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ABSTRACT. The adjoint of a well-bounded operator is also well-bounded,
but in general the hoped for natural relationship between the corresponding
decompositions of the identity do not hold if the underlying Banach space
is nonreflexive. In this paper we discuss the conditions under which the
adjoint family of a decomposition of the identity forms a decomposition of
the identity for the adjoint of a well-bounded operator.
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1. INTRODUCTION

Well-bounded operators are those which possess a functional calculus for the ab-
solutely continuous functions on some compact interval [a, b} of the real line. They
were introduced by Smart ([15]) to provide a theory which covers operators whose
spectral decompositions may converge only conditionally. Smart and Ringrose
([13]) proved that on a reflexive Banach space X, a well-bounded operator can
be written as an integral with respect to a suitable family of projections acting
on X. Ringrose ([14)) later considered the extension of this theory to the non-
reflexive case. The results obtained in this case are less satisfactory because the
family of projections acts on the dual space X* rather than on X, and in general,
is no longer uniquely determined. Indeed, it is perhaps more appropriate to say
that Ringrose showed that the adjoint of a well-bounded operator (rather than the
operator itself) always admits an integral representation with respect to a family
of projections. Ringrose called this family of projections a decomposition of the
identity (a precise definition will be given is Section 2). It is not too difficult to
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find examples of well-bounded operators which are not ‘decomposable in X’ in
that the projections in the decomposition of the identity are not formed from the
adjoints of projections on X.

It is clear that an operator is well-bounded if and only if its adjoint is. On
the other hand, if X is not reflexive, many of the properties that a well-bounded
operator may possess do not pass to the adjoint operator. When constructing
examples on nonreflexive Banach spaces, one typically has to work quite hard
to prove that what one expects to get, actually occurs. One would hope that a
suitable family of projections for the adjoint of a well-bounded operator T could be
formed by taking the adjoints of a decomposition of the identity associated with T'.
One of the main aims of this paper is to show that on a wide range of nonreflexive
Banach spaces it is not possible to do this. We also show that a necessary (but not
sufficient) condition for one to be able to find a decomposition of the identity for
T* by taking the adjoints of a decomposition of the identity for T, is that 7" have a
unique decomposition of the identity. These questions are addressed in Section 4.

In Section 3 we have included some results on quotients and restrictions of
well-bounded operators. Some of these results will be needed in Section 4.

2. DEFINITIONS

In this section we shall give some of the basic definitions regarding well-bounded
operators. The theory of well-bounded operators is given in more detail in [8].

Throughout X will denote a complex Banach space with dual space X*. We
shall frequently blur the distinction between a Banach space and its canonical
image in its second dual. The Banach algebra of all bounded linear operators on
X will be denoted by B(X). We use Lat(T) to denote the invariant subspace
lattice of T. If Y is an invariant subspace under 7', then T|Y and T¥ are the
restriction and the quotient of 7" on Y, respectively.

DEFINITION 2.1. An operator 7' in B(X) is said to be well-bounded if there
“exist a constant K and a compact interval [a, b] C R such that for all polynomials p,

(T < K{lp(a>|+ /b |p'(t)|dt}-

If T is a well-bounded operator, T possesses a bounded functional calculus
for AC[a,b], the Banach algebra of all absolutely continuous functions on [a, b].
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That is, there exists a Banach algebra homomorphism f ~— f(T'), extending the

natural definition for polynomials, such that

AT < K{uf(a)l 4 [\;alﬁf} = K| fllac.

DEFINITION 2.2. A decomposition of the identily for X (on [a, b]) is a family

{E(5)}ser of projections on X* such that:
(1) E(s) =0 (s <a),E(s) =1 (s 2 d);

(i) B(s)E(t) = E(E(s) = E(s) (5 < 1)

(ii1) there is a real constant K such that ||E(s)|| < K, for s € R;

(iv) the function s ~ (z, E(s)z*) is Lebesgue measurable for z € X and
zr e X

(v) for each ¢ € X, the map v, : X* — L%[a,b],z* — (z, E(s)z*) is
continuous when X* and L®[a,b] are given their weak-* topologies as the duals
of X and L'[a, b] respectively;

(vi) for ?11 z € X, z* € X* and to € [a,b), if the right derivative of the

function ¢ — [(xz, E(u)z*) du exists at g, then its value is (z, E(to)z*).
a

Given a decomposition of the identity {E(s)}, there exists a unique T' €
B(X} such that

b
(1.1 (Tz,z") = b(z,z") - /(z, E(s)z*) ds, zeX, 2" € X",

a

Ringrose proved that T must be well-bounded. Conversely, given a well-bounded
operator T, there exists a decomposition of the identity such that T has such
a representation. In general however, the decomposition of the identity is not
uniquely determined by 7. If there is only one decomposition of the identity for
which equation (1.1) holds we say that T' is uniquely decomposable.

Condition (vi) in Definition 2.2 is in some sense optional, as any family of
projections which satisfies the first five conditions defines a well-bounded operator
via equation (1.1). Without condition (vi) (or some alternative; see for example
[7]), one does give up any results about uniqueness of decompositions of the identity
associated with well-bounded operators.

We recall the following standard definitions.
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DEFINITION 2.3. Let T be a well-bounded operator and let {E(s)} C B(X™*)
be a decomposition of the identity for 7', Uf there exists a family of projections
{F(s)} C B(X) such that F(s)* = E(s) for all s € R, we will say that 7" is
decomposable in X. Further, T is said to be of type (A) if the function s — F(s)x
is everywhere continuous on the right for every z € X. We shall say that T is of
type (B) if T is of type (A) and, in addition, for each real 5, lim F(t)z exists for
every z € X. o

If T is of type (B), then the projection-valued function F' : R — B(.X) forms a
speciral family of projections on the Banach space X, concentrated on the interval
[2,6]. The spectral theorem for well-bounded operators of type (B) states that
there is a one-to-one correspondence between well-bounded operators of type (B)
and concentrated spectral families given by the integral formula

&

T= / sdF(s).
fa,b]

This happens if and only if the AC-functional calculus of T is weakly compact (see

for example (8], [7]).

3. QUOTIENTS AND RESTRICTIONS OF WELL-BOUNDED OPERATORS

It is clear that the restriction of a well-bounded operator to an invariant subspace
is again well-bounded. Showing that one gets an appropriate relationship between
decompositions of the identity is rather more difficult. The following theorem
shows that one can at least restrict to a complemented invariant subspace. If
X =Y @& Z we shall often denote an element of X by (y, z), where y € Y and
z € Z.

TueoreM 3.1. Suppose that X = Y®Z and that P € B(X) is the projection
onto Y with kernel Z. If {E(A)} C B(X™) is a decomposition of the identity such
that P*E(X) = E(A)P* for all X € R, then setting F(A)y* = E(A)(y",0) defines
a decomposition of the ideniily on Y* = P*X*. Furthermore, if T € B(X) 15 the
well-bounded operator associated with {E(X)}, then Y is an invariant subspace for
T and T|Y is the well-bounded operator associated with {F(A}}.

Proef. In order to avoid having to keep track of where identifications are
being made we introduce the following operators: P € B(X*,Y*), P(y*, %) = ",
and J € B(Y*, X*), J(y*) = (¥*,0). A more precise definition of F(A) then is
F(X) = PE(A)J. Note the identities

BPr=IeB(Y*), JP=pP*, PP =P
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It follows easily from these identities that {F(A)}} is a uniformly bounded, increas-
ing family of projections. It remains to show that {F(X)} satisfies conditions (iv),
(v) and (vi) of Definition 2.2.

Forally € Y and y* € Y*, (y, F(A\)y*) = ((v, 0}, E(X)(y*,0)), so (iv) follows
immediately from the fact that { £(A)} is a decomposition of the identity.

Fix yo € Y. Suppose that for all y € Y, {y,¥%) — (% v5). Then, for
all (,2) € X, ((4,2),Jya) = (v, ¥a) — (% 45) = {(v,2), Jy5). Since {E(N)} is a
decomposition of the identity, this means that ((y, z), E(:)Jyh) — (v, 2), E(-)Jv5)
in the weak-* topology of L®. That is,

(w0, FC)us) = (w0, 0), BCYyn) — {(0,0), EC) Ty} = (o, F()u5)

and so condition (v) is satisfied.

Showing that condition (vi) is satisfied is similar.

Let T denote the well-bounded operator associated with {£())}. To show
that Y is an invariant subspace for T it suffices to show that for all y € ¥ and
z* e Z*, (T(y,0),(0,2*)) = 0. Now

b

(T(y,0),(0,27)) = b{(%,0),(0,z7)) - /((y,U), E(A){0,2%)}ydA
b

b
~0- / (P(y,0), E(\)(0, 7)) dA = — [ (1,0, P*E(X)(0, 2*)) dA
b

a

= - /((y,O), E(MP*(0,2%))dAr = 0.

a

We leave it to the reader to verify that the well-hounded operator associated with
{F(M}isTY. &

THEOREM 3.2. Suppose that T is a well-bounded operator on a Banach space
X and thatY is a subspace of X invariant under T. Then the quolient operator
TY of T is a well-bounded operator on the quotient space X/Y . Furthermore, if
T is of type (B), then TY is also of type (B).

Proof. Since T is well-bounded, we can find constants a,b and K in R such
that

(Ip(TH| € K||pllacta,n



40 QINGPING CHENC AND IaN DousT

for any polynomial p on [a,b]. Let [z] be a arbitrary element of the quotient space
X/Y , then

(T =]l

xry = Ilp(Tzlllxsy = yﬂel}f, lp(T)z + yl|
< ;gf, Ip(T)z + p(T)y]} < ;gf, (T - e + 9l
= |l - =]

and hence TV is well-bounded on X/Y.
Suppose now that T is well-bounded of type (B). Then for any z € X, the

xv € Klpllaciaslll]lix/ v,

map @ : AC[a,b] — X, (f) = f(T)z is weakly compact. Since the quotient map
1s continuous, it follows that ® : AC[a,b] — X/Y, ®(f) = [p(f)] is also weakly
compact. Hence TY is of type (B).

Let T and Y be as in Theorem 3.2, and let {E(s)} be a decomposition of
the identity for 7. One could hope that each decomposition of the identity for
T would give rise to a decomposition of the identity for T¥. The projections in
a decomposition of the identity for T act of course on (X/Y)* which we shall
identify in the usual way with Y+. For s € R set G(s) = E(s)[Y+. In order to
show that (7(s) is a projection we need to check that Y+ is invariant under E(s)
for all s € R.

ProposiTION 3.3. Lel T be a well-bounded operatlor and let {E(s)} form a
decomposition of the identity for T. If Y is an invariani subspace for T then

Y+ e () Lat E(s),
sER

and {E(s)|Y1} forms a decomposition of the identity for TY .

Proof. Since Y is invariant under T, Y+ is invariant under 7*. and hence
under p(7™) for every polynomial p. It follows that ¥+ is also invariant under
F(T™*) for all f € AC[a,b). Thus, for z € Y and 2" € Y we have

(F(T)z,2") = (z, f(T*)z*) = 0

and
(z,2%) = 0.

Thus

[t B0 () ds = bla,27) - (113,27 = 0
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This implies that (z, E(s)z*) = 0 for almost for all s € R. Condition (vi) for a
decomposition of the identity ensures that {z, £(s)z*) = 0 for all s € R. That is
B(s)z* € Y, for any s € R.

Thus setting G(s) = E(s)|Y* gives a uniformly bounded family of projec-
tions on (X/Y)*. Showing that this family satisfies conditions (i)-(vi) of Defini-
tion 2.2 is not too difficult since if {z] € X/Y and z* € Y then

([z], G(s)=™} = (=, E(s)z").
We leave the details to the reader. &

If T is of type (B), then the spectral families of T and 7% match up. The
following proposition is due to Berkson ([1], Theorem 3.1).

PROPOSITION 3.4. Lel T be well-bounded operator of type (B) and let {F(s)}
form a spectral family for T'. Then

Lat(T) = () Lat F(s).
sclR
COROLLARY 3.5. Let T be a well-bounded operator of type (B) and let {F(s)}
be the spectral family for T. Suppose that Y is an invariant subspace for T. Then
{F(s)¥} forms a spectral family for TY . In this case,

@
7Y = / sdF(s)Y.
[a,?]

Again the details are easy to check.

4. DUAL PROPERTIES OF WELL-BOUNDED OPERATORS

It is clear that T € B(X) 1s well-bounded if and only if the adjoint of T is.
The main questions that we want to consider concern the relationships between
decompositions of the identity for 7' and those for 7. In particular, we shall
examine the question of when the adjoints of a decomposition of the identity for
T form a decomposition of the identity for 7.

To place this in some context we shall recall some of the corresponding results
for scalar-type spectral operators. We refer the reader to [8] for the appropriate
definitions.

TuEOREM 4.1. ([8], Theorem 6.9) Let T' € B(X) be a scalar-type spectral
operator with resolution of the identity £(-). Then T* is a scalar-type prespectral
operator with resolution of the identity £(-)* of class X.

Theorems 4.2 and 4.3 are due to Jiang and Zou ([11]}.
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THEOREM 4.2. Suppose that ¢g ¢ X*. If T € B(X) is a scalar-type spec-
tral operalor with resolution of the identity £(-), then T* is a scalar-type spectral
operator with resolution of the identity £(-)*.

Proof. By Theorem 4.1, T is scalar-type prespectral. Clearly X™* can not
contain a copy of £2°. Theorem 1 of [10] shows that 7™ is therefore a scalar-type
spectral operator. Theorem 4.1 and Theorem 6.7 of [8] show that the resolution
of the identity for T* is £(-)*. &

THEOREM 4.3. Suppose that cq C X*. Then there exists a scalar-type spec-
tral operator T € B(X) such that T* is not scalar-iype speciral.

Proof. If cg C X* then X = £ ® Y for some Banach space Y ([12], Propo-
sition 2.e.8). Define Ty € B(#') by To(zy,z2,...} = (21,%2/2,23/3,...), and
TeBX)byT=T,®0o0n £ @Y. It is easy to check that T is scalar-type
spectral, but 7™ is not. 1

We now return to our study of well-bounded operators.

DEFINITION 4.4. Suppose that {E()\)} C B(X*) is a decomposition of the
identity. We shall say that {E(A)} is transposable if the family of projections
{E(A\)*} ¢ B(X**) is also a decomposition of the identity.

Of course if {E(A)} is a decomposition of the identity then {E{A)*} is nec-
essarily a uniformly bounded increasing family of projections on X**. Verifying
conditions (iv)—-(vi) of Definition 2.2 is usually more difficuit however. The next
result shows that one does at least always gets the expected well-bounded operator
from a transposable decomposition of the identity. The straightforward proof is
left for the reader.

PROPOSITION 4.5. Suppose that {E(A}} C B(X™) is a decomposition of the
identily with associated well-bounded operator T. If {E(A)*} 1s alse a decomposi-
tion of the identity, then iis associated well-bounded operator s T*, and hence T™
ts decomposable in X™,

COROLLARY 4.6. IfT™ is nol decomposadle in X* then no decomposilion of
the wdentity for T' is iransposable.

If 7™ is decomposable in X*, then it is uniquely decomposable. On the
other hand, it is well-known that a well-bounded operator may have movre than
one decomposition of the identity. It follows that if T is such an operator, then
at most one of the decompositions of the identity for T can be transposable. As
we shall see below, in fact none of the decompositions of the identity for such an
operator can be transposable.
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We shall now show that the converse to Proposition 4.5 holds. For s € [a, ],
let F, = {f € ACla,b] : f(t) = 0 for t € [a, s]}. The following lemma is a corollary
of Theorem 3.3 (ii) of [17] and Theorem 5.7 of [2}.

LEMMA 4.7. Leli T be a well-bounded operator which is decomposable in X
and {F(s)} be a family of projections on X whose adjoints form a decomposition
of the idenitly for T. Then

FO)X={z e X : f(T)z =0 for all f € F,}.

THEOREM 4.8. Let T € B(X) be well-bounded. If T™ 1s decomposable in X
then T is uniquely decomposable, and the decomposition of the identily for T 1s
iransposable.

Proof. By Theorem 15.19 of [8)], there exists a decomposition of the identity
{E(s)} for T such that if § € B(X) commutes with T, then S* commutes with
each E(s), s € R. In particular, 7* commutes with each E(s), s € R.

Let {Ei(s)} be a family of projections on X* such that {E](s)} forms a
decomposition of the identity for 7*. It is sufficient then for us to prove that
E(s) = Ei(s), for all s € R. By Theorem 16.3 of [8],

E(s)E1(s) = B1(s)E(s),

for s € R. By Lemma 4.7 and Theorem 15.18 of [8], the ranges of each E(s) and
E\(s) are equal, so E(s) = Ei(s), for s € R.

Now, if T' is not uniquely decomposable, then by Corollary 15.23 of [8] there
exist two distinct associated decompositions of the identity, say { £(s)} and {F(s)}
having property (iii) of Theorem 15.19 of [8]. But the argument above proves that
E(s) = F(s), for all s € R. The theorem is thus proved. 1

COROLLARY 4.9. Suppose that T is not uniguely decomposable. Then no
decomposition of the identily for T is transposable.

EXAMPLE 4.10. It follows from the above that the well-bounded operator

1
Tf(z)=zf(z) + /f(t) dt, ze€[0,1}, feL*0,1]

is not decomposable in L*°[0,1]. This is because T' = S* where S is the operator
on L'[0,1] given by

Sﬂﬂ:xﬂ@+/ﬂﬂ&, ze[0,1]
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which is known to have many decomposition of the identity (see [8], Example 15.25).

A natyral problem is to try to identify those Banach spaces on which every
decomposition of the identity is transposable. If X is reflexive then everything
behaves just as one would hope. The following proposition is a simple consequence
of Theorem 17.17, [8] and the proof of Theorem 3.5, [5].

ProPoSITION 4.11. Suppose that X is reflevive, and that T € B(X) is a
well-bounded operator with (unique) decomposition of the identity {E(X)}. Then
{E(M)} is transposable.

Beyond Theorem 4.8 there seems to be very little that can be said in a
positive direction once one leaves reflexive spaces. As the examples below will
illustrate, even if a well-bounded operator has a decomposition of the identity
with good properties, its adjoint operator need not be so well-behaved. In what
follows, if a well-bounded operator S has a unique decomposition of the identity
we shall sometimes denote this by {Es(X)}. As usual, we shall let ba denote the
dual of £°°.

EXAMPLE 4.12. Define T € B(co) by T{(z1,22,...) = (z1,22/2,23/3,...).
1t is easy to check that T and 7™ are both well-bounded operators of type (B).
Let {E(A\)} € B{ep) denote the spectral family for T. Then T and T* both have
unique decompositions of the identity, given by { E(A)*} and { E(A)**} respectively.
However, as we shall see, {E{X)***} is not a decomposition of the identity.

Let {F(A)} C B(ba) denote a decomposition of the identity for T**. Then
by Theorem 15.8 (iii}, [8]

{p€ba : T"¢ =0} C F(0)(ba).
However, if ¢ is a Banach limit on £ then, for all 2 € £,
(5, T 6) = (T2, 0} = 0

since T**z € co. Thus F(0) # 0. But it is easy to check that £(0) = 0. Thus
F(0) # E(0)** = Er-(0)*. It follows that {E(A)***} is not a decomposition of
the identity since if it were, the corresponding well-bounded operator would have
to be T,

In this example then, the decomposition of the identity for 7" is transposable,
whilst that for 7* is not. In particular, this gives an example of a well-bounded
operator on £' whose (only) decomposition of the identity is not transposable.

We can actually say a little more about this example. If is clear that T,
and hence all its adjoints, have a C[0,1] functional calculus. Since ba does not
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contain a subspace isomorphic to ¢q, this means that 7*** € B(ba) is scalar-type
spectral ({6], Theorem 3.1). In particular then, 7*** is a well-bounded operator of
type (B) ([8], Theorem 16.17), and hence is decomposable in ba. By Theorem 4.8,
this means that the 7** is uniquely decomposable, and that the decomposition of
the identity for 7** is transposable.

Constructing examples of well-bounded operators on ¢g or £%° which do not

possess decompositions of the identity which are transposable is more difficult.

ExampLE 4.13. For n = 1,2, ... define projections @, € B(eg) by

Qn(xlnyZ; o ‘) = ("'rl.; oy s gy Tt - )
n times
Forn 2 1,let P, = Qn—Qny1- Then {P,} forms a sequence of disjoint finite-rank
projections so Theorem 3.2, [4] shows that T = Z L P, is well-bounded. Indeed,

=1
since @, — 0 in the strong operator topology, 1t is not too hard to see that T is
of type (B). The unique decomposition of the identity for T is given by

0 A<,
Er(M) =4 @, ifrell, )forn>?
I izl

We claim that {E7()\)} is not transposable, or equivalently, that T is not decom-
posable in X*. Let {E(A)} C B(£*) denote any decomposition of the identity
for T*. Standard operator theoretic arguments show that E(A} = Ep(A)* for all
A # 0. Our aim then is to show that there does not exist S € B(£!) such that
= E(0).
We claim that if y = (yn) € ¢ then E(0)y = L(y)u where u =(1,1,1,.. )€ ¢
and L(y) = lign Yn. Fix z = (z,) € £! and y = (yn) € ¢ C £°. Define

O/m.m

For t € (0, 1), let N; be the unique integer such that 1 —¢ < tN; < 1. Then

w - %./(.’L‘,E(/\)y) dA

..2{*‘0

(z, E(\)y) dX + % /@:, E(\)y) dA.

Ny

[l
~f
og_\
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Now
t

: [ B0 @

1
Ny

as t — 0. On the other hand

-1
< —F K el 1wl — 0,

[roma=1 Y @y
0

v n(n - 1)

-1y o (y,,zx, )

n=N;+1 i=n41
Let
e o]
En = (ynzx:+ Z zy;)—L(y)Z:::,-.
i=n+l1 i=1
Now, given any € > 0 there exists t, > 0 such that for all n > N,_, |e.] < €. Thus,

1 " =
: [@Eoma = P y)Zx,+en)
0 N
1 1 & €
= L ‘zit - —
tN, (y); ! tn:%;H n(n —1)
=I4+1I,
say. For any t < ¢,
[o.0]
€ 1
I < - — K £
il tn:%_l_ln(n—l)

On the other hand, (tN;)~! — 1 ast — 0t. It follows then that G is right
differentiable at 0 and that

i E) G(O)

t—0+

Zm, = {z, L(y)u).

By condition (vi} for a decomposition of the identity then, we must have that
E(0)y = L(y)u.
If y = (y:) € €°, then y is the weak-* limit of the sequence {w,} C ¢ where
"Wn = (Y1,Y2,- -, Yn,Yn,...). Suppose that 5 € B(£!) satisfies S* = E(0). Then,
for any z € £1,
(z, E(Q)y) = (Sz,y) = lir{n(S:c,wn> = lifrln(:r, E(0)wn)

(o]

= lim(z, L(wn)u) = limy, Y _ @:.

i=1
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But this last imit may not exist. It follows that no such operator S can exist.
Thus T™ is not decomposable in £! and the decomposition of the identity for
T is not transposable. 1

For the example on £ we shall need a lemma due to Ringrose (see [14] or
[8], Theorem 15.22).

LEMMA 4.14. Let T € B(X) be a well-bounded operator with decomposi-
tion of the identity {E(X)} C B(X") concentrated on [a,b]. Then T s uniquely
decomposable if and only if for all 2 € X and £* € X™, the map

t

G@:/@EmﬁMA

is right differentiable for allt € [a,b).

ExAMPLE 4.15. Let T be the well-bounded defined in Example 4.13. A
slight alteration of the calculation in Example 4.13 can be used to show that T
is not uniquely decomposable. By Lemma 4.14, it suffices to show that if {E())}
is any decomposition of the identity for 7", then there exist z € & and y € £

such that the map
t

Gm:/mEmwu
is not right differentiable at 0. Taking z = (1, 1/4, 1/9,...} and y =(0,1,0,1,...)
is sufficient. We leave the calculation to the reader.

Let [/ = T** € B(£*®). Suppose that U has a decomposition of the identity
which is transposable. By Proposition 4.5, U/* is decomposable in ba and hence is
uniquely decomposable with decomposition of the identity {Ey-(A)}-

It is clear that any two distinct decompositions of the identity for T* can
only differ by their value at A = 0. For § € (0, 1], let g5 denote the AC function
which takes on the value 1 at 0, is 0 on the interval [é, 1] and which is linear on the
interval [0, 6]. From the proof of Theorem 15.22 of [8], as well as Lemma 15.17 of
[8], there exist subnets {gg})}au and {91(32)}[368 of {95} 50, and decompositions
of the identity { EM(A)} and {E®())} such that EMD(0) # EA)(0) and such
that for all z € &' and y € £,

lim (¢)(T9)z, v) = (2, EV(0)y)
«€EA

: (2) e _
lim{gs " (T7)e.y) = (z, ED(0)y).
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Since U™ = T™** is uniquely decomposable, if € be and y € ba* then
lim(gs(U™)z, ) = lim(z, g5(I7™)y) = (2, Ev-(0)y)-
Taking subnets of {gs(U**)} ., it follows that
iiglq(g&l)(U*)x,y} = ;ié?g(gg”(u*)x,y) = (z, Ey-(0)y).
In particular, if z € £! C ba and y € £~ C ba*, then
(£, BEV(0)y) = (2, ED(0)y) = (2, Bu-(0)y).

That is, EO(0)y = EA(0)y = Ey-(0)yl¢, and so EM(0) = EN0). But this
contradicts the fact that T* is not uniquely decomposable. It follows that U cannot
have a transposable decomposition of the identity. 8

LEMMA 4.16. Suppose that X =Y @ 7, that Ty € B(Y') and Ty € B(Z) are
well-bounded, and that T =Ty & T>. Then T has a transposable decomposition of
the identily if and only if Ty and Ty both have iransposable decompositions of the
identiiy.

Proof. Let P, P and J be as in the proof of Theorem 3.1. Suppose that
T has a transposable decomposition of the identity {EF())}. Then T is uniquely
decomposable (Theorem 4.8) and so by Theorem 15.19, [8]

P*E())= E(AP".  AeR

It follows from Theorem 3.1 that setting Fy (1) = PE(A)J defines a decomposition
of the identity for 7y. Note that P* € B(Y™**, X**) satisfies ﬁ*(y**) = (y**,0),
whilst J* € B(X**,Y**) satisfies J(y**,2**) = y**. Since P**E(AY* = E(Ay* P**
it follows from Theorem 3.1 that if we define Fa(A) = J*E(A\)*P*, A € R, then
{F5(\)} is a decompasition of the identity for T*[Y* = T}¥. But J*E(A)*P* =
(PE(X\)J)* = F1(A\)* and so {F1(A)} is transposable. The same argument obvi-
ously works for T5.

The converse implication is completely straightforward, if a little tedious. &

THEOREM 4.17. If X salisfies any of the following conditions then there is
o well-bounded operator on X none of whose decompositions of the identily are
transposable.
(1) X contains @ complemented subspace isomorphic to £
(i1) X coniains a complemented subspace isomorphic 10 cp.
(iii) X contains a subspace isomorphic {o £%.
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Proof. (i) and (ii) follow immediately from Examples 4.12 and 4.13 via the
usual extension of an operator from a complemented subspace to the whole Banach
space. That the required properties pass to the extended operators follows from
Lemma 4.16. Case (iii) follows similarly from Example 4.15 by noting any subspace
isomorphic to £ is necessarily complemented. B8

An obvious question is whether the conclusions of Theorem 4.17 hold on
every nonreflexive Banach space. This is related to the still open question of
whether there are any nonreflexive Banach spaces on which every well-bounded
operator is of type (B) (see [3]).
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