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INTRODUCTION

This paper deals with the iterates of a linear operator acting in a Banach space.
The following result has been recently proved by C. Lennard ([10]), by means
of the Mittag-Leffler theorem about inverse limits.

THEOREM 0.1. ([10], 1.3) Let A be a closed densely defined linear opera-
tor, with domain D(A) and range R(A) in o Banach space X, having nonemply
resolvent set. If (an),en and (Bn),en ore scalar sequences, such that (anA +
BnIx)(D(A)) is dense in X for any n € N, then

ﬁ(agA + Bolx) - (an1A + Ba1Ix)(D(A"))

n=1

s dense in X. In particular, il follows that
(1) N D(A?) is dense in X;
neN
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(i1) [ R(A") is dense in X if R(A) is dense in X,
neEN

Here we extend Theorem 0.1 to a larger class of closed operators than the
densely defined ones having nonempty resolvent set. Actually, we extend The-
orem 0.1 to a set of linear operators with domain and range in X which is not
contained in the set of all closed operators with domain and range in X, but is
contained in the larger set of all paracomplete operators with domain and range
in X (namely, the operators whose graph, under a convenient norm, is a Banach
space continuously embedded in X x X).

In Section 1 we collect some preliminaries, in the attempt of making our
paper as self-contained as possible.

Section 2 contains the results of this paper. After proving some preliminary
algebraic results, we introduce the upper and lower essential resolvent sets of a
linear operator A with domain and range in X (see definitions between Remark 2.5
and Remark 2.6). The upper and lower essential resolvent sets of A contain the
resolvent set of A, Indeed, they contain the set of all scalars A for which Ay — A
is a closed Fredholm operator. It turns out that an operator A having nonempty
lower essential resolvent set must be paracomplete, together with all polynomials
in A, but need not be closed, contrary to the case of an operator having nonempty
upper essential resolvent set (see Remark 2.6). In Theorem 2.10 and Corollary 2.11
we extend Theorem 0.1 to the operators having nonempty lower essential resolvent
set; more generally, we obtain density results involving the topologies induced by
the norms which make the domains of the iterates of such operators Banach spaces
continuously embedded in X. In particular, Corollary 2.11 enables us to conclude
that, if the lower essential resolvent set of a densely defined linear operator A with
domain and range in X is nonempty, then the intersection of the domains of the
iterates of A is dense in X; more generally, it is dense in the domain of every
iterate of A, with respect to the corresponding topology. This generalizes a result
obtained by K. Schmiidgen in [17] for densely defined closed symmetric operators
acting in Hilbert spaces. In the remarks following Corollary 2.11, we also show
that Theorem 2.10 and Corollary 2.11 cannot be extended to the operators having
nonempty upper essential resolvent set.

Throughout this paper, when the scalar field is not specified we assume it
may be either R or C and denote it by K.
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1. SECTION

We will denote the sets of nonnegative integers and of positive integers by N and
Z, , respectively.

If V and W are vector spaces over K, let A(V, W) denote the set of all linear
operators whose domain is a linear subspace of V and whose range is contained in
W. In the special case W = V we shall use the notation A(V) instead of A(V, V).
Iy will denote the identity operator on V, namely the element of A(V') which is
defined on the whole of V and maps every z € V into z.

For any A € A(V,W) we will denote the domain of A by D(A), and the
kernel and range of A by N(A) and R(A), respectively. Moreover, we define

nul(A) = dim(N(A))

and
def(A) = dim(W/R(A))

where dim(M) = sup{n € N : M contains n linearly independent vectors}
(€ NU {co}) for any vector space M.

If N(A) = {0}, then there exists a unique operator A~! € A(W, V) such that
D(A-1) = R(A) and A~!Az = z for any z € D(A). We call A~! the inverse of A.
Notice that N'(4A~1) = {0}, R(A~*) = D(A) and AA™'y = y for any y € R(A),
namely (A=1)"" = 4.

If Vo, Vi, V2 are vector spaces over K, A; € A(Vo, V1) and Ay € AV, Va),
the operator A2A4; € A(V}, V2) is defined by

D(AzA1) = {z € D(A1) : A1z € D(42)}

and
(A2A1)z = Ax(Arz) for any z € D(AzA,).

It is not difficult to verify that, if V3 is a vector space over K and As €
A(Va, Va), then A3(A241) = (AsA2)A, (so that parentheses can be omitted). The
product A, ...A; of a finite number of linear operators is canonically defined by
induction.

Now let V be a vector space over K and let A € A(V). Then the sequence
(A™)pen Of elements of A(V) is defined in the following way: A’ =TIy and A" =
Ay--+An (where Ay = Aforany k = 1,...,n) for any n € Z, (so that A* = A).
Thus (D(A™)), en 18 @ non-increasing sequence of linear subspaces of V. We also
remark that, for any j, k € N, we have

D(A**) = {z € D(AF) : A*z € D(47)}
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and
Abtig = AV (A*z) for any z € D(AFYY).

If A; € A(V,W) and A; € Kforany j =1,...,n (where V and W are vector
spaces over K and n € Z,), the operator En: AjA; € A(V, W) is defined by
Jj=1

D (;:_; )\:‘AJ‘) = ﬁ]l D(4;)
and

n n n
(ZA,-A;)Q::EA,-A‘;:: for any z € n D(4;).
] i=1 j=1

ic1

Finally, let n € N and let ag, ...,a, € K, with a,, # 0ifn € Z;. If p denotes
the polynomial of degree n defined by

p(0) =D axX* forany AeK
k=0

(notice that we assume the null polynomial to be of degree zero), then the operator
p(A) € A(V) is defined by

p(A) =) apAt.
k=0

Notice that D (p(A4)) = D(A"). We also remark that, if p; and p; are polynomials
with coefficients in K, of degrees n; and ng, respectively, then

p1(A)z + p2(A)z = (p1 + p2)(A)z  for any z € D(AMex{nunal),
Furthermore, it is not difficult to verify that
D(A™M+72) C D(p1(A)p2(A)) C D(p1p2(4))

(where each of the inclusions above can be replaced by equality if in addition both
p1 and pz are nonzero), and

p1(A)p2(A)z = p1pa(A)z  for any z € D(A™ "),

Namely,
p1(A)p2(A4) = p1pa(A) = p2(A)m(4)

when both polynomials p; and p; are nonzero.
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Now let Z be a Banach space. Following [9], Definition 2.1.1, we shall call a
linear subspace W of Z, which can be endowed with a complete norm || - |w such
that the canonical embedding of (W, || - [/} into Z is continuous, a paracomplete
subspace of Z. Notice that every complete norm on W, under which the canonical
embedding of W into Z is continuous, is equivalent to || - ||y, in virtue of the
closed graph theorem. Thus all such norms induce the same topology, which we
will denote by m, on W.

If X and Y are Banach spaces over K, we denote by L(X,Y") the Banach space
of all linear bounded operators from X into ¥ (namely, the operators A € A(X,Y)
such that D(A) = X and A is continuous). Furthermore, we set

CX,)Y)={A € A(X,Y): Aisclosed}.

We recall that L(X,Y) C C(X,Y). In the special case Y = X, we will write C(X)
and L(X) instead of C(X, X) and L(X, X), respectively.

We say that A € A(X,Y) has an inverse in L(Y, X) if N(4) = {0} and
A~Y € L(Y, X) (which implies that R(4) = Y). Notice that A~! € C(Y, X) for
any A € C(X,Y) with N(A) = {0}. Then, in virtue of the closed graph theorem,
an operator A € C(X,Y) has an inverse in L(Y, X) if and only if A'(4) = {0} and
R(A)=Y.

An operator T € A(X,Y) is called paracomplete (see [9], Definition 2.1.2) if
its graph is a paracomplete subspace of X x Y. We set

PC(X,Y)={T € A(X,Y) : T is paracomplete}

(in the special case Y = X, we will write PC(X) instead of PC(X, X)). Notice
that C(X,Y) C PC(X,Y). We also recall (see [9], remark preceding Proposition
2.1.3, and Proposition 2.1.4) that

FacT 1.1. For any A € PC(X,Y), D(A) (respectively, R(A)) is a paracom-
plete subspace of X (respectively, Y ).

The following result about closedness of range, which we will need in the

sequel, is a consequence of Fact 1.1 and [9], Proposition 2.1.1.

THEOREM 1.2. Let X and Y be Banach spaces, and let A € PC(X,Y). If
def(A) < oo, then R(A) is closed.

We will also need the following generalization of the closed graph theorem.
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THEOREM 1.3. (see [9], Proposition 2.1.5) Let X and Y be Banach spaces,
and let A€ PC(X,Y). If D(A) = X, then A € L(X,Y).

The following result shows that, unlike the closed operators, the class of
paracomplete operators is closed under sum and product.

THEOREM 1.4. (see [9], Proposition 2.1.3) Let X,Y,Z be Banach spaces,
and let A,B € PC(X,Y), D € PC(Y,Z). Then A+ B € PC(X,Y) and DA €
PC(X,2).

We will also use the Mittag-Leffler theorem on inverse limits, which is recorded
here as Theorem 1.5. We recall (see for instance [3], beginning of Section 2) that,
if (En),en is @ sequence of nonempty sets, and (0n),¢n i a sequence of maps,
with 8, : Eny1 — E, for any n € N, then the projective limit li._r_n(E,,,Bn)neN

is defined to be the set of all elements (z,),cn of the Cartesian product [] Ea
neN

satisfying z, = On(zn41) for any n € N. For any k € N, let m; denote the kth

coordinate projection from [] E, onto Ey. Notice that
neEN

T (lij_n(Emgn)neN) = { € Ep : there exists (za), 3 € H E,
n2k

satisfying zx = z and z, = Op(Tnq1) for any n 2 k}.

THEOREM 1.5. (see for example [3], 2.2, or [1], II, 3.5, Theorem 1) Let
(E,,)ne~ be a sequence of complete metric spaces, and lel O, : Enyy — E, be
continuous for any n € N. If 0,(En41) is dense in E, for any n € N, then
g (lgrl(En,Bn)neN) ts dense in Ey for any k € N.

2. SECTION

We begin by proving a few purely algebraic results, which will be useful in the
sequel.

LEMMA 2.1. Let V be a vector space over K, let A € A(V) and let p be a
nonzero polynomial with coefficients in K. Then

() ¥ ) € 0 DA™
(i1) M (p(4)) C D(a(4)) and a(4)(N(p(4))) C N (p(4)) for any polyno-

mial q with coefficients in K.
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Proof. We begin by proving (i). Let n denote the degree of p. Since the
desired inclusion is straightforward if n = 0 (as M (p(A)) = {0}, being p nonzero),
we assume n € 7.

n
Let ag, . .., a, € K be such that p(3) = 5 axA® for any A € K. Then a, # 0.
k=0

We prove by induction that A (p(A)} C 'D(;lm) for any m 2 n. The desired
inclusion holds for m = n, as N (p(A)) C P(p(A)) = D(A"). Now suppose that
N (p(A)) C D(A™) for some m 2 n. Then for any 2 € N(p(A)) we have

n—1
Atz = _ai > ap Atz € D(A™H,
" k=0

and consequently z € D{(A™+1). We have thus established (i).
Now we prove (ii). Let q be a polynomial with coefficients in K. From (i) we
get N'(p(A)) C D(q(A)). Furthermore, since for any z € N(p(A)) € N D(A™)
meN

we have

p(A)a(A)z = a(A)p{A)z =0,
namely q(A)z € N(p(A)), we obtain q(4A)(N (p(A))) C N(p(4)), which com-
pletes the proof. 8

For any real vector space V, we denote the complexification of V (see [16],
page 33) by V. We recall that, if Y is a real Banach space, then Y is a com-
plex Banach space under a convenient norm induced by the norm of ¥ (see [16],
page 261). Now let V be a real vector space and let 7' € A(V). We recall that the
complex extension of T is the operator T € A(V) defined by

D(T) = D(T) +1iD(T)

and
T(m +iy) =Tz +iTy for any z,y € D(T).

Notice that (7)* = 7™ for any n € N.

LEMMA 2.2. Let V be a vector space over K, let A € A(V) and let p,q be
polynomials with coefficients in K. Ifp and q have no common roots in C, then

(i) N (p(4)) = a(A) (N (p(4)))
(it) R(p(4)) N R(a(A)) = R(pa(4)).
Proof. We first prove (i). If p is the null polynomial, then g has no roots in

C, namely q is a nonzero polynomial of degree zero, and consequently the desired
equality is straightforward. Now suppose p to be nonzero. Then Lemma 2.1
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provides the inclusions A'(p(A4)) C D(a(4)) and a(4)(N(p(4))) C N (p(4)).
Since p and q have no common roots in C, and consequently have no nontrivial
common factors, there exist polynomials r and s with coefficients in K such that

t(A)p(A) +5(A)g(A) =1 forany A €K

(as in the algebra of polynomials with coefficients in K every ideal is principal). If
n denotes the maximum between the sums of the degrees of v and p and of 5 and
q, then for any z € D(A") we have

z = (tp +59)(A)z = tp(A)z + s9(A)z = t(A)p(A)z + s(A)a(A)z.

Since N'(p(A)) C ()} D(A™) C D(A™) by Lemma 2.1, it follows that for any z €
meN

N{p(A)) we have
s = s(A)a(A)z = A(A)s(A)z.

Hence A'(p(4)) C a(A)(s(A)(N(p(4)))). Since s(A)(N(8(4))) C N (p(4)) in
virtue of Lemma 2.1, it follows that A’ (p(A4)) C q(4) (M (p(A))), which establishes
(i).

Now we prove (ii). It is easily seen that R(pa(4)) C R(p(A)) N R{a(4))-
Thus it remains to prove the opposite inclusion. It suffices to prove the desired
inclusion for K = C; once the result is established in the complex case, it can be
applied to the complex extension of A, and the real case follows by remarking that
YA) = t(A) for any polynomial ¢ with real coefficients. Thus we assume K = C.

We prove first that, for any o € C and for any n € N, we have

(2.1) R(A — aly) NR(H(A)) € R((4 — alv){A))

for any polynomial t of degree n, with complex coefficients and such that « is not
a root of t.

We proceed by induction. (2.1) clearly holds for n = 0. Now suppose (2.1) to
be satisfied for some n € N, and let u be a polynomial with complex coefficients,
of degree n + 1 and such that o is not a root of u. Let 8 € C be a root of u. Then
there exists a nonzero polynomial t of degree n such that

uX) = (A-p)Yr) forany AeC
and consequently

u(A) = (4 - BTy H(A) = {A)(A - BIv).
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Notice that # # o and « is not a root of t. For any z € R(4 ~ alv) N R(u(4)),
there exist y € D(A) and z € D(A™+!) such that
z=(A-aly)y=tA)(A-pBIv)z.
Since £ € R(A — aly) NR(t(A)) and t has degree n, it follows that
z=(A-aly)(A)v = {A)(A - aly)v
for some v € D(A"). Then (A - BIv)z — (A — aly)v € N(t(A)), which is

contained in R{A — aly) by (1), as o is not a root of t. Consequently, there exists
w € D(A) such that (4 — Blv)z = (A — aly)w. Since 8 # «, it follows that

x= ﬁ(/i —aly)(w-2) € R(A - aly).

Hence z € R(HA)(A-BIv)(A—alv)) = R(u(A)(A-alv)) = R((A-alv)u(A))
and (2.1) is established for n + 1.

Now, again by induction, we prove that for any n € N we have
(2.2) R(a(A4)) NR(b(A)) C R(ab(4))
for any polynomial a of degree n with coefficients in C and for any polynomial b
with coefficients in € having no roots in common with a.

It is easily seen that (2.2) holds for n = 0. Now suppose (2.2) to be satisfied
for some n € N, and let a and b be polynomials with coefficients in C having
no common roots, such that the degree of a is n + 1. Then both a and b are
nonzero and, if & is a root of a, there exists a nonzero polynomial ¢ with complex
coefficients, of degree n, such that

a(Ad) = (A —a)e(A) forany AeC.

Then for any z € R(a(A4)) N R(b(A)) there exist y € D(A") and z € D(b(4))
such that
z = c(A)(A —aly)y = b(A)z.

Since ¢ and b have no common roots and ¢ has degree 7, it follows that there exists
u € D(cb(A)) such that z = ¢(A)b(A)u. Then

(A—aly)y — b(A)u € N(c(A)) C R(B(A))

by (i), namely (A — ey )y = b(A)v for some v € D(b(A)). Now, since « is not a
root of b, from (2.1) it follows that

(A-alv)y=(A- aly)b(A)w
for some w € D((A — alv)b(A)) and consequently
z = c(A)(A - aly)b(A)w = a(A)b(A)w € R(ab(A)).
The proof is thus complete. #
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LEMMA 2.3. Let V be a vecior space over K, let A € A(V), let n € N and
let p be a polynomial of degree n, with coeffictents in K. Then for any k € N we
have

R{p(4)) N D(4*) = p(4)(D(A™+F)).

Proof. For any k € N, the inclusion p(A)(D(A™+¥)) C R(p(A)) N D(AF) is
clear. We prove that R(p(4)) N D(A¥) C p(A)(D(A"*)). Since this inclusion is
straightforward if p is the null polynomial, we assume p to be nonzero. If q is the
polynomial defined by

q(r) = X¥p(d) for amy A €K,
it follows that the degree of qis n + k.

For any y € R(p(A)) N D(A*), there exists z € D(p(A)) = D(A") such that

y = p(A)z. Since y € D(A*), it follows that
= € D(A*p(4)) = D(a(4)) = D(A™),
Hence y € p(A)(DP(A"+¥)). The proof is now complete. 1

LEMMA 2.4, Let V be a vector space and let A € A(V). If for some p €N
dim (R(A?)/R(APH)) < o0, then dim (R(A")/R(A™+*)) < oo for anyn 2 p and
for any k € N.

Proof. Let n 2 p. We prove our assertion by induction on k. Clearly,
it holds for k = 0. Now suppose dim (R(A")/R(A***)) < oo for some k €
N. From [7], 3.2 and 2.2 it follows that the vector spaces R{AP)/R(AP*!) and
R(AM*)/R(A+¥+1) are isomorphic to (D(AP) + R(A))/(N(A?)+ R(A)) and
(D(A™F) + R(A))/(N(AMHF) + R(A)), respectively. Since n+k > p, and conse-
quently

N(AP) C N(A™FF) C D(AF) C D(A7),
it follows that
dim((D(A™*) + R(A)) /(N (4"+) + R(4)))

< dim((D(A”) +R(A)/ (N (A7) + R(4))).
Hence
dim (R(A"¥)/R(A™+¥+1)) < dim (R(AP)/R(APH)) < oo.
Since the finite-dimensional vector space R(A™)/R(A™*¥) is isomorphic to the
quotient space

(R(A™)/R(A™HHD) [(R(A™)/R(AMHHY),

it follows that R(A™)/R(A*+**+1) has finite dimension as well.
‘We have thus established the desired result. @
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If X is a Banach space, let ®(X), ®4+(X) and ®_(X) denote, respectively, the
sets of all paracomplete Fredholm, upper semi-Fredholm and lower semi-Fredholm
operators with domain and range in X. Namely,

$,(X) = {A € PC(X):R(A) is closed and nul(4) < oo},
®_(A) = {A € PC(X): def(A) < o0}

and .
(X) = 24 (X)NS_(X).

Notice that, for any A € ®_(X), R(A) is closed in virtue of Theorem 1.2.

REMARK 2.5. We remark that @, (X) C C(X) (and consequently ®(X) C
C(X)). Indeed, for any A € ®4(X), both AM(A) and R(A) are closed subspaces
of X, and consequently A € C(X) by [9], Proposition 2.2.3.

On the contrary, an element of ®.(X) need not be closed. For instance, if
E is a Banach space which is isomorphic to its square (for example, an infinite-
dimensional Hilbert space), U € L(E, E x E) is bijective and W is a non-closed
paracomplete subspace of E (notice that, in virtue of [6], Theorem 1, for every
infinite-dimensional Banach space Y there exists T € L(Y) such that R(7T") is not
closed in Y; hence from Fact 1.1 it follows that every infinite-dimensional Banach
space has a non-closed paracomplete subspace), then the linear operator

A ExW3(z,y)— Uz € ExE

is paracomplete (as it is continuous and its domain is a paracomplete subspace of
E x E) and surjective. Hence A € ®_(E x E). Nevertheless, A is not closed, as
N(A) = {0} x W, which is not a closed subspace of £ x E.

We recall that in [9] a class of paracomplete operators with domain and range
in a Hilbert space H, called the quasi-Fredholm operators, is introduced (see [9],
Definition 3.1.2). The quasi-Fredholm operators contain the closed semi-Fredholm
operators with domain and range in H, namely all elements of C(H) having either
finite-dimensional kernel and closed range, or finite-codimensional range (see 191,
Example 4 on page 197), and consequently, by Remark 2.5, contain ®,.(H). On
the contrary, the quasi-Fredholm operators do not contain ®.(H) when H has
infinite dimension: indeed, a surjective operator T' € PC(H) turns to be quasi-
Fredholm if and only if T € C(H) (see [9], Remark (3.1.1)). Then the example
contained in Remark 2.5, by choosing E = H, shows that ®_(H) is not contained
in the quasi-Fredholm operators, as U~' AU € ®_(H) by Theorem 1.4, but is not
closed, being A non-closed.
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Let Y be a complex Banach space and let A € A(Y). Following [4], page
288, we define the resolvent set p(A) of A in the following way:

p(A) = {d € C: My — A has an inverse in L(Y)}.

We recall that p(A) # 0 implies A € C(Y) (see [4], XIV, 1.2). We denote the
essential resolvent set of A by pg(A). Namely,

{)q;(A) = {)\ eC:Aly —Ac€ @(Y)}.

We remark that p(A) C pg(A) by [4], XIV, 1.2. Now we define the upper essential
resolvent set pgp, (A) of A and the lower essential resolvent set pg_(A) of A in the
following way:

po, (A)={reC: My —Acd,.(Y)}

and
po_(A)={reC: My -Ae®_(Y)}.

Notice that pe(A) = po,(A) N ps_(A). Furthermore, since My + pT € C(Y) for
any T'€ C(Y') and for any (A, ) € C x (C\ {0}), from Remark 2.5 it follows that
P, (A) # 0 implies A € C(Y'). Notice also that ps_(A) # @ implies A € PC(Y)
in virtue of Theorem 1.4.

Now let Z be a real Banach space and let T € A(Z). We define the resolvent
set, the essential resolvent set and the upper and lower essential resolvent sets of T
to be the resolvent set, the essential resolvent set and the upper and lower essential
resolvent sets, respectively, of the complex extension of T, and will denote them
again by p(T), pa(T), ps, (T) and pe_(T'), respectively.

It is not difficult to verify that T' € C(Z) (respectively, PC(Z)) if and only
if T € C(Z) (respectively, PC(Z)). Hence po,(T) # 0 implies T € C(Z) and
po_(T) # 0 implies T € PC(Z).

REMARK 2.6. Let X be a Banach space over K, and let A € A(X). If
pa,.(A) # 0, then from Remark 2.5 and [5], IV.2.12 for complex Banach spaces,
plus equivalence between closedness of p(A4) and of its complex extension p(A) =
p(A) in the case of a real Banach space X, it follows that p(A) € C(X) for any
polynomial p with coefficients in K.

If po_(A) # 0, then the comments following the definitions of the upper and
lower essential resolvent sets in the complex and in the real case, together with
Theorem 1.4, give p(A) € PC(X) for any polynomial p with coefficients in K. The
example provided in Remark 2.5 shows that A need not be closed.
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Now let V' be a vector space over K, and let A € A(V). If (An)nen and
(Bn)nen are sequences of elements of K, for any & € N set

Pr(4; (An)nens (Mn)nEN) =Tk (lif‘('D(A")’ g")nEN) ’

where 0 : D(A"+!) — D(A") maps every = € D(A™1) into (\yA + pnlv )z for
any n € N. Then for any & € N we have ’Pk(A;(An)neN, (tn)neN) = {z- eEV:
there exists a sequence (zp),>, of elements of V, with z,, € D(A") for any n >
k, satisfying 2x = z and z, = (M A + fnly)Tnyy for any n 2 k}. Notice also
that Px(4; (An)peny (n)nen) is 2 linear subspace of V for any k € N. Besides,
we have

Pi( A5 Mn)nens (n)nen) = A+ eIy P14 (M) ens (Hn)nen))

for any & € N.
We remark that Po(4; (1),en, (0),en) is the largest of all subspaces M of
V satisfying A(D(A) N M) = M: indeed, we have

Po(4; (Dnen: (0)nen) = A(?’31 (4; (Vnens (0)“’3“))
= A(D(A) NPy (A§ (l)nEN’ (O)nEN)) ’

and conversely, for any subspace M of V satisfying A(D(A) O M ) = M and for
any z € M, there exists a sequence (2n),cn, With z, € D(A") N M for any
n € N, satisfying zo = = and 2, = Az, 4 for any n € N. Following for example
(11], we call Po(A; (1), en: (0),en) the core of A, and denote it by CO(A) (see
also [15], where the core of a map from a set into itself is defined). We recall

that CO(A) C [} R(A™), and the inclusion may be strict. The following is an
neN
example.

EXAMPLE 2.7. Let us consider the linear bounded operator

o0 o
1
S:63 (a:,,,)mEN — ( E o T n(nt1 ) eg + E En+1Tn+16n € £2,

n=1 n=1

where (en),,¢n denotes the canonical basis of £; and the sequence (e, Ynzo is defined
by

. _{0 ifn:@forsomek??;

"L ifn# BB for any k> 2
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then for any k& 2> 2 we have

eozskekk 1)

k-1

and

k+1
R(S%) ¢ {(“’ﬂ)neN €4y : 2z, =0 for any n € Z, satisfying n < !c—(—zi——)-} .

Hence ﬂ R(S") coincides with the linear span of g, whereas, since Seg = 0, we

have CO(S) = {0}.

We remark that, if V is a vector space over K and A € A(V), then for any
two sequences (M), cn and (pn),en of elements of K we have

o]

Pe(Ai Gn)nens (adnen) © [ QeA+pelv) -~ (Ano1 A+ o Iv ) (D(4™)).
n=k+1

The inclusion above may be strict, in virtue of Example 2.7.

LEMMA 2.8. Let (V3),cN be a sequence of vector spaces over K, let 6,
Va+1r — Vi, be a linear map for any n € N, and let (Mn)nen be a sequence of
nonzero scalars, Then 7y (lim(Vn, AnG,,)neN) = m (lim(Vn,On)nEN) foranyk €
N.

Proof. Since A, # 0 for any n € N, and consequently 6, = xl:()xnﬂn) for
any n € N, it suffices to prove that (lim(Vn, An 9n)neN) C (Iim(V,,,l?n )nEN)

for any £k € N. Let k € N, and let z € =, (lim(Vn,,\ 8, )ne~) Then there
exists (:z:,,),,>,c € H Vi satisfying z = z and 2, = Abrznys for any n 2 k. If

(#n)nzr € [ Vais defined by y, = ( I1 /\j)zn for any n > k (where the product
n2k =k
n-1

I1 Aj is understood to be equal to 1 for n = k), it follows that yx = = and
=k

n—1 n-—1
OnYns1 = O, (1’[ Aj )-’Bn+1 (H A;)Anonzn+1 = (H A,-)zn = yn
=k

i=k

for any n = k. Hence z € 1y, hrn Va,0n , which gives the desired inclusion. 8
neN
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PROPOSITION 2.9. Let V be a vector space over K, let A € A(V) and let

(Andnens (Hn)nen be scalar sequences.
(1) If My =0 and py, # 0 for any n € N, then

pk (Al (’\n)nEN’(”’ﬂ)nEN) = m D(Aﬂ)
neM
for any k € N.
(1i) If Ay #£ 0 and p, = 0 for any n € N, then

Pe (A3 (’\n)neN’ (Hﬂ)nGN) = CO(A) ﬂ'D(Ak)

for any k € N.
Proof. If A\, = 0 and g, # 0 for any n € N, from Lemma 2.8 it follows that

Pe (A;(')‘ﬂ)neN»(P‘n)neN) = pk(A?(O)neNs(l)neN) = ﬂ D(A")
neEN
for any k € N, which establishes (1).
If A\p # 0 and g, = 0 for any n € N, from Lemma 2.8 it follows that

Pk (A; (Aﬂ)nENl (uﬂ)nEN) = pk (A; (l)nENl (O)HEN)
= Po(A;i (Dnen: (0)nen) NP(AF) = CO(4) N D(4%)

for any k € N, which establishes (11). a

Theorem 2.10 below extends Theorem 0.1 to the paracomplete operators
having nonempty lower essential resolvent set. We are going to use Lemma 2.1,
Lemma 2.2, Lemma 2.3 and Lemma 2.4 in order to adapt the proof of Theorem
0.1 given in [10], 1.3 to the more general context.

THEOREM 2.10. Let X be a Banach space over K, and let A € A(X) be
such that py_(A) # 0 (which gives p(A) € PC(X) for any polynomial p with
coefficients in K by Remark 2.6, consequenily, by Fact 1.1, D(A™) is a para-
complete subspace of X for any n € N} If (an),en and (Bn),en are scalar
sequences, such that (apA + ,BnIX)(D(A)) is dense in X for any n € N, then
Pr (A;(an)neN, (ﬂ")nEN) is Tp(ax)-dense in D(AF) for any k € N. In particular,
it follows that Po(A; (an)nEN,(ﬁﬂ)ﬂEN) is densc in X, and consequently

) (20A+Bolx) - (an-14 + Ba—rx)(P(A™))
nely

is dense in X.
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Proof. Since the result holds trivially if X = {0}, we may assume X # {0}.
Furthermore, it suffices to prove Theorem 2.10 for a complex Banach space, as,
since it 1s not difficult to verify that for any £ € N we have

P (Z? (o‘")neN’ (ﬁ")neN) =P (A; (a")nEN' (ﬂn)neN)'*'ipk (A§ (@n)nens (ﬂ")nEN)

if X is real, the real case can be derived from the complex one by going to the
complex extension of A. Thus we suppose X to be a complex nonzero Banach
space.

Now let || - ||, denote the norm of X. Furthermore, for any n € Z, let [} - ||,
denote a complete norm on D(A"), such that the canonical injection 'y from
(’D(A."), I -1l,) into X is continuous. Clearly, || - ||, induces the topology Tp(an)
on D(A") for any n € N.

For any n € N, we define the linear operators An, Jn : (P(A™ ), |- llays) =
(P(4™),]1-1l,), in the following way:

Apz = Az and Juz =2

for any z € D(4A"+!). Fix n € N. Since each of (D(A™*),||-(|,,,) and
(D(A™), |l - lI,,) is continuously embedded in X, it follows from the closed graph
theorem that J, is continuous. Furthermore, we have A, = I'71 AT, 41. Since A €

PC(X), and in addition T4y € L{(D(4”*1), |- |l 1), X) and T € L((D(4"),
I I), X), which gives Tz* € C(X, (D(4™), || [l,) ) then

4n € PC(@A™),[|-llas), A1 1))

by Theorem 1.4. Since D(A,) = P(A™H?), from Theorem 1.3 it follows that Ay, is
continuous. Hence oA, + BJ, € L((’I)(A"+1), I lags), @AM - lln)) for any
n € N and for any o, S € C.

Now let &, B € € be such that (A + BIx }(D(A)) is dense in X. Then
(a,B) # (0,0) as X # {0}. We prove that R(aAn+AJ,) is dense in (D(A"™), ]| - II,,)
for any n € N.

Since po_(A) # 8, it follows that AIx — A € ®_(X) for some X € C.

Let n € N. We begin by proving that

N((Mx — A"} C R(aAn + BJn)
and

R((Mx = A)") N (e + BIx)(D(4)) = (Ax — A)" (R(eAn + BJa)).
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Indeed, if « = 0, then 8 # 0 and consequently
R(aAq + BJ,) = R(Jn) = D(A™HH),

which contains A ((AIx — A)") in virtue of Lemma 2.1. Furthermore, by Lem-
ma 2.3 we have

(Mx — A)" (R(ahn + BJn)) = (Mx — A)*(D(A™)) = R((Mx — A)") ND(4)
=R((Mx — A)") N(aA + BIx)(D(A)).

If @ #£0 and 8 = —a), then R(AIx — A) = (@A + BIx)(DP(A)), which is dense
in X. Since AIx — A € _(X), and consequently R(XIx — A) is closed, it follows
that R(Ax — A) = (04 + BIx)(DP(A)) = X. Then by Lemma 2.3 we obtain

R(aAn + 1) = (Mx — A)(D(A™)) = R(Mx — A)ND(A™) = D(A"),

which gives the inclusion N ((Alx — A)") C R(xAn + 8J5) as well as the equality
R((Mx — A)*) N (A + BIx)(D(A)) = (Mx — A)" (R{e2An + BJn)).

Finally, if « # 0 and B # —aA, then the polynomials p and g defined by
p(p) = (A — p)" and q(p) = ap + B for any g € C have no common roots in C.
Bence, in virtue of Lemma 2.2 and Lemma 2.1, we have

N((Mx = A)") = (aA + BIx) (N (Mx = A)")) C (ah + BIx)(D(A™)
= R(cvAn + BJn)

and

R((MIx — A") N (eA + BIx)(D(A)) = R((Mx — A)" (A + BIx))
= (AIx — A)" ((aA + ﬁIx)(D(A"+1)))
= (AMx — A" (R(adn + 87.)).

The proof of the assertion above is thus complete.

Now we prove that R(aA, + 8J,) is dense in (D(A™), ]| - I.)-

From Theorem 1.4 it follows that (Ax — A)"T\ € PC((D(4™),||- 1), X).
Since R(I'n) = D(A™) = D((Mx — A)"), it follows that D((Mx — A)'Ty) =
D(A"), and consequently (AIx — A)"T, € L((D(A"), |- ||n),X) by Theorem 1.3.
Furthermore, we have ’R,(()‘Ix — A)"I‘n) = ’R,(()\IX - A)n).

Since def(Alx — A) < oo, from Lemma 2.4 it follows that def((AIx — A)") <
oo as well. Hence R((AIx — A)"Ty) = R{(Mx — A)") is a closed subspace of X
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by Theorem 1.2. Now from [8], Lemma. 322 it follows that there exists 8, > 0 such
that

IMx = AYally > 6 inf {[lz — 2ll, = = € N((Ax — A)"))

for any z € D(A™). Then for any z € D(A™) and for any y € R{aA, + BJ,) there
exists zxy € N((Ax — A)") satisfying

2
e =y = zeyll, < IO Ix = A)*z = (Mx = 4)" g,
n

Since (@ A+PIx }(D(A)) isdense in X and R((AIx — A)") is a finite-codimensional
closed subspace of X, then we are enabled to apply [5], IV.2.8 and conclude that
R((Mx — A)")N{eA + BIx )(D(A)) is dense in R((Mx ~ A)"). Hence, by what
we have proved above, (Alx — A)" (R(aA, + fJ,)) is dense in R{(Mx — A)").
Consequently, for any z € D(A"™) and for any € > 0 there exists y, € R(adn+8Jn)

such that 5
£0n
IO = 42 = (Ax = A)"welly < 5,
which gives

lz = ¥ — 2.l <e

Since zy, € N((Ax — A)") C R(aAn + BJ,), we conclude that R{aAn + BJn)
is dense in (D(A™),[|-]],.)-

Hence R{omAn + BnJn) is dense in (D(A™), || -|l,,) for any n € N.

Now, as in the proof of [10], 1.3, we are enabled to apply Theorem 1.5.
We conclude that Py (4; (en),en: (Bn)nen) 18 To(ar)-dense in D(A*) for any k €
N. The remaining part of the statement of the theorem is a consequence of the
inclusion

Po(A; (@n)nens (Bndnen) C ﬂ (oA + Bolx) - (on-1A+ BurIx)(D(A™)). 1
nely

The following result is a consequence of Theorem 2.10 and of Proposition 2.9.

COROLLARY 2.11. Let X be ¢ Banach space, and let A € A(X) be such that
pa_(A) #9. Then:
() ) D(A") is tprax)-dense in D(A*) for any k € N (in particular,
nEN
[} D(A") is dense in X ) if D(A) is dense in X,

neEN
(ii) CO(A)ND(AF) is Tp(ar)-dense in D(A*) for any k € N, and consequently

( N R(A")) ND(A*) is Tprar)-dense in D(A*) for any k € N (in particular,
neN
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CO(A) is dense in X, and consequently [ R{A") is dense in X), if R(A) is
neEN
dense in X.

We recall that (ii) is proved in [3], 3.1 in the special case A € L(X).

We also recall that K. Schmiidgen ([17], Theorem 1.9, (b); see also [17],
Corollary 1.4) proved that, if H is a complex infinite-dimensional Hilbert space
and T is a linear closed densely defined symmetric operator with domain and range
in H, such that at least one of the orthogonal complements of the spaces R(T+i/x)
and R(T — ilg) has finite dimension, then () D(T™) is Tp(px)-dense in D(T)

neN
for any k € N. We remark that this result can be derived from Corollary 2.11.
Indeed, since T is symmetric, it follows that

N(T +ilg) = N(T — ilg) = {0},

and in addition both R(T +ilg) and R(T —ilg) are closed subspaces of H, which
gives po,(T) # 0. Furthermore, if at least one of the orthogonal complements
of R(T + ily) and R(T — ily) has finite dimension, it follows that pe(T) # 0,
which implies that pg_(T) # 0. Since D(T) is dense in H, we are enabled to
apply Corollary 2.11 and conclude that () D(T™) is rp(rx)-dense in D(T*) for

neN
any k € N.

We remark that the condition “ps_(A) # §” cannot be replaced by “ps, (4) #
¢” in Theorem 2.10 and Corollary 2.11. Indeed, M.A. Naimark ([12] and [13]; sec
also [2], XII, 9.21) provided an example of a densely defined closed symmetric op-
erator T', with domain and range in an infinite-dimensional Hilbert space X, such
that D(T?2) = {0} (see [17], Theorem 5.2 for a more general related result). From
the remarks above it follows that pg, (T) # 0. Nevertheless, (| P(T") = {0},

neEN

which is not dense in H.

Finally, we remark that the examples T3 and T3 of closed densely defined
operators with domain and range in Ly([0, 1]) (1 € p < 00), having empty resolvent
set and dense intersection of the domains of the iterates, provided on page 625
of [10], satisfy pa(T1) = pa(T3) = C, and consequently fulfil the hypotheses of
Corollary 2.11. The linear densely defined operator T', with domain and range in
£,, considered in the Introduction of [10], which also has empty resolvent set and
dense intersection of the domains of the iterates, is not paracomplete in virtue of
Fact 1.1, as its domain, namely the space of all finitely nonzero sequences in £a,
cannot be endowed with a complete norm by the Baire theorem. Hence pg_(T) =
@ by Remark 2.6. In order to obtain an example of a paracomplete operator
having empty lower essential resolvent set and dense intersection of the domains
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of the iterates, it suffices to consider an unbounded paracomplete densely defined
operator A, with domain and range in a Banach space X, satisfying R(A) C D(A)
(see [14], 3.1 for an example of a unbounded closed densely defined operator T" with
domain and range in £2, satisfying R(T") C D(T')). Indeed, since A is paracomplete
and unbounded, it follows from Theorem 1.3 that D(A) is not closed in X. By
applying Theorem 1.2 to the canonical injection of D{A) into X, we conclude that
D(A) has infinite codimension in X. Since, if X is complex (respectively, real),
we have R(Alx — A) C D(A) (respectively, R(Alz — A) C D(A)) for any A € C,

it follows that ps_(A) = 0. Nevertheless, we have [} D(A") = D(A), which is
neEN
dense in X as A is densely defined.
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