (M) AT (ds, P(dN)w,)
7=l o x[o,0)
+ I§(0) A(ds, P(dA)vn)}

1
+ / Xomo1(5) La(\)A(P(dN)) + / Xom_1(s)Lads.
§x[0,t) 0

(i) For each u € Ho, fEM, T €RY and for allOLKt KT

m—1
I(Xen (8) = Xim—1())(u @ e(* < 7 (T)"“‘(—t—_—1)—!Hullzlle(f)il2

where y(t) = Cy(t)(D1 + D2 + D3 sup {|f(s)l|* + Da).

0<%t

Proof. We establish (i) and (ii) by induction. Since Uy(t) = I for all t € R*
it is immediate that the case m = 1 holds. Now assume that both propositions
are valid for all m < p. In order for (i) to make sense for m = p + 1, we must
show that for j = 1,2, E; (E(") n € N) are Lévy-integrable sequences where
each E‘(")(t A) = X,,(t)L(“) (M) for t e R | A € S, that E3 is an admissible family
where each E3(t,A) = Xp(t)La(A) for ¢ 6 R*, X € S and that E4 is a regular
process where each E4(t) = X,(t)Ls. To demonstrate these, note first that by (i),
we have for v € Dy, f € M,

(6 (£)(w ® (AN < D Xk () = Xe-s())(u ® e(H)]

p {1 3
< Z7f(t)k-1 (IC _ 1)|) ”u“ “e(f)”

Hence we deduce that ap(f,t) < co where

ap(f,t) = sup{[|(Xp()(u ® e(NI; llull = 1}.
So to establish the integrability condition (3.2) for E; (j = 1,2), we find that

o0

> [ IGO0 e I IP@ s
n=1 g, x[0,1)
<oy [ IEOOPIP@N ) ds
=1 g x[0.1)

< Djoy(f,)*|ul)? < o0 by condition (iii) above.
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The other conditions are all proved similarly and so (i) is established.

The inductive argument for (ii} follows from (3.8) by a similar argument to
that of [13]. &

THEOREM 4.2. There ezists a regular process (X(t), t € RY) which is the
unique solution of Equation 4.2.

Proof. As in [13], one uses the estimate (ii} to show that for each u € Dy,
[ € M, T € R, the sequence (X (t)(u®e(f)), m € N) is uniformly Cauchy and
hence uniformly convergent on [0,T). We may then define

X@)@®e(f) = lim Xn()(uoe(f). 8

We are interested in establishing necessary and sufficient conditions for the
solution to (4.2) to be a unitary process, i.e. each X(t) is a unitary operator in 5.
Prior to this we need the following result.

LEMMA 4.3. Let {L™(X), A € S, n € N} and {LM())*, A € 5, n €N}
both satisfy conditions (i) to (iv) at the beginning of this section, then the sirong
sum of B($Ho)-valued integrals

> [ EP0r L P@m.?

n=1 Gn

erists and defines a positive self-adjoint operator T' € B($g).

Proof. This follows by a similar argument to that of [21], Lemma 274,
p.225. 1

THEOREM 4.4. The solution to (4.2) is e unitary process if and only if there
exists {W(X), A € S} wherein each W()) is a unitary operator in o and there
exists H = H* € B($o) such that, writing each Lg")()\) = L(®)(}), we have for
eachneN, A e S

L) = =Ly W)
L) = W) -1
n . 1 > n L3 n
1 =i -1y / L)L) PN )oa 2.
n=1 Ga

Proof. This is along similar lines to that of [13] — see also [2]. Note that the
existence of Ly is guaranteed by Lemma 4.3. 18
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Now let A be a - subalgebra of B(f}9) and consider the following families
of maps from A into B(fo); {z(}), » € S} where for cach z € A,

(4.3) e(A)(z) = W(A)zW(A)* —z
{an(}X), A € 5, n € N} where each
(4.4) an(A)(z) = LNz — W(A)zW(X) L))

and r: A — B(f)o) where

7(z) = i[H,z) - % > ] (LMY L)z

(45) n=1 G
— LEYQYW(AN)zW(A) L) — 2L LI (A) || P(dA)val 2.

The convergence in (4.5) is again in the strong topology and the existence of the
middle term follows by a similar argument to that of Lemma 27.7 in [21], p. 228.

We assume that each o(}), an(A) and 7 have range lying inside A. Now let
U = (U(t), t € R*) be a unitary process and define a family of *-homomorphisms
J = (ji, t € RY) from A into B(H) by

(4.6) ) =U@Nz @ NHU(L)"

for each z € A, t € R*. A standard argument (see e.g. [13], [2]) yields the following
representation for J in terms of quantum spectral stochastic integrals

M@= [ {ilenO)E)Alds, P@N)m)
=1 g x[0,1)
(a7 4 3,(@(N) (=) Alds, P(AN)va)}

t

+ / Fa(e(A\}))A(P(dN)) + f is(7(x)) ds

Sx[0,t) 0
where each z € A, t € Rt and each
an(A)(z) = an(A)(=")".

From (4.6) we see that J is a generalisation of the quanium stochastic flows
considered in [15] and [11).
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NoTE. In the case A = B(f)p), the prescription

(u, Ty(2)v) = (v ® &(0), ju(z)(v ® e(0))

for t € RY, z € A yields a norm continuous quantum dynamical semigroup
(Ti, t € R*) on B($)p) with infinitesimal generator + however (4.5) yields a differ-
ent representation than that described in [18] which seems to be a consequence of
the finer coupling to noise (cf. [14]).

(4.5) can clearly be generalised further to the case where each ||P(-)unl|? is
replaced by a o-finite measure v,,. The relationship between such generators and
quantum stochastic flows will be investigated elsewhere.

5. LEVY PROCESSES IN FOCK SPACE (CF. [20], [21])

Let G be a Borel group with identity e and V : ¢ — U(K) a unitary Borel
representation. Let 1 : G — K be a one-cocycle so that # is Borel-measurable and

(5.1) V(g)n(h) = n(gh) — n(g)

for all g, h € G. Suppose there exists a Borel map 5 : G — R such that

(5:2) Blgh) — B(g) — B(k) = Im((n(g™"}, n(R)))

forallg,heg.

Now let W be the Weyl representation of the Euclidean group of K in I'(K),
so that for each U € U(K), v € K, W(U,v) € U{T(K)) (see (13] or [3] for fur-
ther details). We obtain a Borel representation of G in I'(K) (called a type S
representation in [12]) by

(5.3) H(g) = POW(V(9), (9)).

Now replace G by the current group C(R*,G) of Borel maps with compact
support from R* to G where the group operations are defined pointwise. We wish
to obtain a type S representation of C(R*,G) in I‘(J) where J = L?(R*,K). In
order to do this we replace the triple (V,n,8) by (V 7, ﬁ) where (see [22]), for
Y € C(R*,G), t € R, ~

V(#)(@) = V(1))
1(¥)(t) = n(¥(2))
t

Bw) = / Bu(t)) dt
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o~

We denote by il the type S representiation corresponding to (17, 7, B) via
(5.3).

From now on we will take G = R*. {G,, n€ N} will be our usual partition
of § but we make two additional assumptions:

(a) Gi=Gy=-=Gpr={0} and dimV=m<oo

where V = RanP({0}). As a consequence of (a) we see that for all £ € B(R") for
v as given by (4.1) we have

Y(E) = méo(E) + v(E\ {0})

where &y is Dirac measure at the origin. In the sequel we will find it convenient to
identify V with R™. We will also, without loss of generality, take {v1,v2,...,Um}
to be the natural basis in R™,

Our second assumption is that v is a Lévy measure i.e.

(b) / (22 A 1)p(dz) < oo,

R\ {0}
For 1 € j € n, let Yi,...,Y, be the mutually commuting self-adjoint operators in
K defined by

Y= [P,
|- &2
In the sequel, we will need to consider Y = (Y;,Ys,...,Y,) as a column
vector and we will also find a use for the self-adjoint operator

|Y|2 — {YIP + ly2'2 e v lY"P = /(y? +y§ + +y§)P(dy)
| - &

We are now ready to define the basic triple (V, 5, 8}: (V(z), = € R*) is the strongly
continuous n-parameter group given by

(5.4) V(z) = exp(izTY)
where z = (z!,z%,...,2"). n: R® — K is the one-cocycle given by
{(5.5) nz)=oz+ Z (V(z) — Dvn

n=m+1

where o is an (m x n) real valued matrix.



INFINITE SERIES OF QUANTUM SPECTRAL STOCHASTIC INTEGRALS 309

Finally define a continuous map 8 : R™ — R by

(5.6) B(z) = bTz + f: <u,,, (sin(:cTY) - ﬁ%) on )

n=m+1

where b € R" (see [21], p. 159, Exercise 21.12).
Now as above we construct the triple (V, 7, 5) and consider the representation
U of C(R*,R*) in I'(J) given by (5.3). Choose ¥ € C(RT R™) to be

Y =zxp, forsomereR", e R*

then if we define W,(z) = U(¢) for fixed ¢ € RT, we see that (Wi(z), z € R™) is
a strongly continuous n-parameter unitary group on I'(7) so that we have

(6.7) Wi(z) = exp(izT X (1))

where each X(t) is a column vector comprising self-adjoint operators in I'(7).
Arguing as in [21], p. 159, we obtain the Lévy-Khintchine formula

(6(0): Wt(x)E(O)) = et((“’)

where

. 1 T iyTe
5.8 z) = ibTe — —az + / (e’yz—l-—————)ud
68 (@) - o) Y@
rR~\{0}

where a is the n X n matrix 0T o.

From (5.7) and (5.8) we conclude that (X(¢), t € R*) is a representation in
['(J) of an n-dimensional Lévy-process i.e. a stochastic process taking values in
R™ with stationary and independent increments which is continuous in probability
and satisfies X(0) = 0 almost surely.

We have the following decomposition for X(f) = (Xi(f),...,Xa(t)), for
tecRtand1<jg<n

X; )= b;tl + iO’]’-C(a(X[olg) ® vg) — aT(X[nlz) ® vr))

(5.9) + 2 {aT(xm,n ® Yion) + Axp0,0) ® Y P(Ga))

n=m+1

Y, [vf?
+ G(XIUJ) & S/J'Un) + t<'l)n, W‘Uﬂ>}.
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To verify (5.9), in the case where v has bounded support we have £(JF) C
Dom(X;(t)) for all t € R* and we can explicitly compute

(o), X3 ()e(a)) = §

a
5a (W@,
In the general case there is no guarantee that Dom(X;(t)) contains a total
set of exponential vectors and (5.9) must be verified by using the technique of [21],
p. 155-159.

If we compare (5.9) with the Lévy-It6 decomposition for Lévy-processes (see
e.g. [17), p. 65) then it is tempting to rewrite it as

X;(t) = bjtl + i"';'c(“()([o,:) ® vg) — ﬂt(X[o,t) ® vr))

* i / )‘j{Af(dS,P(dé\)vn)+A(ds,P‘(dA))

5.10
( ) n=m+1 G.x[0,t)

+ A(ds, P(d\)v,) + ﬂ}u(d)«)ds
’ SO E -

Such a representation was anticipated by H. Araki — see Equation 9.7 on
p. 420 of [5].
As in [2], we may then write, fort e R, 1 < k< m

(5.11) Be(t) = i(a(x0,:) ® &) — at(X[O,t) ® vk ))

and we regard B(t) = (Bi(t),..., Bm(t)) as the Brownian parf of the generator
X(t) and for G € B(R" \ {0}), we write

N, Gy = i / {4t (ds, P(dD)v,)

(5.12) n=mHl (Gneayx(o,t)
+ A(ds, P(d))) + A(ds, P(dA\)va) }

and we regard N as the Poisson part of X(t). More precisely it plays the role of
a compensated Poisson random measure on R* x (R™ \ {0}) where the intensity
measure is v.

We will find these ideas of great value in the next section.
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6. LEVY FLOWS ON *-SUBALGEBRAS OF B{$)y)

Let (22,5, P) be a probability space and M be a finite-dimensional, paracompact,
connected C*°-manifold. Let Z;, Zs, ..., Z, be complete, smooth vector fields on
M which are such that the Lie algebra generated by {Z1,Z,,..., 2.} is finite
dimensional.

Consider the stochastic integral equation defined for all f € C®(M), pe M

by
WDE) = 10)+ [ a2 ) aBi(s)
:+0 ‘
6.1) [ ] G b)) - i (D@ 2, )
0 R™\{0}
+ / Js(L(F)(p)) ds
where B = (B!, B?%,..., B™) is a standard Brownian motion, NV is a compensated

Poisson random measure on R* x (R™\ {0}) with intensity measure v and for each
z € R", k(z) is the antomorphism of C®°(M) given by

k(z)f(p) = f(exp(2? Z;(p))

and the generator £ is given by

LUYP) = BZ((o) + 309 2:2; 5(p)
62) £ 2,(1)(p)

+ [ (ko) - s - 220

R=\{0}

where b, 0 and @ are as in the previous section.

) v(dz)

In [1] it was shown that there exists a unique family of homomorphisms
{j:,t € Rt} of C®(M) into L®(M x Q, pu x P) satisfying (6.2) where u is a fixed
Lebesgue measure on M (see [18], p. 158) such that

(6.3) 3(f) = f o ®o,s

where @ = {®,;, 0 < s <t < oo} is a Lévy flow of diffeomorphisms of M.
Furthermore in [4], a family of unitary operators (U{t), ¢ € R*) was constructed
on L%(),F, P; $o) where $g is the intrinsic Hilbert space of (M, x) such that

(6.4) »(f) =U@fU@)"
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and it was shown that U(¢) had the stochastic integral representation

i

Ut) =1+ / oLU(s)Z* dB;i(s)
+
/

where the following are all densely-defined linear operators in Ho, Z = Zy +

(6.5)

U(s)(S(z) — I)N(dz, ds) + f U(s)Mds
R~\{0} o

-;-div(Zk) for 1 £ k < m is essentially skew-adjoint, S(z) = exp(a:"gk) for z € R"

is unitary and

‘R—bjz-i-l 1Z.Z; + / S'(:t:)—I——ﬂ v(dz)
= § 2a $ 4§ 1+ Iﬂ,‘lz f
R~\{0}

We wish to quantise this construction and in effect to quantise the Lévy flow &.
Using the canonical isomorphism between L%(Q,F, P;%o) and $ip ® L3R, F, P),
we now take fjp to be arbitrary and inspired by the discussion of the previous
section, we replace L%(Q,§, P) by I'((J). The role of C®(M) will be played by an
arbitrary *-subalgebra A of B(f3). We will consider generalisations of Equations
(6.1) and (6.5) wherein B and N are replaced by their quantum analogues (5.11)
and (5.12).

Our first task will then be to investigate the conditions under which there
exists a unique unitary process U = (U(t), t € RT) in § satisfying the equation

i

Uty=TI+ /aiU(s)T" dB;(s)

0
(6.6) t
+ / U(s)(W(z) — I)N(dz, ds) + / U(s)Mds
®\{o})x[o,t) 0
where T1,...,T, are arbitrary densely-defined essentially skew-adjoint operators

in $o with common invariant core ©y and are such that z¢ T; is itself essentially
skew-adjoint for each z € R®, W () is the unitary operator exp(z77}) and

M= VT + 2aimTy + / w( )—I-ﬂ v(dz)
= b 2a il z 1+|x|2 .
R~ {0}
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We consider two cases in which the required process can be constructed.
(a) Let 71,73, ..., T, all be bounded.
We will appeal to Theorem 4.4 and make the following choices therein with
Do = Ho,
L(j)(O) = a‘}”Tk forl€sj<m
LO(z)=W(z)—1 forj>m, 2#0
La(z)=W(z)—1I forallz eR"

2
= —it/T; +n zm:“ / (Sln(z T;) +11 e |2) [|P(dz)va]|*.

In order to apply Theorem 4.4, we need to show that condition (iv) at the
beginning of Section 4 is satisfied. To see this note that each W(z) can be embed-
ded into a strongly-continuous one parameter group and so for each z € R™ there
exists a projection-valued measure Q; on §Hp such that W(z f e#(2)Q, (dz).

Hence we find that for each u € fi,

> ] 12 @)l P(d2)on”
n=m+l g

- / (W (2) - Dyul|v(da)

R™\{0}

< [ [1659) < 1PQutds)ulu(da) + av(lel > Diull
Jz|<1 R

Now using the inequality [e*(*)—1| € |z(z)|, we find the above integral is majorised
by
12/ Tyulu(dz) < max [Tyul? [ |al?v(da)
1€5&n
o]t i1

and the result now follows from the fact that v is a Lévy measure.

A similar argument shows that H is a well-defined bounded self-adjoint op-
erator.

(b) Suppose T1,T5,...,T,, are all Borel functions of an unbounded self-

adjoint operator

T= i&/ 2Q(dz)
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so that each T; = g;(T) for 1 € j < n then we may follow the procedure of [3] and
define

U(t) = / Wi(9(=))Q(dz)
R

where W is as given by (5.7) and g(z) = (91(2), g2(2), ..., gn(2)) for z €R.
In either of cases (a) and (b) we can define the flow J as in (4.6) on a unital
+-subalgebra A of B(f5). We then obtain the representation

ja)=a+ ] oL3,((T*, a]) dBi(s)
(6.7) ‘

+ / Jo(W(@)aW(z)* — a) N (dz, ds) + / je(r(a)) ds
(R»\{0})x[0,?) 0

where the generator

(a) = ¥ (T}, 0] + 5013, T, o]

(6.8)

®~\{0}

1+| l2

Based on the analogy between (6.1) and (6.7) we call J a Lévy flow on A. It is
interesting to compare the form of the generator 7 in (6.8) with that considered
by Hunt in relation to convolution semigroups of measures on Lie groups [16] (see
also [10}).

Finally, we can construct a class of Lévy flows on .4 with infinitely many
degrees of freedom and bounded coefficients. For convenience we take n = 1.

We assume now that dimRanP({0}) = co and we write

{'Un, neN} ={UQ, nEN}U{wn, nEN})

and take {u,, n € N} to be a maximal orthonormal set in RanP({0}). We now
take for each n € N, W,, = exp(zT,.) to be a strongly continuous one-parameter
group wherein each 7, is a bounded skew-adjoint operator. In Theorem 4.4, we
take

LMO0)=T,, neN

LN z)=Wa(z)—I, neEN, z#0
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then we can assert unitarity of solutions to the equation

Ut) =1+ i /U(S)Tn d B (s)

(6.9) .
+ / U(s)(W, — I)Nﬂ(dz,ds)+/(/(s)m ds
=1 g x[0,6) 0
where each
Ba(t) = i(a(x[o,0y ® a) = af (x0,1) @ un))
Na(ds,dz) = AT(ds, P(dA)wn) + A(ds, P(AN)) + A(ds, P(dN)wp)
and
(6.10) M=iH + %ng + /(cos(a:Tn) — D||P(dz)w,|)?

n=1 C.

where H is a self-adjoint operator in $g.

The required flows may now be constructed by unitary conjugation in the

usual way.
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