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1. INTRODUCTION

It is well known, see Kato ({8]), Theorem I1.5.16 and p. 568 that simple eigenvalues
of a (finite dimensional) matrix operator are differentiable functions of the coeffi-
cients. In [10] and [11] Kong and Zettl, see also Dauge and Helffer ([2]), showed
that the simple eigenvalues of Sturm-Liouville problems are differentiable func-
tions of the problem data and found the derivatives. This was extended to higher
order boundary value problems by Kong, Wu and Zettl in [9]. Dauge and Helffer
([3]) also investigated a corresponding problem for partial differential operators.

In this paper we establish the differentiability of the simple eigenvalues of
Fredholm operators in Banach spaces and find the derivatives. QOur proof is based
on the theory of these operators as expounded in the book of Mennicken and
Moller ([13]). The proofs in {9], [10] and [11] are elementary in the sense that they
depend primarily on the basic theory of differential equations.
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To illustrate the wide range of applications of our abstract results we give
examples from linear algebra, ordinary differential equations and partial differen-
tial equations. Since these are for illustrative purposes only no effort was made
to make them very general. On the contrary, simple results were chosen to avoid
technicalities. Our result covers: self-adjoint problems, non-self-adjoint problems
(real and non-real eigenvalues), separated boundary conditions, coupled boundary
conditions, A-independent and A-dependent boundary conditions, scalar problems,
systems of differential equations, etc.

Finally we point out that in the applications we need relatively little infor-
mation about eigenfunctions, fundamental systems, Green’s functions etc. once we
have established that the corresponding operator function is Fredholm valued. Of
course, in order to show this, fundamental systems, Greens’ functions etc. may be
needed. But Fredholm properties of both ordinary and partial differential opera-
tors are well known and have been extensively investigated.

2. OPERATOR FUNCTIONS AND THEIR EIGENVALUES

Let £ and F be Banach spaces. We denote the space of bounded linear operators
from E to F by L(E,F) and the space of Fredholm operators in L(E, F) by
®(E, F). Recall that an operator V € L(E, F)is a Fredholm operator if and only if
its null space N (V') is finite dimensional and its range R{V) is finite codimensional.
Let © be an open nonempty subset of C. An operator funclion S : Q —
L(E, F) is called holomorphic in  if for each Ag € € it has a representation

S(A) = i(a — Ao} S;

=0
which converges in the norm of L(E, F) for ) in a neighborhood of Ao. Then S is
differentiable on £, and its derivative is denoted by S’. The resolvent set of S is

defined by
p(S) :={A€Q:5())"! € L(F, E) exists}.

Its complement (S} = 2\ p(S) is called the spectrum of S.

DEFINITION 2.1. Suppose that Ao € Q, S(Xo) is a Fredholm operator,
dim N(S(Xo)) = 1, and S(A) is invertible in a pointed neighborhood of Ag. Then
Ao is called an isolaled simple eigenvalue of S if there are u € N(S(Xo)) and
v € N(S(Ap)") such that

(2.1) {S'(Ao)u,v) = 1.
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Here (-, -) is the bilinear or sesquilinear form in the dual pair (F, F*). The pair
(u,v) is called a biorthogonal system of eigenvectors of S and 5 at Ag.

PROPOSITION 2.2. Let §:Q — ®(E, ) be holomorphic in Q and let Ay be
an isolated point of 0(S). Then Ay is an isclated simple eigenvalue of S if and
only if there is a a biorthogonal system of eigenveciors (u,v) of S and S™ al Ao
such that

(2.2) () - A__—lhu ®v

is holomorphic in a neighborhood of Ag, where

(u @ v)(w) = (w,v)u, weF.
Proof. See [13], Section 1.7. &

Throughout this paper we assume that the operator function T : @ —
L(E, F) is holomorphic. For an operator K € L(E, F') we write

(2.3) T(K)(N) = T(\) + K.

THEOREM 2.3. Let Ko € L(E, F) and A(Ko) € Q such thet T(Ko)(M(Kp)) €
O(E, F) and MKg) ts an isolated simple eigenvalue of T(Ko). Then there is o
neighborhood U of Ko in L(E, F) and a closed disk B(XMKq),€) in Q with center
M Ko) and radius € > 0 such that for each Ky € U there is ezactly one point A(K;)
of o(T(K1)) inside the open disk B(A(Ko),¢), and o(T(K1)) T =0, where T is
the boundary of B(A(Kp),e). The map X : U — C is continuous.

Proof. Since T(Ko)(A(Ko)) is a Fredholm operator, there is a finite codi-
mensional closed subspace M C E and a finite dimensional subspace N C F such
that

E = M+N(T(Ko)(MKo))), F = R(T(Ko)MEKo)))+N.

With respect to this decomposition we write
Tu(Kr)(A) Ti(K1)(A)
To1(K1)(X) T22(K1)()\))
: MAN(T(Ko)(MKo))) — R(T(Ko)(A(Ko))+N

T(K)(A) = (

for A € Q and K; € L(E, F). Since T11(Ko)(A(Ko)) is invertible and T, (f1)(A)
depends continuously on K and ), there are neighborhoods U = Us = {K; €
L(E,F) : |K1 — Ko < 8} of Ko in L(E, F) and B(A(¥q),€) with § > 0, ¢ > 0,
such that Ti1(K1)(}) is invertible for Ky € U and A € B(A(Ko),&). Then
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id [} [} 0
ClKa) ( R(T(Ko)(A(Ko))) | )
Tor (K )A)Y T (K)(A)™Y idw
and
id Ty {KD)A)) 12K A
D(K;,A):( M ( 11(‘ 1)(A) ™ T2( K1 )( ))
0 1N (T (Ko )(A(Ka)))
are invertible for K; € U and A € B(A(Ky),¢), and we have
T (K1) (A) 0 )
T(K1)()) = C(Ky, A D(Kq, ),
() = o, (I8 bk,

where
S(K1)(N) = Taa(Ka (X) = Toa (K )W) (T (K1 )(A)) ™ Ti2 (K1 )(A).

Thercfore it follows that (< )(A) is invertible if and only if S(K1)(A) is invertible.

Since A(Kp) is an isolated eigenvalue of T'(Ko), p(S(Kq)) # 0. This implies
that the dimensions of N(T(),){A(/)) and N must coincide, and with respect to
any bases of these spaces we can consider the determinant of S(i(;)(A). Therefore
T(K1)(X) is invertible if and only if det S(K;)(A) # 0. Moreover, an eigenvalue
Ag of S(Ky), and therefore also of T(/{1) via representations of the form (2.2), is
simple if and only if det S(K;) has a simple zero at Ay, see {13}, Section 1.8 or
[5], Section X1.9. Therefore the existence and uniqueness of A(K;) is proved if we
show that for each K} € U there is exactly one simple zero of det S(K,) inside
I' and no zero on I'. By choosing a smaller ¢, if necessary, we may assume that
det S(Kg){(A) # 0 for all A € I". Then, choosing § small enough, we may assume
that | det S(K; )(A)—det S(Kp)(N)] < |det S(Kp)(A)| for all A € T. Since det S(Ko)
has exactly one simple zero inside T', Rouché’s theorem yields that det S(K;) has
exactly one simple zero inside I'. Since for each sufficiently small ¢ > 0 we can

choose & > 0 such that the above is true, we have
MIELD) = MKl <e if |Ky — Ko| <8,

which proves the continuity. Repeating the above proof with Ky replaced by an
arbitrary Ky € U, the continuity of X on U follows. &
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THEOREM 2.4. Let the hypotheses and notalion of Theorem 2.3 hold. The
map A : U — C is differentiable at Ky, and the derivative is given by

(2.4) N(Ko)K = —(Ku,v), K €L(E,T),
where (u,v) is a biorthogonal system of eigenvectors of T(Kp) and T(Ko)* at
A Ko).

Proof. Let K; € U. From Proposition 2.2 and Theorem 2.3 we know that
for j = 0,1 there are operators @; € L(E, F') of rank 1 such that

TE)N - 55y

is holomorphic inside and on T, where I is defined in Theorem 2.3. From

3 PO = MEDNTRIN) ™ A = O - M)
T

and the resolvent identity

(TN =(T(Ko) W)= (T(K)N) ™ T (Ka) W) =T (K )N (Ko)(A) ™
= —(T(K1)(3)) " [K1 — Ko (T(Ko)(M) ™!

we infer

(AME1) — AMKe))Qo = (MK1) — M K)o — (A(K1) — AME1))Q:
= 2_:5 (,\(K1)—A)(T(Kl)(A))‘l[Kl - Kg](T(KD)(A))"1 dA.
r
Now note that
D(K1)(A) == (AM(K1) = MT(K)(A)~!

depends holomorphically on A inside and on T and converges on I uniformly in
norm to D(Kp)(X) as K; converges to Kq because of the continuity of the map A.
Therefore

(MK1) = A(Ko))Qo = % j{ D(Ko)NIK1 — Ko)(T(Ko)(A)~! dA + of|K1 — Ko|)
r

= —Qo[K1 — Ko]Qo + o | K1 — Kol)

since D(Ko)(AM(Ko)) = —Qo. Now observe that

Qo=u®v
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by (2.2) and
QoT'(MKo))u = {T"(MKo))u, v)u = u

by (2.1), which implies that

(T’(A(I{o))QoT'(A(I{D))u, vy =1
Hence
AK1) — AM(Ko) = —{T"(M(K0))Qo (K, — Ko)QoT (M Ko))u, v} +o(|K; — Kol),

which shows that ) is differentiable at K and that

N(Ko)K = —(T'(MK0))}Qo K QoT' (MK ))u, v)
= —{Ku,v),

since

QT (MKo)) v = (u, T'(MKo))"v}u =v. 8

We want to get a similar statement for the operator @G(X) given by

(2.5) (T(KYN) ™ = Q(K) + P(K) + O(X - M(K)).

1
X —XK)

THEOREM 2.5. Let the hypotheses and nolalion of Theorem 2.3 hold. The
map Q : U — L(F, E) defined in (2.5) is differentiable at Ky, and with Qg = Q(Ko)
and Py = P(Kjy), tts derivative is

Q,(KO)K = —QQI{PO - Pg.KQo, K € L(E, F)

Proof. Arguing as above we get

QUEL) = QKo) = Q1 = Qo =~ HIT(KN) ™ [Ks = Kol(T(Ka)(1)™ d
r "

= _%f(T(KG)(J\))"l[Kl—Ko](T(Ko)(A))‘l dA+o(| K, — Kol)
r
= =Qo(K1 — Ko)Po —~ Po(J1 — Ko)Qo + o [K1 — Kol).

This proves the differentiability and the above formula for Q'(Ko). ¥
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Theorem 2.5 does not give much information about the derivative since, in
general, we do not know much about P,. Due to the fact that Qg is a tensor
product of eigenvectors we could get some information about dependence of the
eigenvectors. However, since eigenvectors are not unique, we would need some
kind of normalization.

A more general question arises when the coefficients depend on A. Let us con-
sider polynomial dependence, i.e., we replace i by K(X), where X € (L(E, F))*+1,
K = (K% ..., K¥), and set

k
K\ =) MK
3=0

and
T(KYXN) =T+ K(A).

With similar notations as above we obtain

THEOREM 2.6. Let Ko € (L(E,F)**! and MKo) € Q such that
T(Ko)(A(Kp)) € ®(E, F) and A(Kp) is an isolated simple eigenvalue of T(Ko).
Then the map A : U — C is differentiable at Ky, and

N(Ko)K = —{(K(A(Ko))u,v), K € (L(E,F))**,

where (u,v) is a biorthogonal system of eigenvectors of T(Kp) and T(Ko)* at
A(Ky), i.e. particularly
(T(I{g)'()\([{o))u,v) =1.

Proof. The difference from the proof of Theorem 2.4 is that we mmust replace
K; by K;()). However, it is clear that in

k
Ky(A) = Ko(A) = Y _ N (K] — K§)

=0
we can treat each term )\j(K{ — Kg) as before, and the result follows. 1

EXAMPLE 2.7. Let £ = F = C" and A,B € M,(C), the set of n x n
complex matrices. Assume that A(A) is an isolated simple eigenvalue of A — AB.
Then there is a neighborhood U = {C € M,(C) : {|C — A|} < €} of A in M,(C)
and a neighborhood V = {} € C: |A — A(4}| < §} of A(A) in C such that for each
C € U there is exactly one eigenvalue A(C) of C —AB in V,themap A : U — C
is differentiable, and

M(AYD = v" Du, D € M,(C),

where (A — A(A)B)u =0, (AT — MA)BT )y =0,v" Bu=1.
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3. APPLICATIONS TO SYSTEMS OF ORDINARY DIFFERENTIAL OPERATORS

Let I = [a,b] be a compact interval and n a positive integer. Let Wi(a,b) be the
Sobolev space of all absolutely continuous functions on [a,b]. We define

D
)= (" V) E= Wb~ ey <€ = F

by
T’(Ny =y
and
D
ko) =18 ey - e nr < e
by

KP(\)y = (G+AH)y,
KRy = Ay(a) + By(b),
where G, H € M.(Li(a,b)) and A, B € M, (C). As in the abstract case we define

T(KYA) = T\ + K(3),

where K := (G, H, A, B) € (Ma(L1(a,b)})? x (M, (C))? =: £. Note that the latter
space is identified with a closed subspace of (L(E, F))?. It is well-known, see e.g.
{13], Section 3.1 or [12], (4.16), that T(K')(}) is a Fredholm operator with index 0.

THEOREM 3.1. Let Go, Hy € Mp(Li(a, b)), Ao, Bo € Mn(C), and lei M(Ky)
be an isolated simple eigenvalue of the corresponding operator T(Kyo). Then there
is a simple closed curve T with M Kq) in ils inlerior and e neighborhood U of
Ko € L such that for each Ky € U the operator function T(Ky)} has exactly one
simple eigenvelue A(K,) inside I'. The map A : U — C is differentiable al Ko,
and

b
N(Kg)K = —/vT[G+/\(Kg)H]ud:t:——dT(Au(a)-{-Bu(b)), K=(G H AB)eL,

a

where u,v € (W}(a,b))? are such that

u' + (Go 4 A(I{Q)Ho)u =0,
Agu(a) + Bau(b) = 0,
v = (Gg + MKo)Hyg Yo =0,

b
/vTHoud:c:l,
a



DIFFERENTIABLE DEPENDENCE 343

and where d € C" is such that

v(a) = AJd, w(b) =By d.

Proof. This follows immediately from Theorem 2.6 and the representation
of the adjoint operator function T(K)())*, see [13], Sections 3.3 and 3.4 or [12],
Section 4. @

4. STURM-LIOUVILLE PROBLEMS DEPENDING ON PARAMETERS
Here we apply Theorem 3.1 to the Sturm-Liouville problem
(4.1) ~(py') + qy = dwy

with two-point boundary conditions

(4.2) AY (a) + BY (b) = 0,

where ~00 < @ < b < oo, ’”

(Graw 4, B) =iw €2 1= (La(a, ) x (M(C),

()

Note that only 1/p # 0 a.e. corresponds to (4.1), but in order to be able to
differentiate, we do not require this condition for elements in . This is admissi-

and

ble if we work with the corresponding system considered below. When we write
(1/p,q,w, A, B) € Q, then we always understand this to include that p is defined
ae,ie 1/p#0 ae.

Since we are particularly interested in the selfadjoint case, we take here
sesquilinear forms instead of bilinear forms for the dual pairs. We also need the
adjoint differential equation

(4.3) —(p?') + Gz = MWz

and the corresponding solution vector
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Together with (4.1), (4.2) we consider the operator

' TP(w)(A) : "
T(w)(X) = ( TR(w) ) t(Wi(a,))? — (L1(a,8))* x C
given by
T2(W)A)Y =Y = (P - 2W)Y,
TR(w)y = AY(a) + BY (b),
where

) 0 L 0 0
P= Pl W= .
g 0 w 0

Note that, given an eigenvalue of (4.1), (4.2), its eigenfunction can be considered
in either the space Li(a,b) or Ly(a,b).

THEOREM 4.1. Let (1/po, g0, wo, Ao, Bo) = wp € Q and Mwp) be an tsolated
simple eigenvalue of (4.1), (4.2). Then there is a simple closed curve T' with A(wo)
in ils inlerior and a neighborhood U of wg € Q such that for each w, € U the
problem (4.1), (4.2) has ezactly one simple eigenvalue Aw,) instde T. The map
AU — C is differentiable at wg, and

b
Mooy = [{~pY7 +1a~ Muo)uly?) dz + (Y (@) + BY (1),

a

where w = (p,q,w, A, B) € Q, y, z are biorthogonal solutions of the given and the
adjoint boundary value problem ai A(wy), i.e.

— (po¥') + qov = Mwo)woy,
AoY (a) + BoY (b) = 0,

~ (Po2') + Tz = Mwo)Woz,
b

/woyid:c =1,

a

and where d € C" is such thal

Z(a) = EA}d, Z(b) = -EB.d

e=(1 %)

with
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Note that for Theorem 4.1 no self-adjointness hypothesis is needed: the coef-
ficients p, ¢ and the weight function w may be complex-valued and the boundary
conditions (4.2) need not be selfadjoint. The existence of infinitely many eigenval-
ues for non-self-adjoint Sturm-Liouville problems is well known for Birkhoff regu-
lar and Stone regular eigenvalue problems, see e.g. [1], p. 152 or [13], Sections 7.4
and 7.6.

Proof. For any skew-diagonal 2 x 2 matrix K we have EK*E* = —K, where
K is obtained from K by taking conjugate complex entries. Hence, if V solves the
adjoint system

V' (P — Mwo)W2)V =0,

then, for Z = EV, we have in view of E*E = I that

Z' — (Py — Nwo)Wo)Z = EV' + E(P} — Nwo)WS)V =0,

= ().
PoZ

where z is a solution of (4.3) for wg. Therefore we have in view of Theorem 3.1

1.e.

b
N(wo)w = — / Z*B(P = Mwo)W)Y dz + d*(AY (a) + BY (b))

/ (=p2PY'Z + [q — Mwo)ulyZ} dz + d* (AY (a) + BY (3))

if we observe that
V*WoY = Z*EWsY = —weZy. 1

Next asssume that (4.1), (4.2) is selfadjoint at wo, i.e., po, qo, Wo, are real
valued, (A, B) has rank 2, and AEA* = BEB*.

COROLLARY 4.2. Under the assumplions of Theorem (4.1) assume that (4.1),
(4.2) ts selfadjoint. Then

b
MN(wolw = /{~—|poy'|25—|- g — }\(wo)w]|y|2} dz + d*(AY (a) + BY (b)),
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where w = (p,q,w, A, B) € Q, y is a normalized solution of the given boundary

value problem at A{wg), i.e.

~ (po¥')' + qoy = Mwo)woy,
AgY (a) + BoY(b) =0,
b

/ wolyl? dz = 1,

a

and where d € C" is such that

Y(a) = EA}d, Y(b)=—EBLd.

Proof. In the selfadjoint case it is obvious that z satisfying {4.3) also satisfies
(4.1) (note that eigenvalues are real). And

Z(a) = EARd, Z(b)=—-EBjd
implies
AoZ(a) + BoZ(b) = (AoEA, — BoEBY)d =10. &

By taking only one of p, ¢, w, A, B different from zero in Theorem 4.1 or
Corollary 4.2, we obtain the formulas for the corresponding partial derivatives.
Taking in particular the case of dependence on A let us assume that Ap is

invertible. Then

d* = Z(a)*EA;?,

and it follows that

(4.4) MN(Ao)A = Z(a)* EA7* AY (a).
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5. SEPARATED BOUNDARY CONDITIONS

In this section we consider self-adjoint Sturm-Liouville problems with separated
boundary conditions. In this case all eigenvalues are simple. Since the coefficient
functions are not varied here, we omit the indices 0 at pg, 9o, wg. The normalized
form of the separated boundary conditions is

cosa —sina 0 0
Ap = , Bg= ]
0 0 cosf —sinf

with o, 8 € R. Since
AoAy+ BoBy =1, and EAd=Y(a), EBid = —Y(b)
in the notations of Corollary 4.2, it follows that
d = AyE*Y (a) — BoE*Y (b).
Hence
X (Aq, Bo)(A, B) = (Y(a)*EA; — Y(8)* EB})(AY (a) + BY (b)).

Now we fix 8 and consider Ay as a function of @. Then A(e) = A(y()), where X
is A from above and

(o) = (Ao(e), Bo).
The chain rule gives
X(a) = (Y(a)' EAj — Y (b)" EBy)AR(e)Y (a)
= —(Ap(@)Y{a})* Ap(a)Y (a)
= —|(sin @ y(a) + cos @ (py')(a)|?

since By Aj(a) = 0. Now note that cos a y(a) = sin a (py’)(a). Assumingsina # 0
we get
(py')(a) = cot ay(a),

and therefore

1
sin ay(a) + cos a (py')(a) = sine y(a) + cos acot e y(a) = my(a).

Hence

X (@) = —~——[y(a)[? = ~(1 + cot? a)[y(a)

sin” o

= —[ga)|* - [(py')(a)?,
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which is obviously also true in case sina = 0.

We can get a differential inequality for A which does not contain any implicit
terms if p 2 0, ¢ > 0 and 8 € [§, 7). Using the normalization and the differential
equation we have

[ b
Me) = [ M@ulyl do = [~y +ailgde
db a
(5.1) = [bly P+ alo) oz -y

b
= [l + dludz — () OFE) + (o) @@

If 8= mor =%, then (py')()7(b) = 0 in view of the boundary conditions at b.
If 8 € (5,7), then
(py')(6)F(b) = cot Bly(b)|* < 0,

and
Ma) 2 (py')(a)¥(a) = cot o |y(a)*.
From )
N(a) = |~ cota |3(a)l?]
it therefore follows that
2 T
’ > - o -
(@) 2 - grsNe)ifac (n, 2) ,
2 g
12 € L3 s
Ma) € sin(2a)'\(a) ifae (2 ,1r) .

6. COUPLED BOUNDARY CONDITIONS

In this section we consider self-adjoint Sturm-Liouville problems with coupled
boundary conditions. A canonical form of these boundary conditions is B = I3,
A = ¢¥K with ¢ € R and K € M3(R) such that det X = 1. Then we have
Z(a) = Y(a) in (4.4). In the remainder of this section we will always assume that
the chosen eigenvalues are simple.

We consider the particular case that

o= (7 3)
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where o varies in R and v is a fixed nonzero real number. An easy calculation
yields

X(a) = vl(py'a)I?,

which shows that all simple eigenvalues increase with o if ¥ > 0. As in the
previous section we can.get an explicit differential inequality for A. The boundary
conditions yield

(py)(B)F(b) = (py' }a)F(a) + avl(py () ?,
which together with (5.1) leads to
Ma) 2 —evl(py )(e))®
if p2 0 and ¢ 2 0. This gives the differential inequality

AMa) 2 —ad'(a).

7. DEPENDENCE ON THE ENDPOINTS OF THE INTERVAL

Now we consider the case that the eigenvalues depend on the endpoints of the
interval [a, b]. Since varying the points a, b changes the underlying spaces on which
the operators act, we first transform the problem to one in which we have a fixed
interval. Let —co < @3 < b; < 0o and set Up = {(a,0) € R? : a3 < a < b < b},
For (a,b) € Uy we consider the eigenvalue problem

(7.1) ¥ +(G+AIH)y =0,

(7.2) Ay(a) + By(b) =10

for y € (Wi(a,d))", where G, H € M,(Ly(a1,b;)) and A, B € M, (C) are fixed.
Now fix some (ag, bo) € Up. Introducing the transformation

”(e,)(z) = a0 + 22z~ a),
which maps the interval [a, b} onto the interval [ag, bo), (7.1), (7.2) is equivalent to

(7.3) (y on(a, b)) + (G + AH)(y o n{e, b)) = 0,
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(7.4) Ay(ag) + By(bg) =0

for y € (Wi (a0, b))". In view of (y o n(a, b)) = 4=21y/ o y(a,b), (7.3) can be
rewritten as

b—a

bo — ag

(7.5) Y + 2 (G o((a,b) + AH o {(a,B))y = 0,

where ((a, b) is the inverse of n(a, b):

¢(a,b)(z) = a+ bi — Zo (z — ao).

For later use let us note that ((a,?) is well-defined for all (a, b) € R2.
We now define

T= (T‘D) . (Wl](ﬂn, b)) — (Ll(ao,bo))" < C"

0
by
TPy=y
and
D a
K(a,b)(A) = (K (K’:)(A)) : (Wi (a0, 50))" — (L1(ao, ba))"™ x C"
by

b—a

KP(a, )Ny = —— [Go¢(a,b) + AH o ((a,b)]y,
K"y = Ay(ao) + By(bo).

Finally we set
T(a,b)(A) =T + K(a,b)()).

The Sobolev space W) (a,b) is the set of all absolutely continuous functions on
(@, b) with essentially bounded derivatives.

THEOREM 7.1. Lel G, He Mn(Wolo(dl,wbl)), Letl (ao,bo) € Up and /\(ao,bo)
be an tsolated simple eigenvalue of the operator T(ag,bo). Then there is a simple
closed curve I' with A(aq, bo) in ils inferior and a neighborhood U C Uy of (a0, 50)
such that for each (a,b) € U the operator function T(a,b) has ezactly one simple
eigenvalue A(a,b) inside T. The map A : U — C is differentiable at (ao, by), and

X(ao, bo)(e, B) = av(ao)” Go(ao)u(as) — Au(ba) T Go(bo)u(bo)
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for (@, B) € R?, where Go = G + Aao, bo)H, u,v € (W}(ao, bo))? are such that
u' 4+ Gou =0,
Au{ag) + Bu(bo) =0,
v —Gu=0,
[
fvTHu dz =1,

do

and there is some d € C" such that

v(a) = Ajd, v(b) = =B, d.
Before proving this theorem we state and prove an auxiliary result. Let
Iy C R be a compact interval, I; C R an open interval, and f € W1 (I). We set
V:i={¢: Iy — I, :  is continuous}
and

Vo := {C eEVNCl): zn‘ellrl: [¢'(z)] > 0}.

Then V is an open subset of the Banach space Cr(Ip) of real-valued continuous
functions on Iy. For { € V define

¥(() := fo(.

Clearly, ¥(¢) € C(Iy) for each { € V. In the lemma below, the set V; could be
made larger if we would know more about f. For example, if f € C1(I1), then we
could simply replace V5 by V.

LEMMA 7.2. ¥ :V — Li(lp) is differentiable at each { € Vp, and

V(Qh=(f o)k, h e Cr(l)
Proof. Let h € Cg(Ip) such that { + h € V. Then, for z € Iy,

(¢ + h)(z) = ¥{()(=) = f({(=) + h(z)) — F({(=))
¢(z)+h(z)

f(t)dt

(=)
(=) +h(z)

F(C(2)h(z) + [ [F/() — F(C(z))] dt.
¢ ()
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Since ¢ € V), the theorem on integration by substitution, see [6], (20.5), gives that
h v (f' o {)h is bounded from C(Ip) to Li(ly). By Lebesgue’s lemma, see [6],
(18.4), there is a subset N of I of Lebesgue measure zero such that

{(z)+h(z)
m@= [ U0 FEEd= o)
{(=)

whenever {(z) ¢ N. Since { € V;, the set Ny := {z € Iy : {(z) € N} has Lebesgue
measure zero. From

lgn(2)l < 2esssup FROILC]

it follows by Lebesgue’s dominated convergence theorem that

gn = of|[All) in L1(o)

ash—0in C(Lp). 1

Proof of Theorem 7.1. We are going to apply Theorem 3.1. In order to
distinguish between the maps A in Theorems 3.1 and 7.1, we will denote the map
A from Theorem 3.1 by A;. Then A(a, b) = A(k(e,d)), where & : Up — L is given
by

x(a,b) = (

We first show that « is differentiable at (ao, bp) and find its derivative. Since ((a, b)

is linear in (a, b), we get

Gog(a b),‘ Ho((a,b) A B)

d(j, b)C(“’ B a.b)=(ao ey (& B) = (1, B)

for (a, B) € R%. Therefore the product rule, the chain rule and Lemma 7.2 show
that x is differentiable at (aq, bo) and that

N’(ao, bﬂ)(a> ﬂ) = (F‘G(a: ﬁ)’ I‘H(aa ﬁ)) 0, 0)!

where

#a(a, f) = d(a b) [bo Golfa b)]( ,‘b):(ao,bo)(a’ﬁ)
ﬁ a

20+ G'¢(, B) = (e, /YGY
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in view of {(ao,bo)(z) = z. Finally, the chain rule shows that X is differentiable
at (ag, bp), and from the above calculations and Theorem 3.1 it follows that

N{ao, bo)(ar, B) = Xy (k(ao, b))k (a0, bo)(e, B)

bo
=- / 'UT[FG(C";OB) + Aao, bﬂ)pﬂ(a:ﬁ)]u dz

ap
bo

_ / T (¢(er, B)Go)'u dz.

ag

An integration by parts leads to
bo o
X(ag, bo)(e, B) = /((a,ﬁ)v’TGgudx-i-/C(a,ﬁ)uTGou’ dz
an a9

~ [¢(a, B)o” Goulzs,

which completes the proof since v' = GJ v and o' = —Gou. 1

8. AN APPLICATION TO SCHRODINGER OPERATOR

In this section, we consider the Schrodinger operator on the unit disk € in R?
with Dirichlet boundary conditions and a potential ¢ € L3(£2). That means, we
consider the differential operator function T(g)(A) = T(\) + K(q), where

T()) = (T;E;\)) L Hy(Q) — La() x H3(99)

is given by
TP Ny = -Ay — Ay,
TRy = 4|99,
and KP(q)
k(@) = () < 1@ — @) x #y09)
is given by

KP(g)y = qy.

For the definition and properties of the Sobolev spaces H,(Q?) and H,(0Q) see
e.g. [7], Appendix B. It is well known, see e.g. [7], Theorem 20.1.2 that T'(})
is a Fredholm operator. From the fact that the map y — y|0Q from H»(f2) to
H3/9(09) is onto, see [7], Theorem B.1.9, and from [4], Theorem 8.12 it follows
that T°(0) is bijective. Since the embedding from H2(S2) to C(Q) is compact, K
is a compact operator. This shows that T(¢g)(}) is a Fredholm operator for all
g € L2(2) and all A e C.
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THEOREM 8.1. Let g5 € La(Q) and Aqo) be an isolated simple eigenvalue
of the operator function T(go). Then there is a simple closed curve T' with Mqo)
in ils tnlerior and a neighborhood U of gy in La(Q) such that for each g1 € U
the operator funciion T(q1) has ezactly one simple eigenvalue A(q1) inside I'. The
map A : U — C is differentiable at go, and

X(go)g = / qu’dz
f
Jor g € Ly(), where u € Ha(Q) is a solution of ~Au + gou = A(go)u which
satisfies u|0Q = 0 and
/u2 dz = 1.

]
Proof. In view of Theorem 2.4 we have

N(go)g = /quv dz,
0
where u is an eigenfunction of T{go) at A(go) and (v, w) € L3(Q) x Hz/a(00)" is
an eigenfunction of T(go)* at X(go) such that

/uvdz:l.

a
We still have to show that we can choose u = v. Indeed, we are going to show
that
T(q0)(Mg0))" (v, =¥ - Vu) = 0,
where v is the outer normal on Q. For this let f € Ha(2). Then
(£, T{g0)(Mg0))* (u, —v - V) = (T(q0}(Mg0))f, (u, —v - Vu))

= /(——A+ go — Mgo)) fudz — /fy -Vudo,
o a0

where ¢ is the Lebesgue measure on 0§}, By Green’s formula,

/(—A + 90 — Mgo)) fudz = /f(~A + g0 — Mgo))ude
Q a
+ | fv-Vudo - | w-Vfdo.
)
Since T'(go)(M(go))u = 0, we have (—A + go = Mgo))u = 0 and u|@Q = 0. This
implies
{£,T(q0)(Mgo))" (v, —v - Vu)) =0
for all f € H3(R), and hence T(go)(A(go))*(v,—v-Vu)=0. 1
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