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ANTICOMMUTATIVITY AND SPIN 1/2
SCHRODINGER OPERATORS WITH MAGNETIC FIELDS
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ABSTRACT. It is proven that the spin 1/2 Schrodinger operator H with a
constant magnetic field is the square of a sum of mutually strongly anticom-
muting self-adjoint operators. As an application, by using this formula, the
essential spectrum of H with a vector potential in a class is identified. The
class contains a vector potential to which Shigekawa’s theorem (I. Shigekawa,
J. Funct. Anal. 101(1991), 255-285) cannot be applied.
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1. INTRODUCTION

The spectral properties of the Schrodinger operators H with magnetic fields for a
spin 1/2 particle were deeply studied by Shigekawa in [9]. The operator is given by

d d .
H= Z(—iaj - aj(:n))z + Z % jk(x)'yj')’k

j=1 k=1
acting in L?(R?) ® C" where r = 2!, | = [d/2] with [-] the Gauss symbol,

. d . .
9; = 9/0z7, a(z) = Y aj(z)dz’ is a real l-form called a vector potential,
ji=1
b = Y bjdz! AdzF = da with bjx = djax — dka; is called a magnetic field
i<k
and 97’s are 7 x r-Hermitian matrices (so called the Dirac matrices) satisfying

(1.1) Yot 4ty =267
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where the 67%’s are the Kronecker delta. This H is also represented as H =7

where D is the Dirac operator defined by
d »
D=3 7 (=i; - a;(z)).
Jj=1

For comparison, we define the Schrodinger operator H with a magnetic field for a
spinless particle by

d
H =) (~i8; - aj())?
j=1
acting in L%(R9).

We are mainly interested in H with asymptotically constant magnetic fields.
Assume that all a; is C* and

(1.2)  bjr(z) = Ajp as |ej—oc for jk=1,...,4

where A = (Aji) is a real skew-symmetric matrix. We note that A has eigenval-
ues of the form +iAi,...,+idn,0,...,0, where Ay,..., s € R. Without loss of
generality, we can take A; > 0.

First, we consider the 2-dimensional constant magnetic field case, where
b(z) = Adz! A dz? with a positive constant A. We can take a(z) = A(~z*de’ +
z1dz?)/2. Let v/ = a7, j = 1, 2. Here, 07, j = 1, 2, 3, are the Pauli matrices as

01 0 —i I 0
1 _ 2 _ : 3 _
”“(10) ”"(io)’”"(0~J'

A = (—-i81 - (11) -+ (62 — i(lz)

follows:

With

acting in L%(R?), we find
(1.3) A*A = AA* +2X,
H:%MN+NM and H = H + o
THEOREM 1.1. Let d =2 and b = Adz! Adz? with A > 0. Then
o(H) = ges(H) = {(2n + 1)X; n €24},

o(H) = oes(H) = {20} n €14},
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where Zy = {0,1,2,...}, 0(-) and oess(-) denote specirum and essential spectrum,
respeclively. Moreover,
ker H C ker(c® + 1).

It is well known that by virtue of the relation (1.3) we can prove this theorem
in the same way as in the harmonic oscillator case (see, e.g., [5], [10]). All the
eigenvectors of H are created by repeatedly acting A and A* on the eigenvectors
with the lowest eigenvalue.

In the higher dimensional case, Shigekawa has proved the following theorem.

THEOREM 1.2. (Shigekawa, [9]) Assume the condition (1.2).
(1) Assume that 0 45 an eigenvalue of A. Let i)y, ..., %ix,,0,...,0,
(Aj > 0) be eigenvalues of A. Then

Uess(H) = [’\l + "'+)‘n100):

J(ﬁ) = Uess(ﬁ) = [U,OO)

(i1) Assume that 0 is not an eigenvalue of A. Let 1Ay, ..., £iAm, (A > 0,
m = d/2) be eigenvalues of A. Then

Oess(H) = {i(m +1))s; ki €24},

i=1

m
veas(H) = { 3" 2y k5 €24}
F=1

Moreover 0 s an isolated point specirum of .

Shigekawa proved this theorem using relations between the essential spec-
trum of H and H such as the following:

1
)= o1~ 0757,

i=1

aess(ﬁ') = U cress(H + iEiAj),

€1 Em=%1 ji=1

U Uess(H+iem)\{0}: U aess(H+iejAj)\{0}.
Ji=1 1 j=1

£1-Em=1 £y Epm=—

These equations are derived from the Weyl theorem, (1.1) and the fact that H and
all iy =142 mutually strongly commute. In particular, in the proof of the part
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(i) he constructed concrete orthonormal functions in L%(R?) in order to use the
Weyl criterion in a slightly strengthened version (see, e.g., [4]). Suppose that A is
self-adjoint and A 3 0. If there exists an orthonormal sequence {¢z}ren C D(A)
such that [{(A + 1)71(A — a)px|] — 0 as k - oo, then & € dess(A).

Comparing Shigekawa’s proof and that Theorem 1.1 can be proved by creat-
ing all eigenvectors of H using the relation (1.3), we feel that the inner structure
of H is not sufficiently clear in the higher dimensional case. Why does whether 0
is an eigenvalue of A or not cause the difference of ess{H) in each case? The aim
of this paper is to clarify the inner structure of H and to identify the spectrum
of H.

In this paper, we investigate D instead of H itself, since D has more rich
structures inherited from the Clifford algebra generated by 4 ’s than H. In partic-
ular, in the constant magnetic ficld case, it is proven that D is a sum of operators
which mutually strongly anticommute. We remark that the anticommutativity of
self-adjoint operators restricts strongly themselves. Hence this property is very
useful (see [11], [7], [1], [2] and references therein). Therefore, it 1s very interesting
to investigate the properties of D which are derived from the anticommutativity.

The plan of this paper is the following. In Section 2, we consider the constant
magnetic field case. We prove that D is a sum of mutually strongly anticommuting
self-adjoint operators. Using this, we identify the spectrum and the essential
spectrum of D and H. In Section 3, we consider perturbations of D and H.
We define a new class of vector potentials a, each in which implies the same
essential spectrum for H as in the constant magnetic field case (Theorem 3.2).
This class contains vector potentials to which Theorem 1.2 cannot be applied (see
Example 3.4 in Section 3).

2. CONSTANT MAGNETIC FIELD CASE

In this section, we investigate the inner structure and the spectrum of D and H
with a constant magnetic field. We recall the definition of the anticommutativity of
self-adjoint operators: two (non-zero) self-adjoint operators A and B in a Hilbert
space are said to strongly anticommaute if

exp(itA)B C Bexp(—itA)

for all t € R (see [11], [7], [1])- _
First of all, we prove a proposition and a lemma.
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PROPOSITION 2.1. Let A be a self-adjoint operaior in a Hilbert space H with
a grading operalor y such that y* = v, v% = |, and A and v strongly anticommule.
Let B be a self-adjoint operator in a Hilbert space K. Then A® 1 and v @ B are
self-adjoint in H & K and strongly anticommute.

Proof. The self-adjointness follows from general theory on tensor product
of self-adjoint operators ([8]). The strongly anticommutativity follows from an
application of Corollary 4.5 in [7]. &

We shall use the following lemma to answer the question, “Why does whether

0 is an eigenvalue of A or not. cause the difference of oegs(#7) in each case?”

LEMMA 2.2. Let A and B be as in Proposilion 2.1. Assume that there exisis
a unitary operator U on K such that U*BU = — B,

(2.1) o(B) =R,
and
(2.2) op(B) = 0,

where ap(+) denotes point spectrum. Let
T=Axl+ye B with DT)=DAx1)NnD(y®B),

where D(T) denotes the domain of the operator T'. Then T s self-adjoint, op(T) =
0 and

(2.3) o{T) = (—oo,—8]U [, 00) with §=inf{|z|; z € o(A4)}.

Proof. The self-adjointness of T follows from Lemma 2.1 in {1] and Proposi-
tion 2.1. By Lemma 2.4 in [1],

T2 = A2®1+1® B?

holds as operator equality. Thus, we have ¢,(T2) = 0 by {2.3) and

o(T?) = {a+b; a € 0(A?), b€ o(B?)} = [inf 5(A4?), 00)

by (2.1). Since (y®U)*T(y®U) = =T and v is unitary, we have ¢(7) = o(-T).
Therefore, we obtain (2.3). &



188 OsaMU OGURISU

In this section, we deal with the constant magnetic field case. Hence, assume
that

(2.4) bjk(:c):Ajk for j,k:‘:l,“.,d,

with a constant matrix A = (A;j;). By an orthogonal transformation, we assume
that A is of the form

0 XN \
-A1 0 0
A= 0 A ’
=X, 0
0
0
\ 0
where A; >0, j = 1,...,n. Moreover, we can take a vector potential a as follows:

agj-1(2) = -,\—j—:czj asi(z) = ~Cig%-1 for j=1,...,n
(2.5) - 2 0 2 e

aj(z)=0 for j=2n+1,.. .,d

We prove that D is a sum of operators which mutually anticommute. Let
d;j = ot (=182 -1 + azj-1) + o (~idy; + as;)

acting in L?(R?;C?) for j = 1,...,[d/2]. Since agj~1 and ay; contain only the
variables z%~! and % these operators are well-defined. Moreover, d; are essen-
tially self-adjoint on the domain C§°(R?;C?). We denote the closure of 2] by the
same symbol. We can easily check the following proposition.

PROPOSITION 2.3. Foreachj = 1,...,[d/2], the operators ¢® andr‘i\j sirongly

anticommute.

Using 3\_,-, we construct self-adjoint operators D; whose sum is D in each
cases where d = 2m and d = 2m + 1. First, consider the case where d = 2m. For

j=1,...,m, define

Di=19 - ®1led ) Qs
Nt Mo, e

j—1 times m—j times
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acting in ®™ L2(R?; C?) ~ L?(R®™;C"), r = 2™. In the case d = 2m + 1, define

D;j=1® - ®Lod; 80 - ®o° 31
N’ N e’
j—1 times m—j times

for j=1,...,m, and

Dy = PR ® 0 ®(—10mt1)
———

m times
acting in ®™L%(R%C?) ® L*(R) ~ L*R*™,C7), r = 2™. Since d; are self-
adjoint, each Dj; is self-adjoint. If d = 2m, we define a grading operator [,y
by

Lo = o’s)mcrsA
acting in ®™ L?(R?; C?). Then [z, and D; strongly anticommute for j = 1,...,m.
We remark that Dyypq = Do @ (—id2mq41)-

LEMMA 2.4. The operators Dj mutually strongly anticommute.

Proof. By Propositions 2.1 and 2.3, d,®0o® and 19d, strongly anticommute.
Since the other components in D, and D; strongly commute, we can prove that
D; and D; strongly anticommute with limit argument. In the same way, we can
see that all Dy, Da, ..., Dy, strongly anticommute.

Inthe case d = 2m + 1, let A = Dy, v = I'gm, H = ®™ L% (R?%;C%), B =
—i0am41 and K = L*(R). Then, by Proposition 2.1, we obtain the desired results. &

The followings are the main theorems in this paper.

THEOREM 2.5. Assume (2.4). Let k = [(d+ 1)}/2]. Then

k
(2.6) D=Dy+Dy+ -+ Dy with DD)=[)D(Dj),

i=1

k
(2.7) H=D>=D24+ D¢+ -+ D! with D(H)=()D(D}),
j=1

hold as operator equality.

REMARK 2.6. In Theorem 2.5, we take a representation of Dirac matrices
,),J' as follows: 71 = g! ® [®m—10.3]’ 72 = g2 ® [®m—163], ,]/3 — 1®0.1 ® [®m—-20.3],
v =1®0c?® [®" 2¢%, and so on.

Proof of Theorem 2.5. By direct computations, (2.6} holds on Cs°(R4;CM),
r = 904/2). Since D is essentially self-adjoint on C§°(R%;C"), by Lemma 2.1 in [1]
and Lemma 2.4 we obtain (2.6) as operator equality. Moreover, by Lemma 2.4
and Lemma 2.4 in [1] we obtain (2.7) as operator equality. @
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By this theorem and Theorem 1.1, we can obtain the following spectral prop-
erties of D and H.

THEOREM 2.7. Assume (2.4).
(1) Assume that 0 is an eigenvalue of A. Then
o(H) = 0ess(H) = [0,00), 0p(H) =0,
(D) = 0ess(D) =R, op(D)=0.
(ii) Assume that 0 is not an eigenvalue of A. Let £iky, ..., +idm, (A > 0,
m = d/2) be eigenvalues of A. Then

m
(2.8) o(H) = oes(H) = { 3" 20053 k5 € z+},
j=1
(2.9) 0(D) = 0ess(D) = {#/a; a € o(H)}.
Moreover, we have
(2.10) kerD C ker(c® + 1) ® - - - ® ker(o® + 1).

Proof. First, we prove the part (ii). By Theorem 2.5, we can rewrite H as
F=d’019 01+10d®1® @1+ +10 QL.
N —— N i’ i, s
m—1 times m-2 times m-1 times
Therefore, we have

a(ﬁ):{a1+--~+am;'aj € a((@?), j=1,...,m},

Uess(ﬁ) ={a1+ - +tam; a; € aess(c@g), j=1,...,m}
Since 0'((11}2) = chs(&;?) = {2n;)j; n; € Z;} by Theorem 1.1, we have (2.8). By the
supersymmetry with the grading operator I'4, we obtain (2.9) (see Proposition 2.5
in [9]). By the self-adjointness, we have
kerD = ker H = kergl ® - -Qbkergm.

Thus, we obtain (2.10) by Theorem [.1.
We prove the part (i). Decompose D into two operators as follows. Let A be

2n .
the Dirac operator in the case where d = 2n, the vector potential a = 3 a;(z)dz’
=1
with a; in (2.5), and the grading operator v = I'sn on H = Q" L?(R*; C?). Let
B be the (d — 2n)-dimensional Dirac operator with a = 0in K = L%(R4-2",C"),
r = 9l(d-2n)/2] Then, we have D = A® 1+ v ® B. Moreover, let U be a unitary
operator on K by

(Uf)(z) = f(-z) for fek, zeR"™

Then, the set {A,v,H, B, U, K} satisfies the assumptions in Lemma 2.2. With the
part (i1), we obtain the desired results. 1
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In the rest of this section, we consider the spinless case. We can rewrite H
as follows. Let

hj = (=iBaj1 — agj-1)? + (=i03; — a;)?
in (RN forj=1,...,m. Ifd=2m+1, let
7;Jm-f-l - (““i62m+1)2

acting in L?(R). Then,

k
H =Y "o~ &k & [+-71],
j=1

in L(RY), k = [(d+ 1)/2]. Thus, we can prove the following theorem.

THEOREM 2.8. Assume (2.4).

(1) Assume that O is an eigenvalue of A. Lel +idy, ..., X, (A > 0), de
eigenvalues of A. Then

0(H) = ess(H) = [i Aj,oo), oo(H) =0,

(i) Assume that O is not an eigenvalue of A. Let +iAq,...
m = d/2) be eigenvalues of A. Then

yEiAm, (A > 0,

C(H) = oee(H) = {}E(zkj + 1N by €24}

Proof. This theorem follows from the general theory of tensor product of
self-adjoint operators and Theorem 1.1. &

We can find far more discussions on this H in [6].

3. PERTURBATION

In this section, we consider perturbations of Py which is the Dirac operator with
a constant magnetic field considered in the previous section. Though Shigekawa
proved Theorem 1.2 under conditions on the asymptotic behavior of the magnetic
field b = da as (1.2), we shall give assumptions on the asymptotic behavior of
the vector potential a, up to gauge transformation. One of the reasons is that we
investigate D instead of H itself and D contains explicitly a and no b. Therefore,
this seems natural at least from the mathematical point of view. We will give a
theorem with assumptions on b, too.
We start with the following abstract lemma.
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d _ d _
LEMMA 3.1. Assume that ag = ) agjd2? and a = ) a; dz’? are real 1-
i=1 j=1
forms such that ap; and a; are in C*°, by = dag is a bounded 2-form and a — 0

as |z| — oo (i.e., aj(x) — 0 as || — oo for all j). Let

. d
D= o (-i0; +aj(z)) and A= 27 (@)
i=1

ji=1
acting in L2(R%;C"), v = 219/2], Then A is D-compact.
Proof. Let bg = dag = Y. bojx da? A dz® with bojx = djaox — Oraoj. Then

i<k

d
DP?=H + Zz’bojkijk with H = Z(—iaj + ag;)’.
j<k ji=1

d
Since aj(z) — 0 as 2| — o0, @j is —A = —-( > 8f>-compact‘ Thus, a; is H-
J=1
compact by Lemma 2.3 in [3]. Since S ibojx7’7* is bounded, a; is D*-compact
i<k
and thus A is so. Since A is P-bounded with D-bound 0, A is P-compact by
Theorem 9.11in [12]. &

The following is the main theorem in this section.

THEOREM 3.2. Assume thal the given vector polential A can be rewritien
as the sum of 1-forms ap and a such that dag is a consiant magnetic field and a
tends to 0 as |z| — co. Define D and H as the Dirac and Schrodinger operators
with A, respectively. Put A for day as same as (2.4).

(i} Assume that 0 is an eigenvalue of A. Then

ess(IT) = [0,00), 0ess(P) = R.
(i1) Assume that 0 is not an eigenvalue of A. Let iky, ..., xidm, (A; >0,
m = d/2) be eigenvelues of A. Then

m
G () = { 32k 55 by € 7.},
j=1

ess(D) = {£Va; o € o(H))}.

Proof. Define Dy as the Dirac operator with ag. Since a;(z) — 0 as |z| — oo,
D — Dy is Dy-compact by Lemma 3.1. Therefore, by Theorem 2.7, we obtain the
desired results. &
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The following theorem gives a condition on magnetic field b which implies
the same essential spectra of D and H as in Theorem 3.2.
THEOREM 3.3. Assume thatb = " bjp dz? Adz* is a real C* 2-form such
j<k
that for any j and k,

lei(bjr(z) = Ajr) =0 as |z — o0

with a constant matriz A = (Aji). Then, the statements (i) and (i) in Theorem 3.2
hold.

Proof. For the 2-form b = ¥ (b;x — Ajx)de? A dz¥ we can choose a I-form
i<k
a such that b = da and a — 0 as [z| — co by taking

1
a(zr) = Z/t(bjk — Ajp)(tz) dt (2 dz¥ — zFda?)
i<k}

as in the proof of Poincaré’s Lemma. Since the 2-form 3 Ajxdz’ A dz* is a
: i<k
constant magnetic field, by Theorem 3.2 we obtain the desired results. 1
Of course, above Theorem 3.3 is weaker than Theorem 1.2. However, Theo-
rem 3.2 is not weaker than Theorem 1.2 as we see in the following example.

EXAMPLE 3.4. Let d = 2and a = a; dz! +ap dz? be a C® 1-form such that

sin |22|" A,
ol bl W d -
o] and aa(z) 5%

A
a;(z) = 53:2 +
near |z| = oo with a constant » > 2 and a positive constant A. Then, a satisfies
the assumptions in Theorem 3.2. Therefore, we have Tess(H) = {2nX; n € Ty }.
However, b = da does not converge as |z| - co. Therefore, we can not apply
Theorem 1.2.

We remark on perturbations of the spinless Schrodinger operator H. Assume
that magnetic field b satisfies the conditions in Theorem 3.3. Then, using the
general theory of perturbations of differential operators (see, e.g., [12]) and using
the vector potential a in the proof of Theorem 3.3 we can prove that the perturbed
H has the same essential spectrum of the unperturbed H as in Theorem 2.8.
However, this result is evidently weaker than the Shigekawa’s results in [9]. This
difference is due to the difference between the unperturbed operators taken in each
proof.
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