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ABSTRACT. We show that, for any £ > 0 and an integer n > 0, there exists
6 > 0 such that if z1,z2,...,z, are normal elements in the unit ball of a
purely infinite simple C*-algebra A with

lziz; —zizi]| <6 i=1,2,...,n

then there exist mutually commuting normal elements y1,y2,...,¥a € Asuch
that
lzi —gill < i=1,2,...,n.
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0, INTRODUCTION

We study the problem when an almost multiplicative contractive unital positive
linear map ¢ : C(X) — A, where X is a compact metric space and A is a unital C*-
algebra, is close to a homomorphism. One of the original questions which leads
to the problem is the question whether a pair of almost commuting selfadjoint
matrices is close to a pair of commuting selfadjoint matrices, an once long standing
problem which is now solved affirmatively (see [42]). This question can be viewed
as special case of the problem we mentioned above {(when X is a compact subset of
the plane). Clearly the problem is closely related to the study of homomorphisms
from C(X) into a (non-abelian) C*-algebra. The first known significant result
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of the study of homomorphisms from C(X) into a (non-abelian) C*-algebra is
perhaps the BDF-theory ([5], [6]) which studies the homomorphisms from C(X)
into the Calkin algebra B(1*)/K as well as into B({%), where K is the compact
operators on {2. Recent development (see [£2]) in the classification theory of C*-
algebras also requites deep understanding of homomorphisms from C(X) to a
C*-algebra. Let ¢ : C(X) — A be a homomorphism and p be a projection in A.
If p approximately commutes with v, then the map pyp : C(X) — A defined by
p¥(f)p is an almost multiplicative positive linear map. An often occurred question
is whether there is a homomorphism h : C{X) — pAp which approximates pip.
The problem also occurs when one attempts to lift a homomorphism 9 : C(X) —
A/I to a linear map ¢ : C(X) — A, where [ is an ideal of A. Here is another
version of the problem. Let z1,2,...,Z, be normal elements in a C*-algebra A.
If ||ziz; — ;]| is small, will it follow that 2,,x3,...,Z, are approximated by n
commuting normal elements in A4 ?

A number of results related to this problem have been obtained. Important
and interesting applications have been given. We will not try to attempt to give
a history tour. However, we will give some description of certain results which
we believe that are most relevant to this paper. But, before that, let us state the
problem more precisely.

DEFINITION 0.1. Let A and B be two (unital) C*-algebrasandlet ¢ : A — B
be a contractive positive linear map, § be a positive number, and let F be a finite
subset of A. The map # is said to be §-F-mulliplicative, if

1¥(f9) — e(Hb(g)ll <

for all f and ¢ in F. Now here is the precise statement of the problem:

QuEsTION 0.2. Let X be a compact metric space, € > 0 and let G be a
finite subset of C{X). When do there exist § > 0 and a finite subset F of C(X)
satisfying the following: for any unital C*-algebra A and any unital contractive
positive linear map ¢ : C(X) — A which is 6-F-multiplicative, there is a unital
homomorphism 9 : C(X) — A such that ‘

lle(ry =Nl <€

for all f € G7

We note that we could consider bounded, almost linear, almost *-preserving
maps. However, it is more convenient to consider contractive maps. We point
out in Proposition 1.7 that a contractive, almost linear, almost *-preserving, and
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almost multiplicative map is close to a contractive linear positive and almost mul-
tiplicative map. Therefore, it suffices to consider only almost multiplicative con-
tractive positive linear maps. It is shown ([40]) that when X is a compact subset of
$1 x $! and A is assumed to be purely infinite and simple, § and F in Question 0.2
always exist. This is equivalent to say that a pair of almost commuting unitaries
in a unital purely infinite simple C*-algebra is is close to a pair of commuting
unitaries in the C*-algebra. It is also shown ([44]) that when A is assumed to be
a purely infinite simple C*-algebra with trivial K-theory, 6 and F always exist.
Applications of these results to classification of C*-algebras are given in {40] and
[44]. '

On the other hand, it is shown ([57], [13], [14], [46] and [47]) that in gen-
eral there are K-theoretical obstacles for the existence of § and F. Theorem 1.6
gives an answer to a stable version of Question 0.2 (see also Notation 1.8). Let
o be an element in K K(C(X), A), where X is a finite CW complex and A is a
unital purely infinite simple C*-algebra. It has been shown that for some special
case, o can be realized by a homomorphism ([48], [26] and [40]). Using results
in C*-algebra classification theory, we also improve these results by showing that
there is always a homomorphism ¢ : C(X) — A such that K K(p) = a. Com-
bining with Theorem 1.6, we show (Theorem 1.19) that when A is purely infinite
simple C*-algebra, § and F in Question 0.2 always exist, i.e., an almost multi-
plicative contractive positive linear map is close to a homomorphism . There is no
doubt that there are many applications of Theorem 1.19. However, we only give
applications related to extensions. We give a stable type of Weyl-Von Neumann-
Berg-Voiculescu’s approximate diagonalization theorem. Other applications will
appear elsewhere. We also point out that this result gives a classification of unital
essential extensions of C(X) by purely infinite simple C*-algebras.

1. ALMOST MULTIPLICATIVE MORPHISMS

We begin with some notation and known facts related to K-theory.

DEFINITION 1.1. The standard definition of mod-p K-theory for C*-algebras
as given by Schochet in [56], is

Ki(A;Z/n) = Ki(A® Co(Ch)),

where C, is the 2-dimensional CW complex obtained by attaching a 2-cell to
§! via the degree n map from S§! to S' (note that Ko(Co(Crn)) = Z/nZ and
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K (C(Cr)) = {0}). Let A be a C*-algebra, following Dadarlat and Loring ([15]),
we denote
K(A) = Ko(A) o Ki(A) €D Ki(A;Z/n).
i:=0,1,n 22
Let B be a C"-algebra, following Rgrdam (53]}, we denote by K L{C(X), B) the
quotient of K K(C(X), B} by the subgroup of pure extensions in Ext(K.(C(X)),
I{t-—l(B)) .
Note that

Ko(A® C(Cr x $1)) = Ko(A) @& K1(A) & Ko(A; Z/m) @ Ky (A; Z/m).

We define K(A)4 to be the semigroup of X (.4) generated by Ko(A®C(Cm xS'))4,
m = 2.

The following is a result of Dadarlat and Loring,.

THEOREM 1.2. ([15]) Let X bea compaci metric space. Suppose that ¢, :
C(X) — B, where B is a unital C*-algelre, are homomorphisms such that ¢
and v induce the same homomorphisms from K;(C(X)} ® Ci) — Ki(B ® C(Cr)),
k=1,2,...and i=0,1. Then [p] = [¢] in KL(C(X), B).

In fact, Dadarlat and Loring ({15]) show that there is an isomorphism from
KL(C(X), B) onto Hom{K (C(X)), K(B)) for any unital C*-algebra B. We will
use this result very often.

The following is standard. We state here for the convenience.

THEOREM 1.3. Let A be a sequence of C*-algebras. Then, for any proyec-
tion p and unitaries u in H An/ @ An, there are projection P and U in H An

n=1 n=1 n=1

such that
m(P)=p and w(U)=u.

If p1,p2, ..., pr are muiually orthogonal projeciions in H An/ GB Ay, then there

n 1 n=1

are muiually orthogonal projections Py, Py, ..., P; € H An such that m(P;) =

n= 1

pi,i = 1,2,... k. Furthermore, if v and {u,} € H An/ @ A, where 0 <t <1
n=1
such that v*v = p; and vv* = ¢ are {wo projections, and {u;} s a continuous path

of unitaries, there is a partial isometry V and a continuous path of unitaries {U;}

oQ
in [] An such that

n=1

(V) =v,7(Up)=up and =(U:)=
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Proof. Let 1 2 b > 0 and ¢ be elements in [] A, such that n(b) = p and
n=1
fo o]
m(c) = u. Let b= {b,} and ¢ = {en}, where bn, ¢, € An. We have b2 —b e @ A,.
=1
Therefore "

|]bf‘—bn||—>0 as n — oo.

It is now standard that there are projections p, € A, such that
by, = pul]| = 0 as n - oo.

o
Set P = {p,} then P — b€ @ A,. Therefore 7(P) = p. Suppose that p1,p2,...,
n=1

o0 o0 o0
rr € [] An/ @ A, are mutually orthogonal, and P; € H A, is a projection
n=1 n=1

such that w(P1) = p1. Then ps € (1= 1) ]O—o[ A1 = P1)/(1~ Py) GB A,(1-Py).
We can then apply what has been proved and use induction to produce required
projections po,...,pxr. The rest of the proof uses a similar argument. We will be
brief. The unitary U can be constructed the same way using polar decomposition.
For the last part, the partial isometry V can be constructed the same way as

o0

U. Also, there are unitaries {W;} in [][ An such that #(W;) = u;. There is a
n=1

partition:

O<ti<ty <<t =1

such that ||us,,, — uy,]| < 1/2. Let W, = {wy(n)} € [] An. Then each wy(n) is a
n=1

unitary. There is an integer ny > 0 such that
||wti+l(n) - wt.‘(n)” <1

for all n 2 ng. This implies that there is a continuous path of unitaries {U;} in
(=]
[T A such that Up = Wy and Uy = Wy. 8

REMARK 1.4. Let A be a unital C*-algebra. Let P be a finite subset of

projections in {J Moo(A ® C(Cpm x St)). There are a finite subset G(P) C A and
m20
8(P) > 0 such that if B is any unital C*-algebra and ¢ : A — B is a contractive

positive linear map which is 6(P)-G(P) multiplicative, then

(e @ id)(p?) — (¢ @ id)(p)|| < 31
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for all p € P. Hence, for each p € P, there is a projection ¢ € |J M (BRC(Cpp x
mz20
§')) such that

it ®id)(p) ~ all < 5.

Furthermore, if ¢’ is another projection satisfying the same condition, then [|g —
¢'l| <1, hence g is unitarily equivalent to ¢’. Let P be the image of P in K(A).
For each p € P, we set p.([p]) = [g]. This defines a map . : P — K(B).

DerinITION 1.5. Let # : N — N be a map. Denote by A, the collection of
those C*-algebras A satisfying the following:

For any integer K > 0, m > 0, and any pair of projections p and ¢ in Mg (A®
C(Cyn x 8')) such that [p] = [g], there is a projection f € M,(x)(A® C(Cm x §))
such that

g®f~pdf

Clearly, A, C A, if r(K) < #/(K) for all K € N. It follows from [10]
that every unital purely infinite simple C*-algebra belongs to every A,. In fact, if

[p] = [g], then
q® 1L ~p® 1L1

where 17 is the identity of ML(A ® C(Cp x S')) for some integer L (which may
depend on p, ¢ and m). The projection 1y, is a constant function over C(C,, x §!)
(with value in My (A)). By [10], there is a constant function v(t), where for each
t, v(t) is a (same) partial isometry in ML (A) such that

v v=1; and w* =d

for some constant projection d with value in A. This implies that g d ~ p® d.
Thus A € A,, for all 7. Moreover, by results of Rieffel ([52]), if A is of stable rank
s, there exist 7 {depends on s) such that A € A,.

The following is a generalization of 1.6 in [44] and 2.3 in [40], and its proof
is almost the same as that of 1.6 in [44].

THEOREM 1.6. Let X be a compact meiric space, » : N — N, and let F be a
finite subset of the unit ball of C(X). For any € > 0, there exist a finite subset P

of projections in U Mo (C(X)® C(Cr xS')), a finite subset G of the unit ball of
C(X) and 6§ >0 suck that whenever A ts a uniial C*-algebra in A, and whenever
P, C(X) > A with ¥ = p. : P — K(A) are two unital contraclive posilive

linear maps which are §-G -multiplicaiive then there are an inleger L and unital
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homomorphisms ¢y : C{X) — Mp{A) with finite dimensional range and a unilary
u € Moy (A) such thal

le™(#(f) @ 1 (F)v — o(f) @ a1 (Fl <e

forall f € F.

Proof There is an increasing sequence of finite subsets P(n) of projections
in U Moo (C(X)® C(Cp x §1)) such that U P(n) forms a generating set of the
semlgroup K(C(X))+. Suppose that the theorem is false. Let F1,Fo,..., Fn,...
be a sequence of finite subsets of unit ball of C(X) such that F, C Fn4; and the
union G Fn is dense in the unit ball of C(X), and G(P(n)} C Fn, where G(P)
is deﬂr?e_:il in Remark 1.4. Then there are a positive number ¢ > 0, a finite subset
F, a sequence of positive numbers §, — 0 with §, < 6(P(n)), unital C*-algebras
B, € A, and unital contractive positive linear maps ¢, ¢n : C(X) — B, which
are 8,-F,-multiplicative and (% ). = (¢n)« on P(n), and for all 1,

Jnf {sup {|jv"(¥a(f) @ SN — en(F) @ S(AII}} > €
O fEF

for some £ > 0. Here the infimum is taken for all £ € N, all ¢ : C(X) — My(Bp)
homomorphisms with finite dimensional range and all unitaries v € Mr41(Bn).

Now let o
= @B
n=1]

the set of all sequences b with b, € By and ||bs]] — 0. Then B is a c-unital
C*-algebra. The multiplier algebra M(B) of B is

M(B) = ﬁ B,
n=1

the set of all sequences b with b, € B, and sup|lbn|| < oco. Let # : M(B) —

M(B)/B be the quotient map. Let ¥ = {¢p},® = {@n} : C(X) — M(B) be
the contractive positive linear maps defined by the sequences {#,} and {p.},
respectively. Since |J F, is dense in the unital ball of C(X) and 6, — 0, it

n=1
follows that m o ¥ and 7 o ® are homomorphisms. Set ¥ = 7o ¥ and @ = w0 ®.

— ey —
We claim that ¥, = ®, : K(C(X)) — K(M(B)/B). Since |J P(n) generates
n=1
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K(C(X))+, it suffices to show that W.([p]) = ®.([p]) for all projections p € P(s)
and all s € N. We have
(en ®id)(p?) ~ (9 @ id)(p)l| — 0.

There is a sequence of projections p, € Mr(B3, ® C(Cn x §')) such that

(¥ @ id)(p) = pn|l = 0, as n— oo,
Similarly, there is a sequence of projections g, € M (B, ® C(Crn x $!)) such that

l(¢n @id)(p} — gall = 0, as n— oo
Since (¥n )+ = (¢n)« on P(n) and [p] € P(n) for all n > 5, we conclude that

[Pn] = [gn] in Ko(Bn ® C(Cm x %))
for alln 2> s. Since B, € A,, there is K > 0 projections e, € Mg (B, ®C(Cy, xS'))
and unitaries v € Mg 43(Bn ® C(Crn x $')) such that

'U:t(pn 53] en)vn =qgnDeéen
for all n 2> s. It follows that
. ([p]) = S.([p]).

Therefore ¥, = @, : K(C(X)) — K(M(B)/B). By applying Theorem 1.2 and
Theorem A in {12}, we obtain an integer L € N, a homomorphism F : C(X) —

Mp(M(B)/B) with finite dimensional range and a unitary v € My (M (B)/B)
such that '

- — €
(W) ® F(F))u ~F() & FI < §
for all f € F. There are points £;,£,,...,£; € X and mutually orthogonal projec-
tions dy,ds, ...,dr € M (M (B)/B) such that

k
F(f) = f(€)d;
i=1

for f € F. By Theorem 1.3, we obtain mutually orthogonal projections d; €
M (M(B)) such that m(d;) = d; for i = 1,2,..., & and unitary U € M(B) such
that 7(U) = u. Hence there are by € My ,,(B) for f € F such that

<
3"

k k
U (a1} © 3 £(6):)U ~ {pul£)} @3 £(6)d; — by

Write U = {uy,}, where each uy, is a unitary in Bn, by = {6’}, then lim ||p{)]) =

0. This implies that there exists a sequence of homomorphisms A C(X) —
M (By) with finite dimensional range such that for sufficiently large n we have

13 () @ 60 — ou(£) @ SN < 5
for feF. 1
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REMARK 1.7. The requirement that 4 € A, is used to show that ¥, = ®,.
If X is a compact contractive space, then one always has ¥, = ®, = 0. Therefore,

if X is a compact contractive space, the condition that A € A, can be removed in
Theorem 1.6.

The following lemma justifies our assumption that maps are linear and pos-

itive. It is certainly known. We state here without proof.

ProPOSITION 1.8. (see p. 371 in [14] and also 2.11in [44]) Let A be a nuclear
C*-algebra. For any € > 0 and finile subset F C A, there is 6 > 0, a finile
G C C and a finite subsel G C A saetisfying the following: for any contractive map
v:A— B, where B is ¢ C™-algebra, if

b (Af + ) = Mp(f) ~ (]l < 5,

l0CF") = () Il < 6 and [l¥(fg) — ¢(fl(g)ll <&

for all fig € G and A € G, then there is a conlraciive completely positive linear
map ¢ : A — B which is e-F-multiplicative such that

19(F) — (Al <e

forall f € F.

NotaTiON 1.8. Let X be a compact metric spacé and A be unital C*-
algebra. Fix a finite subset of projections P in |J Mu(C(X) ® C(C, x §Y)).
n=1

Let h(Xp, A) be the set of those maps o : P — K(A) such that there is a
homomorphism ¢ : C(X) — M, (A4) for some integer m which has the property
that ¢, = o : P — K(A). Let ho{Xp, A) be the set of those maps o € h(Xp, A)
such that o = . for some homomorphism ¢ which has finite dimensional range.
Let ahs_r(Xp, A) be the set those maps @ : P — K(A) such that there is a
contractive positive linear map 9 : C(X) — My, (A) for some integer m which is
§-F-multiplicative, where § = §(P) as defined in Remark 1.4, G(P) C F and G(P)
as defined in Remark 1.4. We denote by aah(Xp, A) the set those maps « such
that there is an asymptotic (positive linear) morphism {%:} : C(X) — My (A)
with the property that {¢;}. = a : P — K(A).
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CoroOLLARY 1.10. Let X be a compact melric space, v : N — N, and let
F be a finite subset of the um'i ball of C(X). For any e > 0, there exist a finile

subset P of projeclions in U Moo (C(X) ® C(Cr, x §1)), a finite subset G of the

unit ball of C(X) and & > 0 such thal whenever A is a unital C* -algebra m A,
and whenever ¢ : C(X) — A is a unitel conlractive positive linear map which is
6- G-mulliplicative and v, € W Xp, A), then there are an integer L and a unital
homomorphism ¢, : C(X) — Mp(A) with finite dimensional range and a unital
homomorphism ¢y : C{X) — Mp41(A) such that

{[9(f) @ ¢1(f) - d2(f)ll < ¢
forall f € F.

The following 1s an easy corollary of Corollary 1.10. It also follows from a
result in [24].

COROLLARY 1.11. For any € > 0 and integer n > 0, there exisis § > 0
salisfying the following: If A is a unital C*-clgebra and x1,22,...,2, are normal
elements in the unil ball of A such that

fziz; — zjzi]| < 8

for all i and j, then there exisi mutually commuting normal elemenis yy,ys, .. .,
Yn € Mp(A) with ||yi]| € 1 and with finite spectrum, and mutually commuting
normal elements 21,22, ..., 2, € Mp41(A) with ||y:|| € 1 and with finite spectrum
for some integer L > 0 such that

|zi®yw —z]|<e i=1,2,...,n

Proof. Let X be the product of n unit disk. Define a bounded linear map
¢ : C(X) — A such that ©(g;) = z;, where g; is the standard generator of the
unit disk, ¢ = 1,2,...,n. Without loss of generality, we may assume that ¢ is
contractive. For any ﬁmte subset G of C(X) and ¢ > 0, if § is small enough, by
Proposition 1.8, without loss of generality, we may assume that ¢ is positive and
v-G-multiplicative. Note that X is contractible. We then apply Remark 1.7. &

DEFINITION 1.12. (cf. 1.2 of [45]) Let 4 be a contractive linear map from
C(X) to C*-algebra A, where X is a compact metric space. Fix a finite subset F
contained in the unit ball of C(X). For ¢ > ), we denote by L.{(¢, F) (or simply
Ze(¥)) the closure of the set of those points A € X for which there is a nonzero
hereditary C*-subalgebra B of A which satisfies

I(FA) = (NIl < e and  [BF(X) —w(F)Il <e
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for f € F and b € B with ||b]| < 1. Note that if ¢ < o, then X (¢) C Zs(v).

PROPOSITION 1.13. Let X be a compact metric space. For any € > 0 and
any finile subsel F C C(X), there ezist 6 > 0 and a finile subsel G C C(X)
such that whenever A is a unital C*-algebra and whenever ¥ : C(X) —> A is a
unital contractive positive linear map which §-G-mulliplicative then L.(9,F) is

nonempty.

Proof. Suppose that the proposition is false. Let Fy,Fq,...,F,,... be a
sequence of finite subsets of the unit ball of C(X} such that F,, C Fn41 and the

(o]
union |J F, is dense in the unit ball of C'(X). Then there are a positive number
n=1

¢ > 0, a finite subset F of C(X), a sequence of positive nambers &, — 0, unital C*-
algebras By, and unital contractive positive linear maps ¥, : C{X) — B, which
are 0,-F,-multiplicative, such that for any n € N, any hereditary C*-subalgebra
Cn C B, and any X € X there is f € F and there is ¢, € C, with ||c,]] < 1 such
that

LF (D) = ¥nlFlenll 2 2.

Now let
[e]
B= GB B.,.
n=1
Then
m(B) =] Ba
n=1

Let # : M(B) — M(B)/B be the quotient map. Let ¥ = {¢,} : C(X) —
M(B) be the contractive positive linear map defined by the sequence {¢,}. Since

U Fn is dense in the unital ball of C{X) and §, — 0, it follows that 7o W is a
n=1

homomorphism. We have ker(w o ¥) = Cy(U) for some open subset U C X. Set
Y = X\ U, and let ¥ : C(Y) — M(B)/B be the map induced by = o ¥. Since
moW #0,Y # 0. Suppose that A € Y. Let h be a nonnegative function in C(Y)
such that A(A) = 0 and A(£) > 0 elsewhere. Set g = ¥(k). Denote by Her(g) the
hereditary C*-subalgebra of M(B)/B generated by g. Note that Her(g) is o-unital.
It follows from Theorem 15 in [49] that the hereditary C*-subalgebra

Her(g)* = {x € M(B)/B : zg = gz = 0} # {0}.

It is easy to see that

Y(fIY)e= f(Ne
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for all f € C(Y) and ¢ € Her(g)". Take a nonzero positive element a € Her(g)+
with |la|| = 1. There is a positive element b = {b,} € M(B) such that |jb]| = 1,
m(b) = a. Without loss of generality, we may assume that |Jb,|| > 3/4 for all n.
Let f1/2 and f3/4 be positive function in Co((0, 1]) such that 0 < fiye, fapa €1,
fija(t) = 1for all t > 1/2, faga(t) = 1 for all t > 3/4 and fa/4(t) = 0 for all
t < 1/2. Set Hy, = Her(f374(bn)). Then, for any ¢, € H,,

fl/Z(bn)cn = Cnfl/z(bn) = Cn

n=12 ... Since
[FO) = WY1 fyy2(a) = 0,

we conclude that, if ||c,|| € 1

LX) = Won(Dlenll = M) = a(F)]f1/2(Gn)eal] — 0

as n — o0. This leads to a contradiction. 1

DEFINITION 1.14. Fix a finite subset F of the unit ball of C(X) and ¢ > 0.
A contractive linear map 1 : C(X) — A4 is said to be 7-injective (with respect to
Fande > 0)if
dist(M, Z; (v, F)) < 7

forall A € X.

LEMMA 1.15. Let X be a compact metric space and-let F be a finite subsel
of the unit ball of C(X). For any € > 0, there ezist a finite subsel P of projections

in U Mo (C(X) © C(Cn x 8Y)), 6§ > 0, @ > 0 and a finite subset G of the unit

ball of C(X) such that whencver A is a purely infinite simple unital C*-algebra
and whenever ¥ : C(X) — A is a contractive unital posilive linear map which is
8-G-multiplicative and is o-injective with respect to § and F and 1. € h(Xp, A),
then there ezists a unital homomorphisms ¢ : C(X) — A such that

lH(5) — ¢l < &

forall fe F.

Proof. The proof is the same as that of 1.6 in [44]. We use Proposition 1.13
and apply Theorem 1.6 in this paper instead of 1.4 in [44). Note that, in fact,
we only need to require that 9 is o-injective with respect to some n (and F), but
we can make § is smaller than 7 (so we do not need to introduce a new number
n>0) 1
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REMARK 1.16. From the proof of Lemma 1.15 (see the proof of 1.4 in [44]),
it suffices to require the number o satisfying the following:

(@) = Fw)l <

for all f € F, provided that dist{(z,y) < ¢. Let us name this ¢ by ex(¢, F). Let
F be a compact subset of X. We note that one can take ap(e, 1(F)) = ox (¢, F),
where h : C(X) — C(F) is the quotient map, i.e., & is induced by the embedding
F— X.

THEOREM 1.17. Let A be a unital purely infinite simple C*-algebra and X
be a compact finite CW complex. Then for any a € KK(C(X),A), there is a
homomorphism ¢ : C(X) — A such that KK(p) = a.

Proof. Clearly, without loss of generality, we may assume that X is con-
nected. Let v : KK(C(X),A) — Hom(K.(C(X)), K.(A)) be in the Universal
Coefficient Theorem (see [55]).

We first show that there is a homomorphism ¢, : C(X} — A such that (¢1).
as an element in Hom(K,(C(X)), Kx(A)) coincides with vy o c.

We write 7 o & = (ao, 1), where o; € Hom(K;(C(X)), Ki(A)), i =0,1. We
also write Ko(C(X)) = G & Gy, where G is a finite generated free group and Gy
is a finitely generated torsion group.

Claim (1). There is a projection 1 # p # 0 in A such that «([1]) = [p] and
there is a homomorphism ¢’ : C(X) — pAp such that ©}4|G = ap|G, ¢.olGo =0,
and ¢, = 0.

One first maps C(X) into a unital AF-algebra and then maps the AF-algebra
into A. To get the required map, one uses Lemma 7.2 of [53] and Theorem 1.1 (and
1.4) of [13].

Claim (2). There is a homomorphism " : C(X) — gqAq such that ¢y|G = 0,
©’o|Go = ao|Go, and @Y} = ai, where g is a nonzero projection with [g] = 0 in
Ko(A).

Suppose that G has generators g;,g2,..., ¢ and K1(C(X)) has generators
fl,fzy-“)fm-

For each i, let g; be of order k; > 0. Set s = & + 1. Let By = c(X),

Bny1 = B, ® M, and let h, : B, — Bn41 be a monomorphism defined by

hn(f) = dla-g(fa f()‘ﬂ)1 f()‘n): R f(/\n));

where {\,} is dense in X. By [32], the inductive limit B = nlingo(Bm,hn) is
a simple C*-algebra with real rank zero. Note that (A, ).«0(g:) = sg: = g:i. Fur-
thermore, since (hy)e1 = id, K1(Beo) = K1(C(X)) and there is a monomorphism
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h: C{X) — B such that h,; is an isomorphism, and h.o(g:) is a torsion element
with the same order as g;. Let C = By ® (Doo. It is easy to see that O is ap-
proximately divisible (see the proof of 1.7 in [50]), which implies that C' is purely
infinite and simple, since By, is simple (see [3]). Note also that there is an isomor-
phism from K.(Bs ) onto K.(C). This gives an monomorphism Fy : C(X) - C
such that (F1)«1 = ay and (Fi).o{g:) has the same order as g;. It follows from
[61] that C is in Rgrdam’s classifiable class C (see [53]). In particular, C is a
cross product in 7.1 of [563]. By applying 7.1 of [53] and composing that map with
Fy, we obtain a monomorphism F» : C(X) — eAe for any nonzero projection
e € A such that (F2)« = o and (F2)xo(g:) == ao(g:). By taking the diagonal form
diag(Fa, Fs, ..., Fi41), from the above construction, we obtain ¢ as required in
the Claim (2).

Now we may assume that p and ¢ are mutually orthogonal and p+¢ < 11in
A. Set ¢ = diag(¢’,¥""). This monomorphism ¢, meets the requirements.

Now we prove the theorem. By 8.3 of [53], there is a purely infinite simple C*-
algebra Cy which is a cross product described in [53] with K.(C1) = K.(C(X)).
From above, there is a monomorphism & : C(X) — C) such that h, gives an
isomorphism from K,{C(X)) onto K.(C1). Then K K(h) is invertible by Proposi-
tion 7.2 in [55]. So this implies that C(X) and C) are K K-equivalent. This also
implies that KK(C(X), A) = KK(Cy, A). Let o/ € KK(Cy, A) be the image of o
under the above isomorphism. It follows that there is ¢ € KX K(Cy, Cy) such that

KK(h)x o x o =«

where “ x ” is Kasparov’s product (K K(y) is invertible). Again, by 7.1 in [53],
there are monomorphisms &y : Ci — C; such that KK(hy) = o and by : C; - A
such that KK (hy) = o/. We then define ¢ == hpohyoh. @

LEMMA 1.18. Let X be a compacl metric space. Foranye > 0,0 >0, 7> 0
and any finite subsel F C C(X), there ezist § > 0 and a finile subset G C C(X)
such thai whenever A is a unital C*-algebraand whenever ¢ : C(X) — A is ¢ unital
conlractive postlive linear map which §-G-mulliplicative then there is a e-h(F)-
mulliplicative coniractive positive linear map i : C(F) — A which is o-injective
with respect to € and h(F) such thal

le(fy —poh(Hll<n

for all f € F, where F is a compact subset of X and h : C(X) — C(F) is the
guotient map (from C(X) — C(X)/I = C(F), I = {f € C(X) : f(z) = 0 for
z € F})
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Proof. The proof uses an argument used in Theorem 1.6 and Proposition 1.13.
Suppose the proposition is false. Let F,, F,, ..., F,,... bea sequence of finite sub-
sets of unit ball of C(X) such that F, C Foq1 and the union U Fn is dense in
the unit ball of C(X). Then there are positive numberse > 0, ¢ > 0 7 > 0, a finite
subset F of C(X), a sequence of positive numbers 6, — 0, unital C*-algebras By,

and for all n,

inf { sup (lga(f) — w0 RNIT} > 7

Here the infimun is taken for all compact subset #' C X and all e-h(F)-multiplica-
tive contractive linear positive maps v : C(F) — B, which are o-injective (with
respect to € and F). Now denote B = é% B, and M(B) = ﬁ B,.

Let 7 : M(B) — M(B)/B be th:~c11uotient map. Let f(II;I-_- {en}: C(X) —
M(B) be the contractive positive linear map defined by the sequence {¢y}. Since
G Fn is dense in the unital ball of C(X) and 6, — 0, it follows that To ® is a
gzrlnomorphism. We have ker(m o ¥) = {f € C(X) : f(x) = 0 for & € F'} for some
compact subset ' C X. Let h : C(X) — C(F) be the quotient map. There is a
monomorphism ¥ : C(F') — M(B)/B induced by 7o ¥. We have 1o ® = Vo h.
Since C(F) is nuclear, by [9], there is a contractive completely positive linear map
¥ : C(F) — M(B) such that 7 o ¥ = W. Thus, for each f € C(X),

®(f) - ¥oh(f) €B.

We may write ¥ = {9}, where each %, : C(F) ~— B, is a contractive positive

linear map. Since ¥ is a homomorphism,

”"/’n(fg) - "/’n(f)’/’n(g)” —0

asn — oo for all f € C(F). In particular, when n is large enough, 4, are e-h(F)-
multiplicative. With Y = F in the proof of Proposition 1.13, we see that, when n
is large enough, T, (4,) = F, whence 1, are g-injective.

We have
on(f) =m0 h(f)]} — 0

as n — oo for all f € C(X). This leads to a contradiction. 1
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THEOREM 1.19. Let X be a compact metric space and let F be a finite subset
of (the unit ball of) C(X). For any € > 0, there ezist § > 0, and a finile subset
G of (the unit ball of) C(X) such that whenever A is a purely infinite simple
unital C*-algebra and whenever ¥ : C(X) -— A is a coniraciive unital posilive
linear map which is §-G-multiplicative, then there erists a unital homomorphisms

¢ : C(X) — A such that
l(f) — sl < &

forall f € F.

Proof. We may assume that F is in the unit ball of C(X). Since C'(X) =
nlingo C(X»n), where each X, is a compact finite CW-complex, without loss of
generality, we may assume that the finite subset F lies in (the image of) some
C(Xn). So, without loss of generality, we may further assume that X is itself a
finite CW-complex.

Fix ¢ > 0 and a finite subset F C C(X), let ¢ = ox(¢,F) be as in Re-
mark 1.16.

Since X is now assumed to be a compact finite CW-complex, there are finitely
many compact subsets X, Xs,..., X,, C X which are itself finite CW-complex
such that for any compact subset F C X, there is one X; satisfying

sup{dist(F,z): A€ F,z € X;} < %

and F C X;.
Let 6&') be positive and g§') be a finite subset of C(X;) such that there is
homomorphism (" : C(X;) — A satisfying

1) - w2l < 5

for all f € hi(F), where h; : C(X) — C(X;) is the quotient map, whenever A is a
purely infinite simple C*-algebra and @ : C(X;) — A is a 6§i)-g§i)—mu]tiplicative
contractive positive linear map which ¢/2-injective with respect to 6?) and hi(F).
To get the above statement we apply Lemma 1.15, Remark 1.16 and Remark 1.21.

Let 6, = lLmn {6( )} and Gy = U hy l(('(' ). For above 62 > 0, & > 0 and

G, let 63 > 0, a finite subset G3 in C(X) be as in Lemma 1.18 such that there
is a compact subset ¥ C X and a 83/2-h(G>)- multiplicative positive linear map
Y2 : C(F) — A which is o/2-injective with respect §,/2 and h(G) satisfying:

lp(£) = ¥2 o R(A)I < 5
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for all f € G, whenever A is a unital purely infinite simple C*-algebra and ¢ is 63-
Gs-multiplicative positive linear map from C(X) into A, where h : C(X) — C(F)
is the quotient map.

So now if ¢ : C(X) — A is 83-Gz-multiplicative positive linear map from
C(X) into A, let ¢, as above. Choose X; above so that F' C X; and

sup{dist(F,z): A € F,z € X;} <

v Q

Let hg : C(X:) — C(F) be the quotient map and ¢ = ¢z 0 hg : C(F) — A.
Then 41 is 82/2-hi(G2)-multiplicative positive linear map which is c-injective with
respect to 62/2 and G,. By our choice of 6 and G, there is a homomorphism
@1 : C(X;) — A such that

12 ho(f) =1 (Nl < 5

for all f € hy(F). Note that s 0 hg 0 by = 1h5 o h. We have

lle(f) = prohs(F)ll < €

forall fe F.Set p=poh;. 1

CoroLLARY 1.20. For any ¢ > 0 and integer n > 0, there exists 8§ > 0
salisfying the following: If A is a unital purely infinite simple C*-algebra and

&1, %9, ..., &, are normal elements in the unit ball of A such that
llziz; — zjzi]| < &

for all i and j, then there exist mutually commuling normal elements y1,y2,. ..,
Yn € A with ||y|} € 1 such that

Jz: — wil| < €

for all i.

Proof. The proof is similar to that of Corollary 1.11. But we now apply
Theorem 1.19 instead. §
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REMARK 1.21. Unlike the case that A is a purely infinite simple C*-algebra
there are K-theoretical obstacles for an almost multiplicative contractive positive
linear morphism being close to a homomorphism in the case that A is a stable
finite C*-algebra. Let ¢ be a homomorphism from C(X) into A. Then, ¢ induces
a homomorphism ¢, in Hom(Ko(C{X))}, K4(A)). More important, ¢, preserves
the order. It is shown in [48], in general, an asymptotic morphism gives an element
in Hom(Ko(C(X)), Ko(A)) which may not preserve the order. Such morphisms
can not be approximated by homomorphisms. In Proposition 1.26 below, we sec
that there are plenty of such examples.

For the rest of this section, we will consider two closely related problems.
Given a 6-G-multiplicative morphism 1 which induces ¥, on P, is there a 7-H-
multiplicative morphism ¢ such that ¢. = 4. on P for any 5 > 0 and any finite
subset M of C(X)? Is there a e-F-multiplicative morphism ¢* : C(X) — My (A)
such that ¥ & 9" is close to a point-evaluation b : C{X) — My41(A) for some k?

PROPOSITION 1.22. (cf. 5.31in [13]) Let X be a (compact) finite CW-complez
and A be a unital C*-algebra. Suppose that {pi} : C(X) — A is an asymptotic
positive (contractive and linear) morphism. Then there exisis an asymplolic posi-
tive (contractive, linear) morphism {:} : C{X) — Mn(A) such that {1} & {¢:}
ts homolopic to a point evaluation map ¥ : C(X) — Mpy1(A), where m can be
chosen to be 2dim(X) + 1.

Proof. Clearly, without loss of generality, we may assume that X is con-
nected. Let ¥ be a subspace of X by removing one point, say £ € X. By [16],
1dc,(y) has an additive inverse which maps C(X) into M,,(A), where m can be
chosen to be 2dim(X) + 1. Then, by 5.3 in [13], there is an asymptotic (positive,
contractive linear) morphism {11} : Co(Y') -—— Mp,(A) such that ¢|(Co(Y)) & {¥%}
is homotopic to zero. Set {i;} by defining

Vi(f) = f(E)1m + Vi(f — f(€))

for all f € C(X) and t. Clearly, {¢:}@®{¥:} is homotopic to a point evaluation ¥. &

PROPOSITION 1.23. Let X be a compact meiric space. For any € > 0 and
finite subset F C C(X), there exist § > 0 and finite subset G C C(X) such
that whenever A is a unital C*-algebra and whenever ¥ : C(X) — A is a unital
coniractive posilive linear map which is §-G-mulitplicative then there exists a unital
conlractive positive linear map ¢ : C(X) -- My, (A) which is e-F-multiplicative
and a unital homomorphism g : C(X) — Myy1(A) with finite dimensional range
such that

[9(f) @ o(F) —pol(f)ll <&
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forall f € F.

Proof. First note that C{X) = nli_l}go C(Xn), where each X, is a finite CW-
complex. Clearly, without loss of generality, we may assume that F ¢ C(X,) for
some n. Therefore, without loss of generality, we may further assume, as well, that
X is a finite CW-complex. Furthermore, without loss of generality, we may as-
sume that F is in the unit ball of C(X). The proof uses the similar argument used
in both Theorem 1.6 and Proposition 1.13. We will be a little sketchy. Assume
that Proposition 1.23 is false. We would have a sequence {#,} of §,-multiplicative
(with respect to F,) contractive unital positive linear maps, which does not sat-
1sfy the conclusion of Proposition 1.23, from C(X) into a sequence of unital C*-
algebras {B,}. We will keep the notation in Proposition 1.13. From this sequence
of {#n}, we would have a homomorphism 7 o ¥ : C(X) — M(B)/B. By applying
Proposition 1.22, we obtain an asymptotic positive (contractive linear) morphism
{1} : C(X) = M (M(B)/B such that 7 o ¥ & {¢}} is homotopic to a homomor-
phism ¢’ : C(X) — Mpn41(M(B)/B) with finite dimensional range for some m.
We now apply [11]. We obtain a homomorphism % : C(X) — My (M (B)/B) with
finite dimensional range and a homomorphism & : C(X) — My42(M(B)/B) with

finite dimensional range such that

w0 ¥(f) ® $1(F) ®%(f) - B(F)ll < .g.

forall f € F, somet > 0 and some k > 0. Denote 1} G}zﬁ by 1. We note that % is a
unital contractive positive linear map from C(X) into My (M(B)/B). By [9], there
1s a contractive positive linear map ¥o = {¢;,} from C(X) into My(M(B)) such
that 7 o ¥y = 9. Since ® has finite dimensional range, there is a homomorphism
Do0 = {@h} : C(X) — Mi41(M(B)) with finite dimensional range such that
7o ®gg = ®. Therefore, when n-is large enough,

[en(£) @ () = en (D < 5
for all f € F. Let p, = diag(0, 1;) be the projection in My41(By). Then,
I6(5) = PaaNpall < 5 and lIpath() ~ bl Hpall < §-

This implies that ¥/, is e-multiplicative with respect to F, since 4/, is a homomor-
phism. By the argument in Proposition 1.13, this ends the proof. §
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CoROLLARY 1.24. Let X be a finite CW-complez, m = 2dim(X) + 1 and
let P be a finite subset of projections in U My (C(X) ® C(Cp x §')). For any

£ > 0 and a finite subset F C C(X) w}uch contams G(P) (sec Remark 1.4), there
ezist § > 0 and finite subset G C C(X) such that whenever A is a unital C*-
algebra and whenever ¢ : C(X) — A is a unilal coniractive positive linear map
which is §-G-multiplicative then there exisis a contractive unital positive linear map
¢ : C(X) = My (A) which is e-F-multiplicative such that there is an element o €
KL(C(X), A) which is represented by homomorphism which is a point evaluation
with the property thai
vyl =a onP.

Proof. This is an immediate consequence of the proof of Proposition 1.23.
As in the proof of Proposition 1.23, we first assume that Proposition 1.23 is false.
We would have a sequence {1} of 6,-multiplicative (with respect to F,) contrac-
tive unital positive linear maps, which does not satisfy the conclusion of Corollary
1.24, from C(X) into a sequence of unital C"-algebras {B,}. We follow the proof
of Proposition 1.23. In the proof of Proposition 1.23, we note that, since 1,7) is a ho-
momorphism with finite dimensional range, one can write ¥, = 1/J(1) @1,/),, , Where
{¢(2)} is a homomorphism lift of . Since (see the proof of Proposition 1.23) ¢/,
is e-F multiplicative, so is %% which is a positive map from C(X) into M, (A,).
If n is large enough, we would have

1%a (£) ® ¥ (F) @ ¥ (F) — 2 (DIl

is small for all F. Since G(P) C F, the above inequality implies that, when n is
large enough, (¢, ea¢$,”), on P is the same as some required « in K L(C(X), An).
This leads to a contradiction. 4

PROPOSITION 1.25. In Proposition 1.23, if . € aah(Xp, A), then we can
choose ¢ 1o be n-H-multiplicative for any n > 0 and any finite subset H of C(X).

Proof. This is a corollary of Theorem 1.6 and the proof of Proposition 1.22.
By the proof of Proposition 1.22, there is an asymptotic (positive contractive
linear) morphism {41} : C(X) — My(A) such that

(¥ & {¥:})s = (po)s

for some homomorphism o : C(X) — My4+1(A) with finite dimensional range.
So, for any n > 0 and finite subset H of C(X), we choose ¢, for some large
t > 0 so that #; is #-multiplicative with respect to H. Then apply the proof of
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Theorem 1.6 to ¥ @ 1,. We will obtain two homomorphisms ¢’ : C(X) — M, (A)
and ¢gg : C(X) — Myuq1(A) both with finite dimensional range such that

() @ [u(f) @ @' ()] — poa( NI < €

for all f € F and some m, if é§ is small enough, n € 6, G is large enough and
G C H. Note that [¢, @ ¢'] is p-multiplicative with respect to H. &

ProrosITION 1.26. Let X be a finite CW-complez wilh torsion free K-
theory. Then, for any unital C*-algebra A and o € KK(C(X), A) with the prop-
erty that [a([1])] = [d] for some projection in My (A), and any & > 0 and finite
subset F of C(X), there s a conlractive posilive linear map ¥ : C(X) — Mi(A)
which is §-F -multiplicative for some inleger k such that the induced map 1. coin-
cides with o on the generators of K, (C(X)).

Proof. Without loss of generality, we may assume that X is connected. Let
« = (o, o) be homomorphisms from K;(C(X)) into K;(A), i = 0,1. Fix a point
£ € X. We have K(Co(X \ {¢}) = K;(C(X)) and there is an embedding from
Ko(Co{ X \ {€}) into Ko(C(X)). Let o’ be the induced maps from K (Co(X \ {¢})
into K1(A) and from Ko(Co(X \ {£}) into Ko(C(X)). So o € Hom(K.(Co(X \
{€})), A®K). By 5.4 in [14], there is an asymptotic morphism {¢ } : Co(X\{£}) —
A ® K such that ({¢:})« = a'. Let e, = 1@ f: eii, where {e;;} is a matrix unit.
Then {e,} forms an approximate identity fortzl(g)‘IC. For any fixed finite subset G
of C(X), any € > 0, and any (large) t > 0, there is an integer n such that

llenys(f) — Pu(flenll <€

for all f € G. Let p be a projection in (1 — e,){A ® K)(1 — en) such that [p] =
[d] in Ko(A).A Define ¥(f) = f(€)p + entpe(f — f(£))en for f € C(X). Then
¥ 1s a contractive positive linear map which 8-F-multiplicative, provided that
¢ is small enough and G and ¢ are large enough. Note that ¥.([1]) = «([1]).
Since K;(C(X)) are torsion free, ¢ = 0, 1, by the Universal Coefficient Theorem,
KK(C(X),A) = Bom(K.(C(X)), Ku«(A)). Since K;(C(X)) are finitely generated,
using Remark 1.4, by taking sufficient large ¢ and G, we have

Px = @

on the generators of K,(C(X)). 1
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COROLLARY 1.27. In Proposition 1.23, if X is as in Proposition 1.26, then
one can choose ¢ lo be n-H-multiplicative for any n > 0 and any finite subset H
of C(X).

REMARK 1.28. Theorem 1.17 uses, among other things, the results in C*-
algebra classification theory. In fact, without these deeper results, one can still
show the following: Let X be a finite CW-complex and A be a unital purely infinite
simple C*-algebra. Then, for any o € K K(C(X), A), there exists an asymptotic
(contractive, positive linear) morphism {v»} : C(X) — A such that {3} induces
«. This just requires to observe that, in the case that A is a purely infinite ’simple
C*-algebra, one can improve slightly a result of Dadarlat and Loring ([14]). Let
b € A be a nonzero positive element such that b € ¢ for some projection ¢ € A
and b is not invertible in ¢Ag, and let B be a o-unital hereditary C*-subalgebra
of B generated by b. By [58], B is stable. By [4], A K = B® K = B. Let
Y be the subspace of X by removing a point £ € X. From 5.3 in [14], for any
element v € E(Co(Y'), B) there exists an asymptotic (contractive positive linear)
morphism {43} : C(X) — B such that {1;} induces 7. Suppose that a(1¢(x)) = «
is an element in Ko(A). Since A is purely infinite, there exists a projection p > gq
such that [p] = z in K¢(A). Define

b)) = F(©p + v (f — F(E)

for all f € C(X) and all ¢. It is clear that {1);} meets the requirement.
With the above, one obtain the following:

COROLLARY 1.29. Let X be a compact meiric space and A be a unital purely
infinite simple C*-algebra. For any finile subset F C C(X) and € > 0 there ezist
6 > 0 and a finite subset G(D F) of C(X) such that for any unital contractive
positive linear map ¢ : C{X) — A which is §-G-multiplicative, there is a unital
coniraclive positive linear map ¢y : C(X) — A which is n-H-multiplicative and a
unital homomorphism 1 : C(X) — My(A) with finite dimensional range satisfying

lle(F) @ p1(F) — ¥ ()l <€

for all f € F, and for any n > 0 and any finite subsei H.

Proof. By the fact that C(X)} = lim C(X,), where each X,, is a finite CW-
complex, it suffices to prove the lemmanf—c:l?othe case that X is a finite CW-complex.

A fact in [31] shows that, with sufficient small § and sufficient large G, v. = «
on given P (P is as in Remark 1.4) for some element o € K L(C(X), A). We then
apply Remark 1.28 and Proposition 1.25. &
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2. APPLICATIONS

DEFINITION 2.1. Let X be a compact metric space and A be a o-unital stable
C*-algebra(with an approximate identity consisting of a sequence of increasing
projections). A homomorphism ¢ : C(X) — M(A) is said to be diagonalizable,
if there exist an approximate identity {e,} consisting of a sequence of projections
and a sequence {A,} of X such that

[« e}
o(f) =D Fn)(en — en-1),
n=1
where eq = 0, for all f € C(X).
An extension 7 : C(X) — M(A)/A is diagonalizable if there is a diagonaliz-
able homomorphism ¢ : C(X) — M(A) such that 7o ¢ = 7, where 7 : M{A) —
M(A)/A is the quotient map.

THEOREM 2.2. Let X be a compact melric space, B be a unilal C*-algebra
and A = B ® K with the property thal for any fintle subset P of projeciions in

U Mo (C(X)®C(Cr xS")), there is 6 > 0 such that ahs p(Xp, B) = aah(Xp, B).
n=1
Let ¢ : C(X) — M(A) be a unital homomorphism. Then there exisis a di-

agonalizable homomorphism ¢y : C(X) — M(A) and a sequence of isomelries
{W.} C My(M(A)) with W, W, = 1p(4) such that

lle(f) @ e1(f) = W (/)Wnl|} — 0

and

()@ er(f) - Wipi(H)Wa € A
for all f € C(X).

Proof. First we show that Theorem 2.2 holds for the case that ¢ is a diago-
nalizable homomorphism. Suppose that

o(f) = D Fn)(en — €n-1)

for all f € C(X), where {),} is a dense sequence of X. (We will consider later the
case where {A,} is not dense.) Without loss of generality, by rewriting ¢, we may
assume that e, — e,_1 is equivalent to a projection in B.

There is a double sequence {pslk)}n’kzl of mutually orthogonal projections in

A such that each pslk) is equivalent to the identity of B, Y pg,k) converges to the

n,k=1
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identity of M{A) in the strict topology, and every infinite sums of pslk) converges

to a projection in M(A) in the strict topology. Define

ei(f)= Y Fa)pP

n,k=1

for every f € C(X). Then ¢; : C(X) — M(A) is a diagonalizable homomorphism.

Let q(k) and d( ) be pI‘OJG(‘thl’lS such that ¢¥ is equivalent to e,1 en—1 for each n
(k) d(k) for
=dn n

each n and k. It follows that there are partial isometries {wgk)} C A such that

and k, for fixed n, dsl are mutually equivalent for all &, and pn

(W) (WD) = (en — en-1) ® d), (WY (D) = ¢ @ dlF+D)

and
() (i) = p,
k = 1,2,.... It is easy to check that W = ¥ wi) converges in the strict
nk=1
topology,

W*W=1M2(A) and WW*:].M(A).

Furthermore, we see that

p(fy@ei(f) = Wi (W

for all f € C(X).
If {An} is not dense, then we can add ¢, first, and then apply the above
argument. Note that M(A) = M,(M(A)).

Now we consider the general case. We fix a sequence {X,} such that {3,}%,

1s dense for each k. Let ;1 be as above but replace the sequence by the new scquence

{An}.

It is well known that
Ko(M(A)) = K ) (M(A)) = {0}

By Theorem A in [11], for any € > 0 and any finite subset F of C(X), there are
two homomorphisms ¢, : C(X) — Mp(M(A)) and 3 : C(X) — Mg41(A) with
finite dimensional range such that

llp(f) @ pa(f) — wa()Il <&

for all f € . One should note, again, that Mz(M(A)) = M(A). From the first part
of the proof, we know that o3 & ¢y is unitarily equivalent to ¢,. Therefore ¢ @ ¢,
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is approximated by homomorphisms from C'(X) — M3(A) with finite dimensional
range. Now we apply Zhang’s quasi-diagonalization (see [59]). From Zhang’s
argument (see {59]), there exists an approximate identity {d,} for A consisting of

projections such that

ldn((f) ® 21(f)) — (p(f) & 1 ())dnl} — O

as n — oo for every f € C(X). We will use Proposition 1.25. Note that
aah(Xp, A) = ah;p(X, A). Let F be a finite subset of C(X). Let 1 = F and
let Fy,Fs,... be an increasing sequence of finite subsets of C'(X) such that the
union is dense in C(X). Let {sff)} be a double sequence of positive numbers such

O
that 3 eF) < £/4. Let {6#)} be a sequence of positive number which converges
n=1

to zero and {g&")} be an increasing sequence of finite subsets of C'(X) which
corresponds to {Es,k)} and {F,} as required in Proposition 1.23. Now we apply
Proposition 1.25. By passing to a subsequence, if necessary, we may assume that
an = (dn —dn-1)(e D1 H(dn —dp—1) is 6,(,1)-multiplicative with respect to G, for
each n. We may also assume that

[eth & e - ni::]an(f)” <3

(o] o0

for all f € F. Since for any a, € A, if }_ {las|| < 0o, then ) an € A, we may
n=1 n=1

also assume that

e(f)@ei(f) =Y an(f) €A

n=1

for all f € C(X). Proposition 1.25 provides, for each n, two sequences of 6,(‘k)-
G,-multiplicative positive contractive linear maps o-,(,k) : C(X) = Mmgn r)(A) and
o C(X) = Mp(n i) (A) such that

llan (£) ® oSO(f) = YDA < el

for some homomorphism 75‘1) 1 C(X) — Mmn,1)+1(A) with finite dimensional
range and for all f € F,,

llox () ® o (5) — ¢ < P

and
e () @ o2+ () — YDA < P
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for some homomorphisms -, &) 1 C(X) = Min(n k41)4m(n k) (A) and g C'(X)
M, (n k)+m(n k) (A) both with finite dimensional range and for all f € F,, n, k =
1,2,.... We note that A is stable. Set

= Z (ng)+a£k)*), b, = }: ¢F) and @3= Z AL¥).

n.k=1 nk=1 n,k=1

Here ®; and ®3 are homomorphisms from C(X) into M (A). We also have

192() = @2 ) <

for all f € F and
24(f) - ®a(f) € A

for all f € C(X).
There is also an isometry U € My(M(A)) such that UU* = Larcay,

” ’;an(f) &1 (f) ~ TJ*(IJa(f)U“ < %
for all f € F and
E ) @1(f) — U 3(f)U € My(A)

for all f € C(X). Now

p(f) @ e1(f) ® @a(f) — U R3(U = o(f) D 1 (f) © B2(f)
—e(f)® er(f) @ 2:(f)
+ (Y pr(f) & ®1(f) — U ®3(F)U € A,

for all f € C(X) and
lle(f) ® 1(f) & D2(f) — U™ @3(f)U||

<lle(f) ® 01(1) © ®a(f) — o) @ 1(F) @ 21(P|
+lp(H) ® er(H) @ 01(1) — U @a(AUN| < £ + 5 =

for all f € F. From the first part of the proof, we know that ¢, @& ®; ® 1 and
U*®3U are unitarily equivalent to ;. This proves the theorem. &
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REMARK 2.3. Note that C(X) = lim C(X,), where X, is a finite CW-

—00
complex. From the proof of Theorem 2.2, we see that Theorem 2.2 holds if the fol-
lowing is true : For any finite CW-complex Y and any finite subset of projections in

U M (C(Y)®RC(Cr xS)), There is § > 0 such that ahg »(Yp, B) = aah(Yp, B).

n=1

What we really need is that for any 5 > 0, any finite subset ‘H of C(X), any
(e ¢}

finite subset P € |J Moo (C(X) ® C(C, x §)), and for cach contractive -G(P)-
n=1

multiplicative posiave linear map 9 : C(X) — A, there is a contractive 7-H-
multiplicative positive linear map ¢ : C(X) — My (A) such that ¢, = 1, on P.
Therefore, by apply Proposition 1.26 and Theorem 2.2, we obtain the following:

COROLLARY 2.4. Let X be a compact finite CW-complex with torston free K-
theory, B be a unital C*-algebra and A = BQK. Let ¢ : C(X) — M(A) be a unital
homomorphism . Then there exists a diagonalizable homomorphism ¢ : C(X) —
M(A) and a sequence of isometries {Wn} C Ma(M(A)) with W, W = 1ar(a
such that

lle(f) ® e1(f) = Wi (f)Wnll — 0

and

e(f)dei(f) —Wep{()Wn € A
for all f € C(X).

Both Theorem 2.2 and Corollary 2.4 are stable versions of a
Weyl-von Neumann-Berg-Voiculescu type theorem. We note that in the case that
A= K, the map ¢ can be easily absorbed. In the case that B is a purely infinite
simple C*-algebra, using existing method (Lemma 2.7), we can also absorb the
map ¢

DEFINITION 2.5. Let ¢, 2 : C(X) — M(A) be two homomorphism. We
write
P1~ P2

if there exists a sequence of unitaries 4, € M(A) such that

ler(f) —uner(fHunll = 0 and  @1(f) —uzer(fun € A

for all f € C(X).

LEMMA 2.6. Let A be a unital C*-algebra and I be a (closed) ideal. Assume
that A/I salisfies the conditions

(1) that two projéctions with the same class in No(A/I) are equivalent; and

(i) that the map from Ko(A/I) to Ki(I) is injective.
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Suppose that p is a projection in A/I with [p) = 0 in Ko(A/I), then for any
projection d € I, with the property that (1—d)I(1—d) has an approzimate identity
consisting of projections, there is a projection P € A such thai P > d and w(P) =
p, where m: A — A/I is the quotient map.

Proof. From the six-term exact sequence in K-theory, we have [7(1 — d)] =
[p] = 0 in Ko(A). Thus, by the assumption, p ~ 7(1 — d). There is a partial
isometry ¥ € (1 — d)A(l — d)/I such that 7% = 7(1 — d)) and 7%* = p. Lifting v
to an element in (1 — d)A(1 — d), using the fact (1 — d)/(1 — d) has approximate
identity consisting of projections, an argument of Elliott {see [18]; see also 2.8 in
[59] for the general case) implies that there is a partial isometry v € (1-d)A(1-d)
such that 7(v) = ¥ and #(vv*) = p. Take P = vo* +d. 8

LEMMA 2.7. (cf Lemma 1.5 in [38]) Let A be a non-unital but g-unital C*-
algebra with real rank zero and with M(A)/A being purely infinite simple and
let 7: C(X) — M(A)/A be an extension of C(X) by A. Suppose that X is a
compact melric space and F' ts a compact subset of X. Then there exist a projection
p € M(A)/A and injective maps

7' C(X) = (1= p)(M(A)/A)1 ~p) and o :C(X)— p(M(A)/A)p

such that 7 = 7' + 4, o0, where i : F — X is the embedding and ¢ is a trivial
diagonalizable extension.

Proof. We just need one modification of the proof of Lemma 1.5 in [38].
Suppose that {A\,}52%, is a dense subset of F such that {},}%, is also dense
in F for each k. For any A, € F, set

I={feC(X): f(\) =0},

B = Her(mo¢p(I)), the hereditary C*-subalgebra of M(A)/A generated by 7o (1)
and
Bt ={z € M(A)JA:zb=bz =0 forallbe B}.

It follows from 15 in [49] that B! is a nonzero hereditary C*-subalgebra of
M(A)/A. Since M(A)/A is purely infinite and simple, there are two nonzero mutu-
ally orthogonal projections p,, and p,,’ in B~ such that [,] = 0 in Ko(M(A)/A).
Since A has real rank zero, by Lemma 2.6, for any projection d € A, there is a
projection p,, € M(A) such that 7(p,) = B, and p, > d. We now apply the proof
of 1.5 in [38]. The only place that we used the condition that RR(M({A)) = 0
1s that projections p, exists. This is done above by applying Lemma 2.6 {note
Ko(M(A)) =0). «
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COROLLARY 2.8. Let X be a compact meiric space and let A be a nonunilal
but o-unital purely infinile simple C*-algebra. Suppose that ¢ : C(X) — M(A) is
a uniial homomorphismsuch that mo @ : C{X) — M(A)/A is a monomorphism,
where m : M(A) — M(A)/A s the quotient map. Then there erists a diagonaliz-
able homomorphism @1 : C(X) — M(A) such that

P~

Proof. First, a couple of known facts. A is stable and has real rank zero
([60]), Ko(M(A)) = K1(M(A)) =0, M(A)/A is purely infinite simple and has
real rank zero ([34] and [60]).

It follows from Lemma 2.7 that there is a nonzero projection p and there are
homomorphisms ¥ : C(X) — pM(A)p and ¥, : C(X) — (1 - p)M(A)(1 - p) such
that ¥, is diagonalizable,

1(f) @ ¥2(f) —w(f) € A

for all f € C(X) and both m o and 7 o 4 are injective. :

Now we will apply Remark 2.3. We note that, by Lemma 1.27, the condition
in Remark 2.3 is satisfied.

Note that in Remark 2.3, if w o ¢ is a monomorphism, so is 7 o 1. We also
note that (1 — p)M(A)1 — p) = M(A). Applying Remark 2.3 on %3, we obtain
two diagonalizable homomorphism @1, ¢y 1 C(X) — M(A)/A such that Toyp; and
7 o gy are injective and

Va(f) @ ei(f) —walf) € A

for all f € C(X). By the proof of 8.1 in [37], we know that there is a unitary
u € M(A) such that
Yi(f) — w1 (flu € A

for all f € C(X). We then obtain a diagonalizable homomorphism @3 : C(X) —
M (A) such that

o(f) —pa(f) € A
for all f € C(X). Write

ea(f) =D F(da)en,

n
where {An}5%, is dense in X for each k and {Z e,} forms an approximate
i=1

identity. Let F be a finite subset of C'(X}.
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We will now repeat some of the arguments used in the proof of Theorem 2.2.
Fix a finite subset G C C(X) (G will be larger than F). Let 6, > 0 be a sequence
such that 6, — 0. Since o(f) —p1(f) € A, without loss of generality, for any € > 0,
we may assume that

lexo() = p(Ferll < L and [lp(f) — palf) @ exp(Hesl] < ¢
2

for all f € G, where p4(f) = Z F(An)e, for all f € C(X). Set al(f) = eyp(fler

for all f € C(X). Then a 1s a contractlve positive linear map from C(X) into
e1Ae; which is 8;-G-multiplicative. We also have

o(f) —pa(f) @ ar(f) €A

for all f € C(X). Let {F:} and {G,} be two increasing sequences of the unit
ball of C(X) such that each of their unions is dense in the unit ball of C(X).
We also let F; = F. By Corollary 1.28, there is a contractive positive linear map
from ay : C(X) — ejAe; which is 6-Gi-multiplicative and a homomorphism
71 : C(X) — Ma(ey Aey) with finite dimensional range such that

llon () @ @a(H) = n(Dll < 5

for all f € F;, provided that G; is large enough and §; is small enough. Note
that there is no restriction on §» and G;. By Corollary 1.28, there is a contrac-
tive positive linear map a3 : C'(X) — e;Ae; which is 83-Go-multiplicative and a
homomorphism 3 : C{X) — Mz(e; Ae; )} with finite dimensional range such that

“Otz(f) S ag(f) —_ —)/2(f)” < Z_

for all f € F3, provided that G, is large enough and &3 is small enough. Again
note that there is no restriction on é3 and G,. Continuing this, we obtain {v,} and
{an} such that

llen(F) ® ang1(f) = 1Nl < gﬁf

o0 X
forall fe F,.Let &3 = Y 7, and ®3 = 3 ¥n. Then

n=2 n;l
()@ 2 (f) - :(fl €A K (ZA)
for all f € C(X), since |J F, is dense in C(X) and

ller(f) @ @1(f) — P2(f)} < €
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for all f € 7. Note that ®; and ®, are diagonalizable. It follows from Remark 2.3
(see Theorem 2.2} that

Pa D P ~ 4.
We also have 13 @ ®2 ~ 9)3. So the above shows that

w3 B
REMARK 2.9. Corollary 2.8 is an application of Theorem 2.2 and carlier
results in [38]. After this research started but before it was typed, we learned
that E. Kirchberg have announced a more general result than Corollary 2.8. His
method is completely different from ours.

REMARK 2.10. Let
0—A—-FE—-C(X)—0

be an (essential unital) extension of C(X) by a non-unital but e-unital purely
infinite simple C*-algebra A. Such an extension is determined by a monomorphism
from C(X) into M(A)/A. Let 71,75 : C(X) — M(A)/A be two such extensions.
We say 7 is unitarily equivalent to 7, if there is a unitary u € M(A) such that
w(u*)ry7(u), where m : M(A) — M(A)/A is the quotient map. Let Ext(C(X), A)
denote the set of unitary equivalence classes of essential extensions of C(X) by
A. Let Ext(C(X), A) (and Ext®(C(X), A)) be the quotient of unitary equivalence
classes of (essential) extensions of C(X) by A by {essential) trivial extensions. It
is clear that, when A is a non-unital, o-unital purely infinite simple C*-algebra,
there are trivial essential extensions (diagonalizable maps from C(X) into M(A4)).
So Ext(C(X), A) = Ext*(C(X), A) (see 15.6.5 in [2]).

CoRrROLLARY 2.11.
Ext(C(X), A) = Ext(C(X), A) = KKY(C(X), A).

Furthermore, an eztension 7 is trivial if and only if [t] = 0 in Ext{(C(X), A) {or
in KKYC(X),A)) and all trivial extensions are equivalent and equivalent to a
diagonalizable one.

Proof. 1t is enough to consider unital essential extensions. Suppose that
1,7 : C(X) — M(A)/A are two essential unital extensions and [r] = [r] in
Ext(C(X), A). Then there are trivial extensions 7 and 7o such that = 4 79 is
unitarily equivalent to 7o+ 7g9. By Lemma 2.7, 7 is unitarily equivalent to 7{ +77’,
where 7 1s trivial. By Remark 2.9, all trivial extensions are unitarily equivalent.
In particular, 7{ is unitarily equivalent 75. So 7 is unitarily equivalent to m.
Similarly, 7o + 7o 1s unitarily equivalent to 75. Thus 7 is unitarily equivalent to
79. The last part of the statement follows from Remark 2.9. @
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