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ABSTRACT. An A group I' acts simply transitively on the vertices of an
affine building A. We study certain subgroups I's 2 Z? which act on certain
apartments of A. If one of these subgroups acts simply transitively on an
apartment, then the corresponding subalgebra of the group von Neumann
algebra is maximal abelian and singular. Moreover the Pukinszky invariant
contains a type I., summand.
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0. INTRODUCTION

Let T be a group acting simply transitively on the vertices of a homogeneous tree
T of degree n + 1 < co. Then, by [10], Chapter I, Theorem 6.3,

P2 - -xZxfo*-- %1y

where there are s factors of Z, ¢ factors of Z5, and 2s+¢ =n + 1.

We can identify T with the Cayley graph of I' constructed from right multi-
plication by the natural generators for ['. The action of I on T is equivalent to the
natural action of T on its Cayley graph via left multiplication. With this geometric
interpretation, certain geodesics in T arise as Cayley graphs of subgroups of I'.
That is, there are subgroups of I' which act simply transitively on geodesics in T.
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EXAMPLE 0.1. T = Z+Z,+Z, has generators a,b,c, and relations b? = ¢% = e.
Here T is a homogeneous tree of degree four. The Cayley graph of the subgroup
[y = {a) = Z relative to the generators a,a~! is a geodesic in T. The Cayley
graph of the nonabelian subgroup I'y = (b, ¢) = Z; * Z; relative to the generators
b, c is also a geodesic.

We denote by W*(T') the group von Neumann algebra of a group I'. It is
generated by the left regular representation of I' on {#(T'}). We regard W*(T') as
a convolution algebra embedded in {*(I') ([11], vol. II, 6.7). Then W*(I) = {f €
() : f +1*(T) C I*(1")}. If Ty is a subgroup of T then W*(I'g) may be identified
with the set of functions in W*(T') whose support is contained in I'y.

In the example above, W*(I'g) is an abelian von Neumann subalgebra of
W*(T). It is actually a maximal abelian subalgebra or masa. In fact it follows
from [14], Proposition 4.1 that it is a singular masa. (The definition will be given
later.)

The homogeneous tree T may be regarded as a one dimensional affine build-
ing of type ;1—1. Qur purpose is to generalize the above observations to the two
dimensional case where I' is a group acting simply transitively on the vertices of
an affine building A of type Ag. The building A is a chamber system consisting
of vertices, edges and triangles. Each edge lies on g + 1 triangles, where ¢ > 2 is
the order of A. An apartment is a subcomplex of A isomorphic to the Euclidean
plane tesselated by equilateral triangles (i.e. a Coxeter complex of type ,71’2).

An A, group can be constructed as follows ([6], I, Section 3). Let (P, L) be
a projective plane of order q. There are ¢ 4+ g + 1 points (elements of P) and
g2 +g+1 lines (elements of L). Each point lies on g+ 1 lines and each line contains
g+ 1 points. Let A : P — L be a bijection (a poini-line correspondence). Let T
be a set of triples (z,y, z) where z,y,z € P, with the following properties:

(i) Given z,y € P, then (z,y,2) € 7 for some z € P if and only if y and
A(z) are incident (i.e. y € A(z)).

(i) (z,4,2) €T = (y,2,z)€T.

(iil) Given z,y € P, then (z,y,z) € 7 for at most one z € P.

T is called a triangle presentation compatible with A. A complete list is given
in [6] of all triangle presentations for ¢ = 2 and ¢ = 3.

Let {a; : € P} be ¢? + g+ 1 distinct letters and form the group

I'={as,z € P|azaya, = efor (z,y,2) € ’T).

The Cayley graph of I' with respect to the generators a.,z € P, and their
inverses is the 1-skeleton of an affine building of type As.
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It is convenient to identify the point z € P with the generator a, € I'. The
lines in L correspond to the inverses of the generators of I' according to the point-
line correspondence: a(;) = a;! for z € P ([6]). We may therefore write 2=* for
a;! and identify z=! with A(z). From now on we use the concise notation z and
A(z) instead of a; and ay(s) respectively. It is important to note that 7 can be
recovered from I' :

7 ={(z,y,2) : z,y,z € P and zyz = e}.

This implies that if z,y € P then y € A(z) if and only if zyz = e for some z € P.

Any element g € T'\ {e} can be written uniquely in the left normal form
g=a7'z;t ety e
where there are no obvious cancellations and z;,y; € P, 1 £ i < m1 £ ;7 £
n (4], Lemma 6.2). The absence of “obvious” cancellations means that z; ¢
Mzigr) (A€<i<m), yjp1 & My;) (1 €7 < n), and £ # 1. Also any such
word for g is a minimal word for g in the generators € P and their inverses ([4],
Lemma 6.2). We write |[g| = m + n. An exactly analogous statement is true for
the right normal form for g in which the inverse generators are on the right of the
word ([6], I, Proposition 3.2). We shall use these facts repeatedly. The reader is
referred to [11] for background information on von Neumann algebras and to [2],
[22] for buildings. Operator algebras associated with Ao buildings are studied in
[21] and [20]. S. Mozes ([13]) has also been concerned with automorphism groups
of affine buildings and corresponding actions of Z2 on apartments.

From now on, unless otherwise stated, ' will denote an Ay group with asso-
ciated projective plane of order ¢ = 2, and A will denote the corresponding affine
building whose vertices are identified with the elements of I'. The following result
shows that W*(T') is a factor ([11], Theorem 6.7.5).

LEMMA 0.2. T is an i.c.c. group. That is, each conjugacy class in I, excepl
for {e}, is infinite.

Proof. Let g € T'\ {e}. Assume that g has left normal form

g=zrteyt ety un
where m,n > 1. (If m = 0 or n = 0 the argument is simpler.) Thus [g| = m + n.
We may choose z € P such that z ¢ A(z1) and z ¢ A(yn). This is possible because
there are ¢+ 1 points on each of the lines A(z1) and A(y,). Since there are g?+¢+1
points altogether, and ¢% + ¢+ 1 > 2(q + 1), we may choose a point z not lying on

! L.oz7'yys Ymz is in left normal form.

either of these lines. Then 2z~ 'a7'z;
It follows that |z~ 1gz] = |g| + 2. Repeating the process, we see that the conjugacy
class of g contains a sequence of elements of length |g|+2n,n = 1,2,... and hence

is infinite.
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The Az groups have Kazhdan’s property (T} ([5], Theorem 4.6). It is there-
fore particularly interesting to investigate how properties of such groups I' are

reflected in the structure of W*(I'), in view of the following rigidity conjecture of
A. Connes ([7], V.B.¢).

CoNJECTURE. If 'y and T’y are i.c.c. groups with property (T) and T is
not isomorphic to I's, then W*(I';y) is not isomorphic to W*(T'z).

1. SOME ABELIAN SUBGROUPS OF A; GROUPS

Recall that an apartment is a subcomplex of A isomorphic to the Euclidean plane
tesselated by equilateral triangles. An abelian subgroup of I' which acts simply
transitively on an apartment will be the analogue of the subgroup Z in the tree case
(Example 0.1). In the Ay case, such an abelian subgroup I'g necessarily contains
three distinct elements a, b, c of P. We begin by elucidating the structure of T.

LEMMA 1.1. Ifz,y € P, 2 # y and zy = yz then zyz = e, where {z} =
Mz) N A(y). Moreover z € A(y) and y € A(z).

Proof. Suppose that zy = yz. Then the left side of the equation y~lzy = z
is not in left normal form, by the uniqueness assertion of Lemma 6.2, [4]. Since
y # =z it follows that y € A(z). Thus zyz = e for some z € P. The fact that
yzz = e then shows that z € A(y). It is also clear from these equations that
z€Mz)NA(Y) 0

LemMa 1.2. Let a,b, ¢ be distinct muiually commuting generators in P.
Then abc = e and Ma) N A(b) = {c}.

Proof. By Lemma 1.1 we have abz = e, where {z} = A(a) N A(b). Since
ac = ca, the same lemma shows that ¢ € A{a). Since bc = cb, we also have
¢ € A(b). Therefore z = ¢, which proves the result. a

REMARK 1.3. It follows from this result that a set of pairwise commuting
elements in P can have no more than three elements.

LEMMA 1.4. Let a,b,c be distinct mutually commuling generators in P.
Then the subgroup Ty = {a,b,c) of I' is isomorphic Lo Z?. The Cayley graph
of Ty relative to the generators a,b,c and their inverses is the I-skeleton of an
apartment in A\,

Proof. By Lemma 1.2, abc = e. Therefore an isomorphism 8 : {a, b} — Z? is
defined by 6(a) = (1,0), 6(b} = (0,1), 6(c) = (—1,—1). The vertices adjacent to e
in the corresponding Cayley graph are labelled as in Figure 1. 1
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Figure 1. The star of ¢ in the Cayley graph of Z2.

REMARK 1.5. There are many examples of such subgroups. For example,
the groups (4.1), (5.1), (6.1), (9.2), (13.1), (28.1) in the tables at the end of [6]
contain such subgroups. (However there are no examples when ¢ = 2.)

Note that each element g of the group (a,b,¢) has left (right) normal form
g=2z"*%y (= '2~%) where z,y € {a,b,c}, k,i{20and z £ y.

LEMMA 1.6. Leta,b€ P withab®> = e. Ifa # b then (a,b) = Z and Cayley
graph of the group (a,b) relative to the generators a,b and their inverses is an
infinite sirip in an apartment of A. If a = b then {(a,b) = {a} is cyclic of order
three and the Cayley graph is a triangle.

Proof. If a # b, an isomorphism 8 : {(a,b) — Z is defined by 6(a) = 2,
6(b) = —1. It is easy to verify the remaining assertions. #§

REMARK 1.7. Lemma 1.6 is a degenerate analogue of the Lemma 1.4. The
case when Ty = Z and the Cayley graph is an infinite strip occurs for subgroups
of many of the groups given explicitly in [6]. For example, the groups (B3) (where
¢ = 2) and (9.3), (38.1), (63.1), (64.1) (where ¢ = 3). A counting argument ([6],
11, Section 3) shows that if ¢ is divisible by 3 then I has a generator of order three.

REMARK 1.8. In the case of a group T acting simply transitively on the ver-
tices of a tree there may exist a nonabelian subgroup of I' (necessarily isomorphic
to Zy +Z3) which acts simply transitively on a geodesic in the tree. In Example 0.1
the Cayley graph of the subgroup (b,¢) = Z % Z relative to the generators be
and their inverses is a geodesic in the tree.
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Analogously, a nonabelian subgroup of an A, group can act simply tran-
sitively on an apartment. There are two examples. One is the Dyck group (or
triangle group)

T(3,3,3)=(z,p,z|2°=e, P =¢, 22 =, zyz =¢).

7'(3,3,3) is a subgroup of index 2 of the Coxeter group W of type Ag. In fact
T(3,3,3) is the rotation subgroup of W consisting or words of even length in the
canonical generators of W ([12], I1.3 and 11.4).

The other possibility is the amalgam

Zxzl=(yz|y’=2")=(a,y,z| 2y’ =2 =¢).

This is the nonabelian Bieberbach group in two dimensions, namely the funda-
mental group of the Klein bottle ([3], Chapter 1). The Cayley graph of each of the
groups T'(3,3,3) and Z %z Z relative to the generators z,y,z and their inverses is
the 1-skeleton of the Coxeter complex of type sz,

Many of the A5 groups enumerated in [6] contain triples of generators which
generate a subgroup isomorphic to one of these groups. Detailed enumeration of
the possibilities shows that the groups Z?, presented as in Lemma 1.4, and the
groups T(3,3,3), Zxz Z, presented as above, are the only possible subgroups of an
.Zg group which can act simply transitively on an apartment.

More precisely, let T be a group of automorphisms of a Coxeter complex of
type Ay which acts simply transitively and in a type rotating way on the vertices.
Then the generators satisfy relations of the form zyz = e and the 1-skeleton of the
Coxeter complex is the Cayley graph of I'. There are three generators a,b,c and
the neighbours of ¢ lie as shown in Figure 2, where {g1,92,93} = {a~1, b7, ¢ 1}.

)1 a

g2 c

Figure 2. The star of e in a Coxeter complex.
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There is a relation of the form zyz = e if and only if yz = 7!, that is y is
adjacent to z~! in the graph. We now have a degenerate version of [6], I, Section 3.
Namely, the link of e is the incidence graph of a geometry with set of points
P = {a,b,c} and set of lines L = {a~1,5~!,c™'}. Moreover, y € 27! <= zyz =,
for some generator z. There are essentially three cases : (g1, 92, g3) is one of the
triples (c™, a1, 67 1), (a1, 571, ¢71), (571, a1, c71). Detailed enumeration of the
possibilities shows that each geometry gives rise to exactly one group whose Cayley
graph tesselates the plane by equilateral triangles. The groups are respectively Z?,
T(3,3,3), and Z #z Z. Tt is instructive to sketch the labelled Coxeter complex in
each case. These groups may be regarded as degenerate A, groups corresponding
to a degenerate projective plane (P, L) of order ¢ = 1.

We now consider a much more general situation. The apartment of Lemma 1.4
which is spanned by two commuting generators of T is an example of a periodic
apartment. An apartment A4 in A is doubly periodicif, when regarded as a copy of
the Euclidean plane tesselated by equilateral triangles, with directed edges labelled
by generators of T, it has two independent periodic directions. This means that
the edge-labelled apartment is invariant under an action of Z2 on .4 by translation.
This definition depends on the choice of the group I' acting on A.

This concept coincides with that of a rigidly periodic apartment in the sense
of {20]. (See [20], Lemma 2.10.) A rigidly periodic limil point w € Q is a boundary
point of a rigidly periodic apartment. It is important to note the elementary fact
that each doubly periodic apartment is uniquely determined by any one of its
sectors ([20], Lemma 2.4}

Now let A be a doubly periodic apartment, and assume that A contains
the vertez e. By double periodicity of the apartment we can choose independent
periodic directions in .A. This means that there are vertices u,v such that the
edge-labelling of the apartment is identical when viewed from each vertex u™, v™,
m,n € L. Then u™ A = A, v*"A = A and left multiplication by u™v" defines
a periodic action of Z2 on A by translation. The period group T'o of a periodic
apartment 4 containing e is the abelian subgroup of I' consisting of all vertices
of the apartment which are periodic directions in the above sense. Clearly I'p is
isomorphic to Z2. By analogy with the tree case, one would expect W*(T'y) to be
a masa of W*(T).
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2. MASA'S OF W*(I)

Suppose that I'q is a maximal abelian subgroup of a countable discrete group T'.
Suppose furthermore that the following two conditions are satisfied:

(D) X Tozo CyyTo I - U y,Tg, where vy, ...,y. € T, then Tozo = y;j Lo for
some j.

(IT) If ¢ is an automorphism of Ty which fixes pointwise some finite index
subgroup K < Iy, then ¢ is the identity automorphism of Tg.

Conditions (I) and (II) are quite different in nature: condition (J) depends
on how I'y lies in T, while condition (II) is a purely algebraic condition on Tp.

PROPOSITION 2.1. Under the above hypotheses, W*(T'p) is a masa of W*(T).

Proof. Let u € W*(T'g)’ be unitary. Suppose that zo € supp u. We show
that 29 € I'y. This will prove that u € W*(Ty).

For go € 'y we have bgo * 1t *‘630.1 = u.

Therefore u(gozogy') = u(zo). Since u(zo) # 0 and u € (), the set
{ggzogo_l : go € To} is finite. Write its elements as yi,...,¥, and if necessary
delete repetitions which define the same cosets in I'/Tq. Then Tpzo C yiToll---1
ynTo.

By condition (I), Fozo = y; Ty for some j. Now Y = go:cogal for some gp €
To. Thus Fozo = gozelo. In other words, Tgzo = zo'y. That is on‘ozal = Iy.
We may therefore define an automorphism ¢ of I'g by ¢(go) = xgggxgl. Then for
each go € T ¢(g0)zo = Zogo and so u(zo) = u(gy *zogo) = ulgg (go)zo).

Again, since u(zo) # 0 and u € {?(T), it follows that the set {95 w(go) :
go € To} is finite. Let K = {go € Tg : ¥(g0) = go}. Then K is the kernel of the
homomorphism go — g5 '¢(gg) on Ty, which has finite range. Therefore I'y/K is
finite. Thus ¢ fixes the finite index subgroup K < Iy.

It follows from condition (II) that ¢ is the identity automorphism of I'y. This
means that #ggo = gozo for all gy € T'y. Since we assumed that 'y is a maximal
abelian subgroup of T, it follows that z¢ € I'q. This proves that v € W*(I'g) and
hence that W*(I'y) is a masa of W*(T').

LEMMA 2.2. Fiz C >0 and let S and S’ be seclors (Weyl chambers) in an
effine building. Either S and S’ share a common subsecior, or S has a subsector
all of whose points are at distance > C from S'.

Proof. Choose subsectors S; and S} of S and S’ respectively which lie in
a common apartment ([22], Chapter 9, Proposition 9.5). If §; and S} point in
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the same direction, then they have a common subsector, which is also a common
subsector of S and 5’.

Otherwise, fix a finite C; > 0 so that d(v,8]) < C) for any v € §' ([22],
Chapter 9, Lemma 9.2). Choose a subsector Sy of 51 all of whose points are at
distance > C + C) from S{. Then those points are zll at distance > C from S’. #

LEMMA 2.3. Let ' be an Ay group and A a doubly periodic apartment in
the corresponding building. Suppose that there exist yy,...,yn € I such that the
Hausdorff distance from A to n AU - Uy,A is finite. Then A coincides with
some y;.A.

Proof. Take a sector S in A. Write each of the apartments y; A as a finite
union of sectors S’. Suppose that 5 does not have a subsector in common with
any of those sectors 5’. Fix C > 0. By Lemma 2.2, some finite intersection of
subsectors of S has all its points at distance > C from 11 AU - - Uy, A. A finite
intersection of subsectors of S is nonempty (in fact, another subsector) so this
contradicts the main hypothesis.

Now we know that for some j the doubly periodic apartments A and y;. A
have a common subsector, and therefore that they coincide. 1«

LEMMA 2.4. Assume that Ty = Z? is a subgroup of the period group of a
doubly periodic apartment A containing the vertez e. Then conditions (I) and (II)
hold. If, furthermore, Ty is the full period group of A, then Ty is a mazimal abelian
subgroup of I'.

Proof. (I) Suppose that Tozg C y3 T II --- I y,Tp, where y1,...,y, € T.
Then the Hausdorff distance d{I'g, 1 To II -+ Il yaTg) < |z0| and so there exists
C > 0 such that '

d(A,pALL-- Uy, A) < C.

It follows from Lemma 2.3 that Toxo = y;Tg.

(I1) Let K be asubgroup of I'g = Z2. There is a basis {e1, ez} of I'g such that
K = (ef*| e}). If K has finite index, then m # 0,n # 0. If ¢ is an automorphism
of T’y which fixes K pointwise, then since Iy is torsion free, ¢(e1) = e1, p(e2) = ea,
and so ¢ is the identity automorphism of X.

Now assume that 'y is the full period group of A and suppose that an element
g € I’ commutes with ['y. We must show that ¢ € T'y. If go € Ty then ggo = gog
and so d(ggo, g0} < |g]. Thus

d(glo,To) < |g].
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Therefore there is a constant € > 0 such that
d(gA,A) £ C.

It follows from Lemma 2.3 that gA = A. The elements of I'y are vertices of the
apartment A and since g commutes with I'o, g acts on I'y by translation. Hence g
must act on A by translation, rather than rotation or glide-reflection. Thus g is a
period of the apartment .4 and so g belongs to y. &

COROLLARY 2.5. Assume that Ty is the full period group of a doubly periodic
apartment A coniaining the vertex e. Then W*(DIg) is a masa of W*(T).

REMARK 2.6. It was shown in [4], Section 6 that the weak closure of the
algebra of biradial functions on I is a masa of W*(I').

DEFINITION 2.6.1. If A is an abelian von Neumann subalgebra of a von
Neumann algebra M then the normalizer N(A) is the set of unitaries  in M such
that u”Au = A. The subalgebra A is called regular (or a Cartan subalgebra) if
N(A)" = M. 1t is called singular if N(A)' = A.

Regular masa’s are easy to construct from the classical group measure space
construction in which M is the crossed product of an abelian von Neumann algebra
A by a discrete group G which acts ergodically on A. Then A is a regular masa
in M. It is more difficult to construct singular masa’s. See [18] and [1] for recent
examples. The masa of biradial functions on an A, group has been studied in (5].
The authors have convinced themselves that this masa is singular. Singularity has
been proved in [18] and [1] for certain masa’s of radial functions, in the context of
trees and similar rank 1 structures.

LEMMA 2.7. Suppose that I' is a maztmal abelian subgroup of a countable
discrete group I'. Assume in addition o conditions (1) and (I1) that no element of
'\ Lo normalizes Tg. Then W*(Iy) is a singular masa of W*(T').

Proof. Let u € W*(T') be a unitary satisfying u*W*(Tg)u C W*(Ty). Sup-
pose that zo € supp u. We must prove that zg € T'g.

There are only a finite number of cosets yI'y such that [Jujyloll2 = |u(zo)l-
Call them 31T, ..., yaTo. We claim that Tozo C 3ol - -- Uy, Tg. To prove this,
note that if z € T'o then u~! x§, xu = f € W*(I'p) is unitary. Therefore

lu(zo)| = |(8: * ul(zz0)| = |(u * f)(2z0)|
< [[(w* f)lzzoToll2 = ||u|zzoTo * fll2 = f|ulzzoTo]|2.

(The last two equalities are valid because supp f C 'y and f is unitary.) This
shows that zzg € y, o I - -- Il y, Ty, as claimed above.
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Suppose that zq ¢ To. It follows from condition (I) that I'yzq = y;T'p for
some j. In particular zo € y;I'y, and so #¢T'p = y; Ty = Tozg. Thus xo’lI‘o:co =Ty
with z¢ ¢ I'g, contrary to the assumption of the lemma. This contradiction shows
that W*(Ty) is singular. &

THEOREM 2.8. Let a,b,¢ be distinct mutvelly commuting generators of an
Az group T and let T = (a,b,c) = Z%. (See Lemma 1.4.) Then W*(Iy) is a
singular masa of W*(T').

Proof. Note that the elements of T'y are the vertices of a doubly periodic
apartment A. According to the preceding results, we need only show that no
element of T'\ 'y normalizes I'y. Let g € T satisfy glgg~! = I'y. I go € I'g then
990 = gog for some gy € T and so d(ggoe, g5) < |g9]- Thus

d(gF0| Fﬂ) £ Igl'

In other words,
d(gA, A) < |g.

It follows from Lemma 2.3 that g4 = .A. Since the elements of ['y are the vertices
of the apartment A, this means gTq = T'y. Therefore g € 'y, as required. &

REMARK 2.9. Suppose that Iy is the full period group of a doubly periodic
apartment 4 containing the vertex e, as in Corollary 2.5. Then the masa W*(Ty)
of W*(I') may be nonsingular.

For example in the group (B3} of [6] there exist generators a, b, ¢ satisfying
ab® = ac® = ¢. Let ['g = (a, be) = Z2. It is a subgroup of the group {a, b, ¢) = Z+zZ
whose 1-skeleton is the Cayley graph of an apartment A. (See Remark 1.8.)

Then Ig is the period lattice of .4 and so W*(I'g) is a masa. However b ¢ Tp
and b normalizes I'y. For bab~! = ¢ € Ty and b(be)b™ = b1 = cb?~! = cb =
a~(bc)~ta~! € I'g. Therefore W*(I'y) is not singular.

REMARK 2.10. An A, group I' has Kazhdan’s property T' ([5]}. It therefore
follows from [15], Corollary 4.5 that W*(I') contains an ultrasingular masa A.
This means that the only automorphisms of W*(I'} which normalize A are the
inner automorphisms implemented by unitaries in A. We do not know whether
the masa’s we have been considering are ultrasingular.

REMARK 2.11. H. Yoshizawa has given an explicit decomposition of the
regular representation of the free group on two generators into two inequivalent
families of irreducible representations. These representations are induced from
characters on the abelian subgroup generated by one of the generators. See, for
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example [19], Chapter 19. Our results may be re-interpreted to give a two di-
mensional analogue of Yoshizawa’s construction. For example, if ', Ty are as in
Theorem 2.8, then Ty 2 T2 and we have a direct integral decomposition
@
IXr) = /Inanxdx.
Tﬁ

Since W*(I'g) is a masa of W*(I'), it follows that the induced representation Indgo X
is irreducible for almost all characters x € Ty ([9], Section 8.5).

3. THE PUKANSZKY INVARIANT

Let A be a masa of a type 11, factor M. Suppose that M acts in its standard repre-
sentation on the Hilbert space L2(M), which is the completion of M relative to the
inner product defined bj;' the trace on M. Denote by L the left regular representa-
tion of M on LZ(M) defined by L.y = zy, and by R the anti-representation defined
by Ry = yz. Let A be the (abelian) von Neumann subalgebra of B(L?(M)) gen-
erated by L4 and R4. A result of Popa ([16], Corollary 3.2) asserts that if A is a
regular masa then A is a masa of B(L?(M)). Let p; denote the orthogonal projec-
tion of L?(M) onto the closed subspace generated by A. Then by [16], Lemma 3.1,
p; is in the centre of A’ and A’p, is abelian. The Pukanszky invariant is the type
of the (type I) von Neumann algebra A'(1 — p;)}. It is an isomorphism invariant
of the pair (A, M), since any automorphism of M is implemented by a unitary
in B(L?(M)). The Pukénszky invariant has been computed for some particular
examples in (17, [18], [1]. Popa showed that if A’(1 — p;) is homogeneous of type
I where 2 < n < oo then A is a singular masa ([16], Remark 3.4).

Now let T be a group and M = W*(T'). Then L%(M) is naturally identified
with {?(T') and L and R respectively become the left regular representation Lgdp =
dgn and the right regular anti-representation Ry6p = 84y .

Let 'y be an abelian subgroup of I' such that A = W*(I'p) is a masa of
M = W*(T). Then A = (Lr, U Rr,)"”. Denote by D the set of double cosets
D =Tl € [y \ /Ty which have the property that

3.1 g 'TogN Ty = {e}.

Note that this condition depends only on the double coset Fagl'g and not on the
representative element g.

For each D € D let pp denote the orthogonal projection from {%(T') onto
12(D). Since {?(D) is invariant under Lr, and Rr, it follows that pp lies in the
commutant A’ of A.
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LEMMA 3.1. IfC,D € D and C # D then the projeciions pc, pp are
mutually orthogonal and equivalent in A’

Proof. Let C = Tpely and D = [edly, where ¢,d € T, and assume that
C # D. Define amap ¢ : C — D by p(ucv) = udv for u,v € I'q. The condition
(3.1) ensures that ¢ is a well defined bijection. Moreaver

p(uk) = up(k), @(kv) =pk)r foru,veTlq, k€ C.

Define a partial isometry s on {*(T') by

56y = {%w) ifkeC,
0 otherwise,

Then s*s = po and ss* = pp. We must show that s € A’.
If k € C and u € I’y then

Lysb, = Luéq,(k) = 5u¢(k) = 5|p(uk) = sbyr = sLy 6.
If k ¢ C and u € Ty then uk ¢ C and
Lysé, =0 =sL, ;.

It follows that L,s = sL, for each u € ['y. Similarly R,s = sR for each u € I'y.
Therefore s € A’, as required.
It is clear that p¢, pp are mutually orthogonal, since CND =0. 1

LEMMA 3.2. If D =T'qdly € D whered € T, then pp is an abelian projection
tn A'.

Proof. (cf. {17], Lemma 4) By (3.1) the map (z, y) — zdy defines a bijection
from Ty x [y onto D. Define a unitary operator U : {3(D)} — 1?(To x o) by
(Uf)(z,y) = f(zdy). Then for 21,z € 'y and f € I*(D),

(ULs, Rey f)(2,9) = f(27  wdyz; ') = (UF) (27 2, 927)).

Thus UL, R,,U~! = A,, P,, where the operators on the right hand side are
defined on {#(T'y x To) by (A, f)(z,y) = f(z~'z,y) and (P, f)(z,y) = f(z, 27 y).
Therefore App is spatially isomorphic to the subalgebra of B(1?(I'g x I'g)) generated
by the operators A, and P,, for z € I'y. Taking Fourier transforms, this algebra is
itself spatially isomorphic to the algebra L™ (fo X fo) acting by multiplication on
L2(To x Ty). The latter algebra is maximal abelian ([11], vol. I, Example 5.1.6)
and hence App is maximal abelian on 1?(D). It follows that pp.A’pp is contained
in App and so is abelian. In other words pp is an abelian projection in A’. 1
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LEMMA 3.3. Let T be an Ay group and Ty the abelian subgroup generated by
three distincl commuting elements a,b,c € P. Then the sel D is infinite. That ts,
there ezists a sequence {gn} of elements of I' such that:

(i) 97 Togn NTo = {e} forn=1,2,...;

(ii) TogrTo NTogsTo =@ forr #s.

Proof. By Lemma 1.2 we have A(a) N A(B) = {c}, A(d) N A(c) = {a} and
Mc)  A(a) = {b}. Hence

#FMa)UABYUA(e)) = (g+ D) +a+(g-1) =3¢

Since the total number of points in P is ¢ +¢+1 and ¢ +g+1 > 3¢ for ¢ > 2, we
can choose a generator z; € P with z; ¢ A(a) U A(D) U M(c). Of course this implies
in particular that z; ¢ {a,b,c}.

Now choose z; € P such that z; ¢ {a,b,c} U A(z1). This is possible since
#({a,b,c} UN21)) € ¢+4 < ¢® + ¢+ 1= #(P). By induction we can choose a
sequence 23,23, ... in P such that z;41 € {a,b,¢} U X(2;). Define gn = 2122+ 2n

Note that any element g € I'y has left normal form g = z~ %y where z,y €
{a,b,c}, k,1>0and 2z #y.

Suppose that (i) is not true. Then we can find an element

grleT ™y g = 25 ™2y5* € g7 'Togn N o

where z;,y; € {a,d,¢}, zi # %, mi,ni 20and m; +1n; > 0,i=1,2. This means
that
ol e T ™My ey 2 = 25T
where on each side of the equation at most one of the terms z;,y; is absent. With
or without such an absence, each side of the equation is in left normal form, which
contradicts uniqueness of left normal form. This proves (i).
In order to prove (ii), it is enough to show that if go € LogsTo, then r = 5.

—-m;

Suppose that g, = x7™ 71 gsz; ™?y5?, where z7 ™y}, z;™?y;? are elements of

T'o expressed as usual in left normal form. Then

—m ~mg n
21...zr:z1 ly’f‘zl...z‘z2 7y23

This implies
- R13 Rl 77
] Tz o zely P =Y AL 2Ty

Both sides are in right normal form, which is unique ([6], I, Proposition 3.2). Since
z; ¢ {a,b,¢} for any j, this implies that r = s. 1§
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COROLLARY 3.4. LetT be an A, group and I'y the abelian subgroup generated
by three distincl commuting elements a,b,c € P. (So that W*(I'y) is a masa of
W*(T), by Lemma 1.4 and Corollary 2.5.) Then the Pukdnszky invariant contains

a type I, summand.

Proof. Lemmas 3.1, 3.2 and 3.3 show that A’(1 — p;) contains an infinite

family of mutually orthogonal equivalent abelian projections. B

REMARK 3.5. Another consequence of Lemma 3.3 (i) is that W*(I'p) has no
nontrivial central sequences in W*(I'}. This follows from [14], Remark 4.2 (2).

The following result clarifies the situation in a general group T.

ProposiTiON 3.6. Let I be an arbilrary group and Ty an abelian subgroup
such that A= W*(Tq) is a masa of M = W*(T). Suppese that g~ TogNTo = {e}
for all g € T\ Ty. Let n = #(To \ T/Ty). Then A'(1 — p,) is homogeneous of
type I,.

Proof. By assumption we have D = I'\\I'/T'y. Lemmas 3.1 and 3.2 imply that
{pp : D € D} is a family of n {possibly n = co) mutually orthogonal equivalent

abelian projections in A’ with sum 1 — p;. This proves the result. 1

Proposition 3.6 does not apply when T is an Zz group. However it does de-
scribe the Pukanszky invariant for the abelian subalgebra generated by a generator

of a free group as in Example 0.1.

COROLLARY 3.7. Let I' = T'o « I'y where T'o = {a) = Z and Ty is any
nontrivial group. Then A'(1 — p1) is homogeneous of type I.

Proof. Choose b € I'1 \{e}. The double cosets ['qbI'g, [obablg, Fobabably, . . .
are pairwise disjoint. Therefore #(Tg \ I'/Tg) = co. Clearly ¢g~'Tog N T = {e}
for all g € '\ Ty. The result therefore follows from Proposition 3.6. 8
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4. LINE CENTRAL ELEMENTS

In this section we determine how many generators of I' can commute with a given
generator.

PROPOSITION 4.1. A generalor a € P commutes with at most ¢ + 1 other
generators in P\{a}. Moreover if a commutes with ¢+1 generalors z1,Z2,...,Z¢41
in P\ {a} then

(i) a ¢ A(a);

(i) {z € P:az = za} = {a} U A(a).

Proof. If a commutes with z € P\ {a} then z € A{a) by Lemma 1.1. The
assertion (i) is immediate, since the line A(a) contains ¢+ 1 points. If a commutes
with ¢ + 1 generators z1,2,...,2441 € P\ {a} then Aa) = {21,232,...,2¢41}
and assertions (i) and (ii) follow from this. 1

Suppose that a generator ¢ commutes with ¢ + 1 other generators. The
following terminology comes from the fact that the points on the line A(a) then
correspond to the generators which commute with a.

DEFINITION 4.1.1. If P is the set of generators of a triangle presentation
then an element a € P is called line ceniral if it commutes with ¢ + 1 elements of

P\ {a}.
REMARK 4.2. Examination of the tables given at the end of [6] suggest that
line central elements may be relatively rare. However they do exist. Here are some

examples.
(i) In the presentation (B.3) of [6], the generator ag is line central with
Aag) = {a1,a2,a4}. In this case ¢ = 2 and there are seven generators ag, ..., ag.

The relations involving ag are given by the following triples : (agaia1), (apazaz},
(aoasaq). This group acts on the building of PGL(3, Q2).

(ii) The presentation (4.1) of [6] has an unusually large number of line central
generators, namely a3,a7 and ag . In this case ¢ = 3. The line corresponding to
a3 is AM(az) = {as, a4,a7,as}. There are thirteen generators ag,...,a12 and the
relations involving a, are: (azasar), (aza7a4), (aza3a0), (azasasz). This group acts
on the building of PGL(3, Q3).

(iii) The presentation (5.1) of [6] has exactly one line central generator aj.

(iv) In the presentation (64.1) of [6], the generator a2 is line central. Again
g = 3. The building on which this group acts is not that of any linear group ([6]).

It may be significant that the groups which act on the building of
PGL(3,F,((X}))) do not appear to have a line central generator.
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PROPOSITION 4.3. If an element a € P is line ceniral and = € P then

z € Ma) <= a € A(z).

Proof. Suppose z € Aa). By Corollary 4.1, az = za. Also azy = e for some
y € P and so zay = e as well. It follows that a € A(z). :

Conversely, suppose that ¢ € A(z). Then zay = ¢ for some y € P. Therefore
ayz = e. This implies that y € A(a). By Corollary 4.1, ay = ya. Then yaz = ¢,
and so z € A(a) W

This research was supported by the Australian Research Council.

REFERENCES

1. F. Boca, F. RADULESCY, Singularity of radial subalgebras in IJ; {actors associated
with free products of groups, J. Funct. Anal. 103(1992), 138-159.
. K. BROWN, Buildings, Springer-Verlag, New York 1989.
. L.S. CHARLAP, Bicberbach groups and flat manifolds, Springer-Verlag, New York
1986.

4. D.I. CARTWRIGHET, W. MLOTKOWSKI, Harmonic analysis for groups acting on tri-
angle buildings, J. Austral. Math. Soc. Ser. {A) 56(1994), 345-383.

5. D.I. CARTWRIGHT, W. MLOTKOWsKI, T. STEGER, Property (T) and Az groups,
Ann. Inst. Fourier (Grenoble) 44(1993), 213-248.

6. D.I. CARTWRIGHT, A.M. MANTERO, T. STEGER, A. ZAPPA, Groups acting simply
transitively on the vertices of a building of type .Zz, LII, Geom. Dcdicata
47(1993), 143-166 and 167-223.

7. A. CONNES, Noncommutative Geometry, Academic Press, New York 1994.

8. J. DIXMIER, Sous anneaux abéliens maximaux dans les facteurs de type fini, Ann. of
Math. (2) 59(1954), 279-286.

9. J. DIXMIER, C*-Algebras, North-Holland, Amsterdam 1977,

10. A. FIGA-TALAMANCA, C. NEBBIA, Harmonic Analysis and Representation Theory
Jor Groups Acting on Homogeneous Trees, Cambridge University Press, 1991.

11. R.V. KapisoN, J.R. RINGROSE, Fundamentals of the theory of operator algebras,
vol. I, I1, Academic Press, New York 1986.

12. W. MAGNUS, Noneuclidean Tesselations and their Groups, Academic Press, New

York and London 1974.
S. MoZzES, Actions of Cartan subgroups, Israel J. Math. 90(1995), 253-294.
S. Pora, Orthogonal pairs of *+-subalgebras in finite von Neumann algebras, J. Op-
erator Theory 9(1983), 253-268.

15. S. PoPA, Singular maximal abelian *-subalgebras in continuous von Neumann alge-
bras, J. Funct. Anal. 50(1983), 151-166.

16. S. PoPA, Notes on Cartan subalgebras in Type I} factors, Math. Scand. 57(1985),
171-188.

17. L. PUKANSZKY, On maximal abelian subrings of factors of type I'l;, Canad. J. Math.
12(1960), 289-296.

18. F. RADULESCU, Singularity of the radial subalgebra of £(Fy) and the Pukdnszky
invariant, Pacific J. Math. 151{(1991), 297-306.

WD

13.
14.



334 Guyan ROBERTSON AND TIM STEGER

19

20

21

22

. A. ROBERT, Introduction to the representation theory of locally compact groups,
London Math. Soc. Lecture Note Ser., vol. 80, Cambridge Univ. Press, 1983.

. J. RAMAGGE, G. ROBERTSON, Triangle buildings and 111, ;2 factors, J. Funct. Anal.
140(1996), 472-504.

. G. ROBERTSON, T. STEGER, C*-algebras arising from group actions on the boundary
of a triangle building, Proc. London Math. Soc. (8) 72(1996), 613-637.

. M. RONAN, Lectures on Buildings, Perspectives in Mathematics, val. 7, Academic
Press, 1989.

GUYAN ROBERTSON TIM STEGER
Department of Mathematics Istituto di Matematica e Fisica
University of Newcastle Universita di Sassari
NSW 2308 via Vienna 2
AUSTRALIA 07100 Sassari
ITALIA

Received December 3, 1995; revised August 7, 1996.



