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SMOOTHING TECHNIQUES IN C*-ALGEBRA THEORY
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ABSTRACT. We show that any algebraic element in a C*-algebra A can be
approximated by a smooth algebraic element, with the same minimal polyno-
mial. By a smooth element we mean an element of a given dense subalgebra
Ao that is closed under C* functional calculus. Smoothing results for a va-
riety of other C*-relations are obtained. These serve to prove the density of
the smooth homomorphisms in hom(C My, A). From this, smoothing results
in mod-p K-theory may be derived. We also prove two closure properties for
stable, smoothable relations.
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1. INTRODUCTION

Our inspiration for smoothing results comes from analogous lifting theorems. A
simple lifting theorem is that every nilpotent of order two lifts to a nilpotent
of order two. This has two substantial generalizations: the lifting theorem for
nilpotents of any finite order, proven by C. Olsen and the second author, and
secondly the projectivity of the cones CM,, proven by the first author in [6],
and given a vastly simpler proof in [9]. That the second result is, indeed, a
generalization requires comment.

The universal C*-algebra generated by a single contraction of order two is
isomorphic to the cone CM; = Cy(0, 1] @ Mz. Knowing well the C*-algebra CM,
is critical to the study of M, (A) when A is not unital. This is because a copy of
this algebra operates as a would-be set of matrix units in M,,(A) whenever A is a
o-unital C*-algebra.
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Let us now focus on the easy result that the relation z2 = 0 is smoothable,
while at the same time defining precisely this notion. Any reasonable notion of
smooth elements in a C*-algebra A4 should allow that every element z in A can be
approximated closely in norm by a smooth element 3. Should 2 = 0 then y? ~ 0.
How might we modify ¥ to make y* = 07

One way to force square zero is to sandwich the element between orthogonal
positive elements, such as defining

= f(y" yye(y"y)

where f and g are positive functions on the real line with fg = 0. We want to
ensure f(y"y)y = y and yg(y*y) ~ y which we may do by assuming £(0) = 1 and
g = ! outside a small neighborhood of zero. There are many such functions, so we
have produced Z 2 z with again 2 = 0. But what of smoothness?

If we assume, as is reasonable, that f and g are smooth, then # will remain
in the set of smooth elements if these form a %-algebra that is at least closed
under C*°-functional calculus for self-adjoint elements. Although in examples one
expects better closure properties than this, since this is all we need, it is all we
assume in this paper.

DEFINITION 1.1. A subset A of a C*-algebra A is called a real C*°-
subalgebra if it is a dense *-subalgebra and i = h* € Ay, implies that f(h) € Ao
whenever f : R — R is smooth and f(0) = 0.

The existence of a plethora of interesting real C*-subalgebras, and other
more specialized notions of smooth structures on a C*-algebra are amply discussed
in work of Sakai ([12]), Connes ([3]), and Blackadar and Cuntz ([2]), to name but
a few.

If we think of these subalgebras as defining an analog of algebras of smooth
functions, it is natural to ask whether, in the non-unital case, these structures
can, in a generalized sense, be restricted to create algebras of smooth functions of
compact support. This we can answer. In particular, the minimal dense ideal of
A 1s always an example of a real C*®-subalgebra.

PROPOSITION 1.2. If Ay is a real C™®-subalgebra of a C*-algebra A and A,

denotes the minimal dense ideal of A, then A, N Ay is also a real C®-subalgebra
of A.

Proof. In [11], Section 5.6 the ideal A, is defined, and it is proved that if a
1s any positive element of A, then f(a) € A, whenever f : R — R is continuous
and vanishes on a neighborhood of zero. Should it happen that a € Ay and f is
smooth, then also f(a) € A, It follows that A, N Ay, is dense. &
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We shall be content to work with *-polynomial relations on finitely many
noncommauting variables, together perhaps with a finite number of positivity and
norm conditions. It should be true that there are relations of a more general type
that are smoothable, but we avoid for now making a broad definition. Indeed, we
state our main definition only in terms of *-polynomials and norm bounds and
leave it to the good judgement of our readers to adjust this for other types of
relations.

Henceforth we shall let A denote an arbitrary C*-algebra, and A an arbi-
trary real C'*°-subalgebra of A.

DEFINITION 1.3. A set P of -polynomials, in n noncommuting variables, is
smoothable if, given contractions z,...,2, in A which satisfy p(z;,...,2,) =0
for every p in P, there exist contractions yi,...,%, in Ay, arbitrarily close to
these elements, such that again p(yi,...,yn) = 0.

A now standard warning is in order. The universal C*-algebra for P is not
likely to exist; it will exist only if norm conditions are imposed. Unless stated
otherwise, it should be assumed that generators are restricted to having norm at
most one.

Our proof that " = 0 is smoothable borrows ideas from [1] and [10]. From
this special case we prove a smoothing result for any polynomial in z. See also
the paper [5] by Hadwin for a closely related discussion regarding the lifting of
algebraic elements. Our method of attack on the relation ™ = 0 has the advantage
that we derive a smoothing result for certain scts of nilpotents of order two along
the way.

The proof that C M, is smoothable is best tackled in the context of mapping
telescopes for finite-dimensional C*-algebras. We will use the presentation by
generators and relations of such telescopes given in [9].

Having done so, we show that smoothable relations are closed under con-
structions corresponding, at the level of universal C*-algebras, to direct surn and
taking matrices. (Actually, we require also the assumption that the relations are
weakly stable.) These results become much simpler when the relations involved
determine a unital C*-algebra. In this case, the essential facts are that the rela-
tions

p,z =pi=pi (i=1,...,n),
pip; =0 (i#7)
are smoothable, as are the relations describing » by n matrix units. That these
are smoothable, we leave to the reader to verify by the usual tricks.
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2. ALGEBRAIC ELEMENTS

Recall from [6] that a set of relations P is weakly siable if any finite set (1. Tn)
in a C*-algebra A, approximately satisfying the relations, can be perturbed to a
set (¥1,...,¥n) in A satisfying P exactly. More precisely: for every ¢ > 0 there is
a 0 > 0 such that if z;,.. ., z, are elements in A with {jz;|| € 1 and

||p(x1,. . rzﬂ)” < 6) VP €P,

then we can find yy,...,y, in A with ||z — y||] < € for all k, such that

p(yl:"'lyn):ol Vpe,p

This is weaker than stability, which corresponds to semiprojectivity for the uni-
versal C*-algebra C*{g1,...,¢9, | P).

(This is assuming P consists only of *-polynomials in noncommuting vari-
ables g1,..., 9, with additional implicit relations on [lg;||, Also, the definition
above differs from that given in [6], but is equivalent. The distinction is weaken-
ing |Jzx|] < 1 to {|zx|| < 1+¢€ in the definition of approximate representation. The
distinction only becomes important when considering stronger forms of stability.
See (8] for an account of the various forms of stability.)

We now define a set P to be smoothly stable if in addition we can choose
the elements y;,...,yn in Ae. Evidently, this is stronger than smoothability, but
at the moment — and this may not be a coincidence — all proofs of smoothable
relations pass through smooth stability.

The next result is an approximate version of (a corollary to) [10], Lemma
6.3. Whereas the exact result — writing a nilpotent in a pseudo-triangular form —
1s only valid in special C*-algebras like corona algebras, the approximate version
holds in any C*-algebra.

LEMMA 2.1. For eachn 22 and e > 0 there is a § > 0, such thal if z € A,
flz]] < 1, and |jlz™{] < 6, then

rT=z1+ -+ 2Zn_
for some contractions z, 1 < k< n—1, in A satisfying

|z} €€ forall j< k.
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Proof. If ||z"|| < 6, choose 0 < a < €; < ¢ and let f be a continuous,
increasing function on R, such that f(t) = 0 fort < @ and f{t) = 1 for f > €.
Let e = f(|z|) and define

y=ez, Zn-1=(1-e)z;
so that ¢ = y 4+ z,_1. Since ||2(1 — ¢)|| € €1, by spectral theory, it follows that
”xi—lil e and |lyza-q|l € e
Moreover,
™= (= 2)er + flez™ | < (0 = 2)es + a7,

because we < |zi.
Taking 6’ = (n — 2)ey + o~ '6 we may repeat the procedure to write y =
Y + Zp_2 with ¥ = ¢’y and z,_y = (1 — €')y. But the new elements will still
satisfy
lyznall <er and |J@a_szn_|| e,

so the argument may proceed by induction.

ProrosiTiON 2.2. For each n the relations z;z; = 0, for 1 < j < k € n,
are smoothly stable.

Proof. We are given contractions 21,...,%, in A, such that ||z;zi|| < 6 for
all j < k. Since Ay is dense in A we may assume that the z;’s already belong to
Agy.

Now take 0 < o < 8 < ¢ and choose C* functions f and g on R such that
0< f,g <1, fg = f, both f and g vanish on [0,a] and f(t) = 1 for t > . Put

n
h= 21 zjz; and define

]:
yn = (1 — g(h))zn f(h)
and, for 1 € j < n,
v = z;£(h).

The new elements are still contractions belonging to As and now
y2=0 and Yiyn =0 for j < n.
Moreover, for j < n,

lz; — will = llz; (1= FDI < JA5(1 - F(R)) < B3
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In particular, ||y;ye|| < 28Y/2 + 6 for 1 < j € k < n. Similarly, using the triangle
inequality,
n = ¥nll < B + llg(h)znl| < B3 + o né,

because ag(h) < h and ||hz,|| < né
Taking §' = 28'/% + § we can now repeat the argument with the elements
Y,-+.,Yn—1. The new perturbations involve multiplications on the right with

factors f/(h') where A’ = Z y?yi. Since, however, y;y, = 0 for all z, we have

(A" )yn = 0 so that the prevmusly established relations will prevail. By induction
we can therefore perturb all the elements zy, . .., ,, inside A, to satisfy the desired
relations exactly. 1

REMARK 2.3. The proposition above, coupled with Lemma 2.1, may be re-
garded as a clever tool that reduces higher nilpotents to sums of quadratic nilpo-
tent elements. There may, however, be compelling reasons for this: squares may
be all we can handle. Although not explicitly stated, it is easy to see — given the
techniques in [9] — that the universal C*-algebra of contractions satisfying the
relations in Proposition 2.2 is projective. By contrast, it remains an open question
whether the universal C*-algebra generated by a nilpotent contraction (of order
n > 2) is projective.

LEMMA 2.4. (cf. [5], Theorem 2) Ifey,..., e, are pairwise orthogonal idem-

rn

potents in a unilal C*-algebra (i.e. ejer = bjre; for all j and k) with )" e; = 1,
i=1

there is an invertible element s in A such that the elements p; = sejs™' form a

set of pairwise orthogonal projections with sum 1. Moreover,

(EINERIES ( H(HH%H))

=1
Proof. Put s =3 efe;, so that s € Ay.. Then

1= (Ze,—)* (Zej) < nZe;fe]- = ns?

so that s 1s invertible, with

ll s~ < (n 3 lesl?)

1

Since s’e; = efe; = e*s?, it follows that p; = se;5~! is self-adjoint, and hence a
j J Py J

j J
projection, and evidently Y " p; = 1. &
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ProposiTioN 2.5. (cf. [5], Theorem 2) If z is an algebraic element in a
unital C*-algebra A, there is a similar element y = szs~! and pairwise orthogonal
projections p1,...,pn in A with sum 1, commuling with y, such that

(y — Ap)"pr =0

for all k, where A1, ..., An are the distinct roots in the minimal polynomial for z
with multipliciizes my, ..., My.

Proof. We have f(z) =0, where f(A) = [T(X — A;)™. Set

ri(A) = (H(A_,- - /\k)””‘) (H(J\ - )\k)m")

kZj k#j

and put a; = rj(z), 1 € j< n. Then, by construction, ai,...,a, are pairwise
orthogonal elements in A, commuting with z, such that

(.’L‘ b )\k)m"ak =0

for every k. The polynomial g(A) = 1 -3 r;(}) has (at least) the roots A1, ..., An.
Therefore the element g(z) is nilpotent and, in particular, the element b = 3~ ay is
invertible. Thus, if we set e; = a;b~* for 1 < j < n, we have pairwise orthogonal
elements with sum 1. But then the e;’s must be idempotent.

By Lemma 2.4 there is an invertible element s in A, such that, with p; =
se;5~1, we obtain an orthogonal family of projections with sum 1. Take y = sz~
and note that y commutes with the p;’s. Moreover,

(y = )™ pr = s(z — M) ™ agd1s7 =0

for every k. 1

THEOREM 2.6. If p is a complex polynomial in one variable and x s an
element of A satisfying p(z) = 0, then = can be approzimated by elements 2o n
Aco for which p(z) = 0.

Proof. If A is not unital, then necessarily one of the roots of p is zero. If
2, — z with z, € A, and p(z,) = 0 then p(e(z,)) = 0if e : A — C is the usual
map. Since the roots of p are isolated, after a finite number of terms e(z,) = 0 so

z,, € A. Therefore, the non-unital case reduces to the unital case.
113

Assume then that A is unital and p(z) = 0 with p(A} = [] (A — Ax)™*. By
k=1
applying Proposition 2.5 we obtain y = szs~! such that

(y— )™ pr =0
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for all k, where py,...,pn is an orthogonal family of projections in A, commuting
with y and having sum 1.

If @ is a self-adjoint element of Ay such that a &~ py, then ¢1 = f(a) is a
projection In Ay close to a so long as we choose f as a smooth function with
f =0 on a neighborhood of 0 and f = 1 on a neighborhood of 1. We now proceed
to approximate ps by elements from (1 — g1)A (1 — ¢1) and by induction we see
that for every € > 0 there are orthogonal projections g1, ..., gn in Ag with sum 1
such that {|pr — g|| < €. A more general version of this problem will reappear in
Lemma 3.2.

For each k the element v = grygr In qrAgs satisfies (ye — A)™ = 0.
Moreover, Yy =~ y. Combining Lemma 2.1 with Proposition 2.2, and working
inside gz Agi, we can find 2; in qrAcogr With zx & yp such that (zx — Xp)™ =

The element z = ) z; belongs to A, and approximates y. Moreover,

p(2)ae = [ [z = 2e)™ar = TJ(2 — M) ™ = 0

since already the factor (z; — Ag)™* equals zero. Since Y g5 = 1 we conclude that
p(z) = 0. Choose an invertible element sy & s in Ag, and put ze, = 55 ' z59. Then

Too € Aco, Too & 55 yso~ = and evidently p(zoo) = 0. W

REMARK 2.7. This paper focuses on smoothing and not stability, but we
wish to point out that Lemma 2.4 and Proposition 2.5 have stable versions, which
appear in [5]. Hadwin uses these to show various lifting results and also to show

that for any polynomial in a single variable, the relation p(z) = 0 is weakly stable.

Given the complete success of the theory of algebraic elements, it is natural
to ask if any progress can be made for polynomials that include both z and z*.
Jumping to second-order equations we find a few that can be handled, namely
2'z = 1 or zz" = z*z = 1, corresponding to the well known smoothability of
isometries and unitaries. However, the relation *z = zz* is non-smoothable (as
well as non-stable) as demonstrated in {7]. Smoothability for #-relations may be

very rare.
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3. CONES OF MATRICES

The best way to study the cones CM,, and CC”" is in the more general setting of
finite mapping telescopes for finite-dimensional algebras. Given a finite sequence
of (let us restrict our attention a little) unital embeddings of finite-dimensional
C*-algebras

Ay C A C - C Ap,

T(Ay, Ay, ..., Ap) is defined as
{f € Co((0,n), A) | £(t) € Ay i 1 < k).

For each such telescope, we defined in [9] a canonical set of generators and relations.
We will describe specific sets of generators and relations for all the telescopes we
use. However, the reader is referred to [9] for proofs and is warned that we don’t
always use the canonical relations or notation.

An obvious isomorphism is T'(A) = CA. Another is

T(A1, ... An, An) = T(A1, ..., An).

Our canonical generators and relations for these two C*-algebras differ, however,
giving us a key tool for proving results by induction on the number of algebras
forming the telescope.

The relations corresponding to CC™ are easy to imagine; the generators are
n orthogonal positive contractions. The next two lemmas will, in particular, show

these relations to be smoothable.

LEMMA 3.1. Ifk € A and 0 < k then kAk N Ax s a real C™-subalgebra
of kAk.

Proof. Clearly Ao, NkAk is a *-subalgebra closed under the requisite func-
tional calculus. Every element in kAk is close to an element of the form kak for

some a in A. Since a =~ @ for some @ in Ao, we have established that

kak =~ kak € kAENAs. B

In the next lemma, given hy,...,h,, the needed element & in A, can al-
ways be manufactured, so in particular the smoothability of n orthogonal positive

contractions is established.
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LEMMA 3.2. For every € > 0, there exisis, independent of A, a positive
number § such that: if hy, ..., h, are elements of A and k is a posilive element of
Ay such that

0K <1 (i=1,...,n),

hih; =0 (i # §), H S —k" <6

then there ezist hy,. .. hy, in Ao NkAk such that |]f11- —h|| €€ and

0<h <1l (G=1,...,n), hhj=0 (i#j).

Proof. The simplest interesting case of the lemma is n = 2. In this case, first
choose an element 7z of A, with =1 € 2z € 1 and z = h;ls - h}/a. Let f denote
.a smooth, positive function on R, with 0 < f <1, f(0) = 0, and, for 0 < ¢ < 1,
f(t) ~ t'/3, Define

b= f(k)zf(k) € Ao NEAE,

so that —1 < b < 1 and b = hy — h;. Moreover by = by and b = hy. Therefore,

we may take

FL; = f,(b) € Ax NEAE
for fi and f, appropriate smooth functions chosen with
fif2=0, fi(t)~-tv0 and fr(t)~tVO0.
Now assume, for n < 3, we are given such &, hy,..., h,. Apply the above
case to find orthogonal, positive contractions k and kg in Ae N EAE such that
n—1 ~

ko~ hj and h, = h,.
1

i

By induction, and Lemma 3.1, we can find Ay,...,An_1 in A N kAk such that
0 < hj <1 and hjhy = 0 for i # j less than n. Since k € EAk, we have h; € kAk
for all j. Since kh, = 0, we also have f_lj’_ln =0forj<n 1

The next lemma is an improvement on the fact that 2 = 0 is a smoothable

relation. Roughly speaking, it says that the smoothing can proceed in stages.
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LEMMA 3.3. Suppose hi, hy are elements of Ag, and x is an element of A
such that
0<h,ha1, |2|| €1, hihe =0,

|z| &~ hy and |z¥| = hs.
Then there exisis T ~ z in Ao with
#2=0, |z||<1, |#|€hidh and |z*| € hoAh,.
Proof. First factor = as
z=o'|Sylz|s

for some y in A of norm at most one. (Since by polar decomposition ¢ =
|z*|Y/3v|z|*?) we can take y = v|z|!/3.) Pick a smooth function f with f(0) =0,

0K f(1) <1 and f(t) ~ 15,

Let 4 be any contraction in Ay, that is close to y. The required approximation in

A to z 18
z = f(h2)yf(h).
Indeed,

clearly ||Z|| £ 1 and

I*z € f(h1)Af(hl) C hiAhy,
zr* € f(hg)Af(hg) C hpAhs. &

THEOREM 3.4. For each natural number n, any of the following three sels

of relalions is smoothable:
(3.4.1) Generators: &1,...,&n, h1,.... 1
Lforj=1,...,n and

-~

n. Relations: [|z;|| € 1 and 0 € h; €

.’E% = .’L‘1h1 = hl:cl = 0,

[z 2 41] = |zj41l,
hj|’";+1| = |:c;+1|,
hjhj.H :hj+1 (j:l,...,n—l),

h,j:l:j:() (j:l,...,n).
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This is a presentation for T(My @ C, ..., My41 @ C) with embeddings

a 0
0 B

(3.4.2) Generators: zy,...,Zn,h1,..., hy, k, 1. Relations: |jz;]] <1 and 0 <
hy <1, forj=1,...,n,plus0< k< 1,011 and

a@ﬁw[ J@ﬂ

z? =0,

.'L‘]’l] = 111171 = 0,

il lzj 41| = |zj4al,

hjl“';wl = '$;+1ta

hihjpr = hjp (G=1,...,n=1),

hjz; =0  (j=1,...,n),

Ixnlk = k)

hpl = 1.
This is a presentation for T(Ma, & C,... Mpy1 & C, Mpyq @ C).

(3.4.3) Generalors: z1,...,2n,h1,..., ho, k11,15, Relations: ||z;[| € 1 and

0yl fori=1,.. . nplus0<k<1,0< <1 and

2% =0,

:L’1h1 =t ]l.ﬂ?l =0,

zjllej+1l = o],

hil2ipa ] = |25 4],

hihjpr = hjga, G=1,...,n-1),
hjx; =0, (G=1,...,n),
lzalk = k,

haly =15,

Li, = 0.

This is a presentation for T(M; & C, ..., Mp41 ®C, Mp11 6 C @ C).

Proof. The proof is a simultaneous induction. The base case is (3.4.1) with
n = 1. We then will show, for a fixed n, that (3.4.1) implies (3.4.2), that (3.4.2)
implies (3.4.3), and (3.4.3) implies (3.4.1) with n increased by one.

In the base case, the generators are just x and A with relations

lzll <1, 0<h<],
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2 _ — e —
z¢=0, zh=hz=0.

Apply Lemma, 3.2 to obtain three smooth orthogonal contractions ki, ks, h with
ki ~ |z|, ks ~ |z*| and h ~ h. Lemma 3.3 now provides a smooth contraction
z ~ z with || € hy Ahy and |E*] € haAhy. The orthogonality of k; and Ay with A
means that these conditions force zh = hz = 0.

That (3.4.1) implies (3.4.2) is essentially the fact that there is an isomorphism

T(My &C,... , Myy1 ®C, My ®C) = T(My & C, ..., Mny1 & C),

amel
ey F(t), tef0,n—1]
f2t—n—-1) ten-1,n+1}

We must, however, take advantage of the flexibility that exists in associating the

(N0 ={

abstract generators with concrete algebra elements. On the righthand side, we
choose the generators as was done in [9):

;= f; ®(ej4+11®0), hi=f0061),

where f; : [0,n] — [0,1] is the obvious piecewise linear function that is zero on
[0,7 — 1] and one on [j,n].

On the lefthand side, we choose #; and I~1j in the same way for j < n,
(except to extend f; as 1 on [n,n+ 1]) while we choose (using the tilde ™ to avoid
a notational collision).

Zn=gn ®(6j+1,1©0), hn=gn® (0 1),

l;=9n+1®(31,1®0), [= gn+1®(0€|91),

where the g; are some smooth functions on [0, n + 1] that equal zero on [0,5 — 1],
equal one on [, n+1] and are monotonically increasing on [j —1, ]. We can choose
these so that there are smooth function 7; and 73 on {0, 1] such that

Fa®)m(£(t)?) = gn(2t —n = 1)

and
N2(fas1(t)?) = gas1(t)

for t € [n — 1,n]. In this case,

o(&n) = zami(2p2n), ‘P(Bn) = han(hyhn)
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and
p(k) = n2(znza), @) = n2(hrha)
and so @ transfers any smoothing result for zy, Ay, ... back to F1, b, ..

Now suppose we are given zj,h; (7 = 1,...,n), k1,13 in A satisfying the
relations in (3.4.3). Using (3.4.2) we can find smooth elements

l_%ll-«l—lz, z; &y, ilj’&’hj and ’;%k,

satisfying all the relations in (3.4.2). By Lemma 3.2 there exist 1,05 in TAlN Ao
with 0 < &1, 13 € 1 and 11, = 0. All the relations in (3.4.3) have been established
for ij,izj Jk, 13, 1y except 71,,1}- = Tj, which follows from the fact that h,i = 0.

Now suppose (3.4.3) is established for some fixed n and that we are given
T1,...,Znt1 and Ay, ..., hnyyy in A satisfying the relations in (3.4.1) (with n re-
placed by n+1). Then, by assumption, there exists Z1,...,Zn, R1,..., hn, k, b, 12
in Ag with

Exleanl, L= 1z5 41, Iy & hnyi,

T; &z, h,-zhj (j:l,...,n),

that satisfy the relations in (3.4.3). Lemma 3.3 now applies to give a smooth
contraction Z,4; approximating z,41 such that |z,41| € %Ak and lzneil € 1, Aly.
To specify the last perturbed generator let hy4; = I5. The relations |2, |k = k and
ﬁ,,l} :fj imply that

|Zal|Zas1] = |Ens1l AnlEhyr] = |Eh4a] and  Rohagr = b,

and the relation 11, = 0 implies hpp1Znys =0. 1
CoROLLARY 3.5. The relations
0< k<1,
lasll €1, (G=2,...,n),
a,-aj:O, (i:?,...,n),
aja; =0, (i#7),
ala; =k, (i=2,...,n),
are smoothable. Consequently, the *-homomorphisms in hom(CM,,, A) that map

the smooth funciions in CM, inlo Ay are dense.

Proof. Consider the inclusion

9016Mn""T(M2®C;--~;Mn+1@C)
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defined by
0 te0,n— 2
p(A)) = H(t-n+2H @0 tefn—2n—1]
fMyaeo tén~1,n].

. In terms of generators, this is defined by
aj — mj_l(z:zn)z, k—zliz,.
For any small é, consider also the map
Y : T(Ma & C, ....,Mn+1 dC)—- CM,

defined by
_ f (g—)—";.z t) t €[0,64

(O =3 (F(n—2+5558) tels 1.

b
Here 71(b&® B) = b and, for k < n, we identify b&® 8 € M & C with [0 ﬁ[o ]
n—k

One may check that ¥s o ¢(f) converges to f as § — 0. It follows that, given a
representation as,...,a, in A of the relations for CM,,, we may, after making a
small perturbation to another representation, assume that

a; = zj_1(zhzn)? and k=1z}z,
for some representation z1,...,2&y, hi,...,h, of the relations in (3.4.1). Smooth-

ing these, we are done. B

REMARK 3.6. The methods above, coupled with the full machinery from
[9], can also prove that the canonical relations for a mapping telescope of finitely
many finite-dimensional inclusions are smoothable.

We are unable to prove good closure properties for smoothable relations, but
can for smoothly stable relations. (Recall that smooth stability is equivalent to
smoothability plus weak stability.)

THEOREM 3.7. Suppose R1 and Ro are sets of relations thal are smoothly
stable. Let the variables for R; be denoted G; and assume that G1NGy = 0. Then
the set of relations

R1URU{zy=yz =0 ifz € G| and y € G2}

15 smoothly stable.
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Proof. Of course, if R denotes this larger set of relations then
C*{G1 UGy | RYZCH{G | R1) D C™ (G2 | Ra).

In [6] it is established that weakly stable relations are closed under such direct
sums, so the only question is smoothing.

Suppose G; is now a subset of A satisfying R;. Consider the two orthogonal
positive elements

Applying Lemma 3.2 to h; and h, (technically, applying that lernma to the ele-
ments {|h;||71h;) we can approximate k), and hs by smooth elements h; and &y
that are positive and orthogonal.

Suppose ¢ € G;. By the two-sided factorization in [6], Lemma 5.3, since
z*z £ h; and zz* € h;, we can write z = h:‘lsyhgls for some y in A with
llyll < [|Ad]]Y/®. We can define z = .71:/31;7::/3, which is in h;Ah; and ||z — z|| is
bounded by a constant that only depends on ||f; — hs||. After doing this for all
z € Gy, we can apply weak stability to the #’s and find a representation G; of

R; in h;Ah; that is arbitrarily close to G;. Applying smoothability, we can find
nearby @i C AgNh;Ah; that form a representation of ;. Since these smoothings
are in orthogonal subalgebras, G u @2 is a representation of . §

THEOREM 3.8. Suppese R is a sel of relations tn lhe variables G thal 1s

smoothly stable. Let as,...,a, denote additional variables, and let
€= Z '+ zzt|,
zeEG

the norm being taken in C*(G | R). The set R, consisting of all the relations of
R plus the relations
aa; =0 (1=2,...,n),

aja; =0 (i # 7},
ala; =k% (i=1,...,n),

¢! E ztz +zxx*t =k,
TeG

1s smoothly stable.

Proof. That the universal C*-algebra for R,, is M,{C*{G | R)) and that R,
is weakly stable was established in [6], so we here prove only smoothability.
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Suppose that G C A and a; € 4, 2 € j € n, and that these elements
comprise a representation of R,,. Let £ = a}a; and consider the map ¢ : CM,, — A
defined by p(t ® ej1) = a;j. Choose a function fs : [0,1] — [0, 1] that is close to
the identity but zero on a neighborhood of the identity. Now choose a smooth
function f; : [0, 1] — [0, 1] such that f;{0) = 0 and f; fs = f2. Lemma 3.5 provides
amorphism ¢ : C M, — A such that @(f; ®e;;) € A and such that k= ?(f2€11)
is sufficiently close to & as is desired.

Since any z in (7 can be factored as
z= k%yk%

with [jy|| € ¢*/3||z]), it follows that

wop=

E = i_c%yk_,‘

is close to . Working inside kAk we can apply weak stability and then smootha-
bility to produce Z in A, N kAk so that {Z | # € G} is a representation of R.
Let
kE=c! E %+ z3*
zTEG
and
& = ¢(f @ e51)k,

which are all elements of A,,. Since

k3(fi @ ej1) = G(f2 @ e11)p(fL @ ej1) =0

and k € kAk,

a:3; = ¢(f1 ® € )k@(fi ® 51}k = 0.
For i # j,

a;a; = kp(f1 @ e1:)@(fr @ ej1)k = 0.
For any ¢,

@ d; = kp(f ® 1)k = k%,
the last equality holding because
F(fiver)k=@(fifo ®e11) =p(fa®en) =k

and k is in the hereditary subalgebra generated by k. 1
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EXAMPLE 3.9. The C*-algebra M, (Cy(0, 1))~ is the universal unital C*-
algebra generated by elements u, as, . .., a, subject to the relations

wu = uu =1,

ajakzol (j?k:Q)"'Jn))

ajar =0, (j#k),
NM—u’=la;, (j=2,...,n)

(The norm conditions {luf| < 1 and {|a;] € 4 being forced.) These relations are
smoothable,

REMARK 3.10. Given this last example, it is straightforward, if lengthy, to
go on to prove that the dimension-drop interval I, is universally generated by
smoothly-stable relations. Thus every element of Ko(A; Z/p) = hom(l,, A ® K)
(cf. [4]) can be represented by a smooth map from 1, to A ® M,, if n is large
enough and A has an appropriate smooth structure.
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