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ABSTRACT. This note characterizes those Hilbert spaces which are alge-
braically contained in the Hardy space H? of scalar valued analytic functions
on the open unit disk D and on which multiplication by a finite Blaschke prod-
uct acts as an isometry. A general inner-outer factorization is deduced and
some other properties of the operator of multiplication by a finite Blaschke
product are described. The main theorem generalizes a recent theorem of de
Branges as well as a theorem of Peter Lax.
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1. INTRODUCTION

This article describes the solution of the following problem: characterize all Hilbert
spaces which are algebraically contained in the Hardy space H 2 of scalar valued
analytic functions of the open unit disk D and on which multiplication by a finite
Blaschke product acts as an isometry. Special cases of this problem have been
tackled by L. de Branges ([2], Theorem 15 (scalar version)) and by Peter Lax ([6])
who looked at an equivalent version of a particular case of this problem. Our
characterization may be of interest for the following reasons: the Hilbert spaces
characterized by de Branges are assumed to be contractively contained in H 2,

We do not make any continuily assumption belween the space to be charac-
terized and H?. All we require is that the Hilbert space is algebraically contained
in H2,
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Secondly, our theorem, especially when the Hilbert space which is sought
to be characterized is a closed subspace of H?, is very explicit and intrinsic to
the space H? and does not rely on vector valued operators a la Lax-Halmos.
This leads to some nice and interesting properties of functions in H? including
a factorization theorem which includes the classical inner-outer factorization as a
special case. Also, we get in the H? situation a nice description of the commutant
and the reducing subspaces of such multiplication operators.

Thirdly, our method enables us to give a fairly explicit description, intrinsic
to H?, of the invariant subspaces, on HZ, of the operator of multiplication by an
infinite Blaschke product. (The manuscript of this description is under prepara-
tion.) Finally, we are able to perceive a way of describing such characterizations
on other Hardy spaces and we give a description of the invariant subspaces on H'

of the operator of multiplication by z2.
2. A BRIEF PREVIEW

The rest of this paper is organised as follows: Section 3 deals with the basic ter-
minology and related preliminary results. Section 4 contains the main result of
this paper viz. a characterization of those Hilbert spaces which are algebraically
contained in H? and which are left invariant under the action of Tg, the trasforma-
tion of multiplication by B, which acts isometrically. This section also describes
some related results. Section 5 describes the factorization of H? functions which
includes the classical inner-outer factorization as a special case. It also contains
properties of these general inner functions. Section 6 contains the characterization
of the invariant subspaces of the operator of multiplication by z? on the Hardy

space H!.
3. TERMINOLOGY AND PRELIMINARY RESULTS

We shall denote by D the open unit disk, T shall stand for its boundary i.e. the
unit circle. Normalized Lebesgue measure on T shall be denoted by dm and L?
will stand for the well known Lebesgue spaces on T. HP shall denote the class
of all L? functions which have Fourier series of analytic type (p 2 1). It is well
known that H?, for each p, can be looked upon as a space of analytic functions on

D which satisfy a growth condition. For this and all other facts to be used about
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the well known Hardy spaces we refer to any of the numerous standard books in

the literature such as [3], {4] or [5]. L? is a Hilbert space under the inner product

(fg)= [ fgdm
/

H?, being a closed subspace of L%, is a Hilbert space in its own right under the

above inner product.

By a finite Blaschke product B(z) we mean
H z - O!z)
(1 — Tz

where each o; € D. The isometric operator of multiplication by B on H? shall be
denoted by Ts. By an invariant subspace of an operator S on a Banach space X
we mean a closed, proper, non-trivial subspace of X which is invariant under the
action of S. Due to the conformal invariance of H?2, it is sufficient to characterize
the invariant subspaces of the operator Tg where o) = 0 in the above B(z).
Henceforth, (without loss of generality in the case when the invariant subspace

under consideration is a closed subspace of H?), we shall always assume that
5 (2= o)
(3.1) B(z) = Em (a; =0, n at least 1).

Given any f in H? with, say, zeros 31,02, .- ., Bm in D we shall use the fact
that

f(z) = 1(2)9(2)

where I(z) is a finite Blaschke factor whose zeros are precisely 81, B2, ..., Pm and

g isin H?.
THEOREM 3.1. (Wold-Halmos) Let H be a Hilbert space and T an isometry
on H such that \T"(H) = {0}. Then
0
H=Na&T(N)®T*(N)&--- [where N =H ©TH].

Proof. See [7]. 1
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REMARK 3.2. Such an isometry is called a skiff and dim N is called the
multiplicity of the shift.

Let M(B) be the closed subspace of H? given by

M(B) = \/ {B™}.
m=0

Note that {B™} is an orthonormal basis of M{(B).

Let
7 12
k(Z) g( )—-l+—_|a||; '—1321 y 1,
— T2’ 1-%;2
let
Bo(z) =1
and
O‘J)
Bi(z) = H (l — @;z)
then
Bn(z) = B(2)
Let

eim = ki1 BiB™ (0<j<n—1m=0,12..).
THEOREM 3.3. The set {ejm} is an orthonormal basis of H?.

Proof. We shall first show that {ejm,} is an orthonormal set. It is rather
straightforward to verify that each ¢;,,; has norm one. Next choose any two distinct
elements from this set say ep, and e,;. Since these are distinct so either p # r or
g # s. Suppose p # r. Assume without loss of generality that p < r. Then we
have ¢ > s or ¢ < 5. Now

(6pq,6,~,) =/§p+1Bqu£r+1BrB’ dm = f£p+1}c\r+1BpB,Bq§dm.
T

Now B, B, BB is either a Blaschke product or the complex conjugate of a
Blaschke product. But in the case it is a Blaschke product it will have (z—=orq1)
as a factor and if it is the complex conjugate of a Blaschke product it will have
(z — apt1) as a factor.

[Note: o is to be interpreted as 0]. Hence in either event the above inner
product will be zero due to the fact that i;r+1 and E,,H are scalar multiples of the
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reproducing kernels at a,4; and ap45. The other values of p, ¢, r, s can similarly
be tackled.

Next, we show {ejm} is a basis of H?. Let f be an arbitrarily chosen element
of H? and let f be orthogonal to {ejm}. Then

flew= f==zfi forsome fi in H?,
fleo=zfi lzko

= fi(laz) =0

= f=Byf; forsome fyin H?.

Next R
f Lew = Bafs L Baks
= fg(a_g) ={
= f = Bsfs forsome fs3in HZ%;

continuing like this we get f = B, f, for some f, in H? and f = Bf, since-
Bn, = B. Then exploit the fact that f L ey, p = 0,...,n to get in a fashion
similar to above that f = B? f,(ll) for some f,(.l) in H?.

Similarly, f L epz, p = 0,1,...,n will give us f = B375¥ for some £ in
H? and so continuing this for each ey;, j = 0, 1, ... we will find, because 27 divides
B}, that 2/ is a factor of f for each positive integer j. This forces f = 0 and
concludes the proof of our theorem. &

COROLLARY 3.4. H? = eqoM(B) ® e1oM(B)® -+ ® en—1,0M(B)

Proof. Obvious in view of the fact that {¢;} is a basis of H? and {B™}§°
is a basis of M(B). 1

REMARK 3.5. In view of the above corollary it follows that for each f in H?
there exists a set {fo, fi,..., fa—1} in H? (in M(B)) such that

f=eonfo+ - +en-1,0fu-1

and

AN = 1 Foll + -~ + I fmall”.

REMARK 3.6. If we write ejm = Ej_,.lBjB"‘ where 0 € j€<n—1land mis
any negative integer then using the decomposition L2 = H? @ 2H? and the fact
B = B~! we conclude that the set {ejm : 0 < j<n—1, m=0,%1,...}is an
orthonormal basis of L2.
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Hence each f in L? can be uniquely written as

n-1
EjmEim.
j=0m

.

g,,
ng

We shall call o, the (j, m)™ B-Fourier coefficient of f and above series as the
B-Fourier series of f.

We shall now define a few terms which are required for the characterization
theorem.

To each r tuple (1, ..., ¢ ) of functions in H? (r € n) we associate a matrix
called the B-matrix of {¢1,...,,) denoted by

A=(py) (0€ig<n~1,1<5<r)

where

<P1=Zeio¢ij 1<jgr

FE-11]

is the representation as given in Remark 3.5.
DEFINITION 3.7. Let (©1,...,9) be an r-tuple of H*® functions and let
A = (4i;) be the B-matrix of (¢1,...,¢r). Wesay A is B-inner if
(#5:)(pij) = (6s¢) almost everywhere

where 1 <5, 1 € .

In particular, let ¢ be an H® function and let it have the representation

n—1
= @it
i=0

as given by Remark 3.5. Then ¢ is said to be a B-inner function if

Nl
Z foi* =1 almost everywhere.
=0
REMARK 3.8. Clearly when B(z) = z, every B-inner function is nothing but
an inner fanction.

LEMMA 3.9. The B-mairiz of ihe r-tuple (p1,...,0r) of H® funclions is
B-inner if and only if {B™p; = 1< i< r, m=0,1,...} is an orthonormal set.
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REMARK 3.10. It follows from the above lemma that an H* function ¢ is
B-inner if an only if {B™¢ :m =0,1,...} is an orthonormal set.

Proof of Lemma 3.9. Let A = (yp;;) be the B-matrix of the given r-tuple.
Suppose A is B-inner. This means (%;7)(i;) = (6s¢), where 1 < 5, ¢ < 7.
Hence

n—1
(3.2) S Fgen=0, (#k1<ji<r, 1<k<T)
t=0
and
n-1
(3.3) Do leisl? = 1.
i=0

Now pick any two distinct elements from the set {B™p;} say B™¢p, and Blo.
Since they are distinct either m # £ or s # t. If m = £ so that s # t then
(B™ s, B™ 1) = {ps, 1) = 0 by (3.2) above and Remark 3.5.

If m # £ then assume without loss of generality m > £ so that

n-1 n—1
(B™ s, B'oi) = (B™“5, 1) = <Bm_‘ > eiopis, Y, eiO‘Pit>

i=0 i=0

n-1 n—1
= Z(Bm-t<Pka,<Pkt> = Z/Bm_ltmsﬁdm

k=0 i=0 T

n-1

= [ pui)im

T :=0
=0

by (3.2) if s # ¢ or by (3.3) if s = ¢. Since it is clear that each element of {B™¢;}
has norm one it now follows that it is an orthonormal set.

Conversely, suppose {B™;} is an orthonormal set. Then for 1 < j < r, we
prove that ¢;; € H*®. Since for f € M(B)

n—1 n-—1 9
e FI2 < Y llews AP = “ > ekosokjf“ = {lg; fII* < o0.
k=0 k=0

(Clearly true for f in M(B) N H*® and the general case follows from a limit
argument.) And for g € H?

lleisgll* =

Isoz'j ”2—:1 exogk “2, (gx € M(B))
k=0

n-1
= llerioxl®.
i=0
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n—1
This gives ¢;; € H®. So Y ¢;@ix is in L?. Hence for any element e, of the
$=0

orthonormal basis of L? as given in Remark 3.6, we see that if § £ k

n-1 n—1 n-1
<Z%‘j@i; 6pq> =) @i Bim epe) = 3 (90, Pinepg) = 0
i=0 i=0 =0

if p # 0 and if p = 0 then the above expression is
n—1
<Z§0ij@1~', 6pq> = (i, pjeoq) = (i, p; BI) =0
i=0

(even if ¢ is negative). For j =k,

n—1 n—1
<Z I‘Pilzyepq> = Z(%J‘MPH%@) =0
f=0 t=0

fpt0#£qgandforp=g=0

n-] n~1
(S loilreos) = S lpion) = lorpr) = llpel? = 1. a
=0 i=0

4. DE BRANGES SPACES INVARIANT UNDER Tg

- L. de Branges in Theorem 15, {2], has proved the following theorem (scalar
version).

THEOREM. (de Branges) Let M be a Hilbert space contractively contained in
H? and let S(M) C M (where S is multiplication by z) and lei S be an isometry.
Then there exists o unique b(z) in the unit ball of H® such that

M = b(z)H?
and
Hefliae = || flla=
for all f in H2,

This theorem clearly generalizes Beurling’s invariant subspace theorem ([1]).
Over here we prove a fairly general version of the above theorem of de Branges
which also generalizes an equivalent version of the invariant subspace theorem of

Lax ((6], [5])-
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THEOREM 4.1. Let M be a Hilbert space such thai:
(i) M is algebraically contained in H?;
(i) Tp(M) C M;
(i) T acts isometrically on M.
Then
M=o M(B)®: - @ p,M(B}

where each @; isin H™®, 1< j < r, and r < n. Further

leufr + - +eefellls = 1Allfz + -+ 1 fella, fi € M(B)

for each

f=pifiteafat ek
mn M.

Before we prove the theorem we state and prove two lemmas which are needed
in the proof of the theorem.

LEMMA 4.2. Let M satisfy the hypothesis of Theorem 4.1. Let ¢ be an
element of M such that {pB*}, is an orthonormal set in the inner product of
M. Then:

(1) eM(B) C M;

(i) oSl = 1fllaz, for all f in M(B);

(i) ¢ € H*.

Proof. Let f be any element of M (B). Then f(z) = f: amB™. Put fi(2) =

m=0

k
S oy B™. Then ||fi — fllgz — 0 as k — oo and
m=0

k 9 k 2
lefills = o) 3 o], = || 2 ame)87|,

k
= Z lam|?  (as {(z)B™} is orthonormal in M)

m=0

= || el

This proves that {¢fi} is a Cauchy sequence in M because {fx} is Cauchy in H?.
Hence there exists g in M such that ¢fi converges in the norm of M to g. We

prove g = ¢f.
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n o0
Let o(z) = 37 3 Bmkemr. Now from what has been done above the series

k=0m=0
aop(2) + 03 Bp(z) + aaB2p(2) + - - -

converges, in the norm of M, to g.
Substituting the B-Fourier series of ¢ in g, we see that the (3,7)™ B-Fourier
coefficient of g is
aofi; + a1fio1; + -+ @ifo;

which is the same as (7, j)'" B-Fourier coefficient of ¢f.
S0 g = of and [lpfllar = |fllsr.
Now we prove that ¢ € H™,
Let ¢ € H2. Using the decomposition in Corollary 3.4

n-1
g= Zemogm: ngM(B)
m=0
n-1

pg = Z EmogmP.
m=0
But of € H? for all f in M(B) as proved above, we get g € H? for all g € HZ.
So ¢ € H*®. This completes the proof. 1

LEMMA 4.3. Let M satisfy the hypothesis of Theorem 4.1. Suppose there is
ar r-tuple (¢1,...,9,) of H® functions which satisfies:

() piM(BYC M,i=1,2,...,r;

(i) ;M (B) L o; M(B), in the inner product of M when i # j then r < n.

Proof. For the sake of notational simplicity we prove the result for n = 2.
The proof for a general n is identical to the case n = 2. Suppose there are three
elements @1, 2, p3 in M, which satisfy the hypothesis of the lemma. Using the
decomposition of Corollary 3.4, we have

(4.1) ¥ = egopo; + €1042; {¢ij € M(B), i=0,1, =1,2,3).

P1 P2 ¥3
A=1 po1 o2 o3 |-

P11 P12 413

Define the matrix

Then

Det A = p1{po213 — P12903) — P2(Po1¢13 — P11¥03)
(4.2) + p3(po1p12 — P11¢02)
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(by substituting the values of ¢;, 7 = 1,2,3 from (4.1)). Let

Al = P02p13 — Po3P12
(4.3) A2 = ©01$13 — Po3P11
Az = Yo1P12 — Y1102,

We claim that A; is in M (B) for j = 1,2, 3. We see this as follows. Since ¢; € H*
we get from the proof of Lemma 3.9 that ¢;; € H™. Therefore X; € M(B), for
j =1,2,3, and the equation (4.2) can be written as

(4.4) P1A1 — @ada + @3rz = 0.

But ¢; M (B) L p; M(B), so that from (4.4) we conclude that Ay = Ay = A3 = 0.
Now

©1 — po2 — Y2001 = (€ooo1 + o111 )P0z — (€oopoz + er0p12 )01 = 0.

This gives @102 = @2001. But o1 M(B) L w2 M(B). So wer = wo1 = 0.
Similarly by considering the other minors of A, we get ¢;; = 0 for all ¢ = 0, 1,
7=1,2,3.50 ¢; =0, 7 = 1,2,3. This proves the lemma. 1

Proof of Theorem 4.1. Since Tg is a pure isometry on M, using Theorem 3.1

M=N&BN®B*N®- -
N=Me BM.

Choose an element ¢ in N of unit norm, then {B™¢}_, is an orthonormal set
in M. So by Lemma 4.2:
(i) pM(B) C M;
(ii) e fllar = |flla= for all £ in M(B);
(iii) ¢ € H™.
To complete the proof we must show that

dim N < n.

Suppose there are r elements 1, 3,...,¢, in N. We choose them in such
a way that each element is of unit norm in M, and any two of them taken in pair
are orthogonal in M. Then by Lemma 4.2 and Theorem 3.1:

(i) @i M(B) C M;

(i) i M(B) L o;M(B), i # j;
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so that the hypothesis of Lemma 4.3 are satisfied and we get » < n. So, once again
by Theorem 3.1
M=o M(B)® - ® . M(B)

wherer<nand g; EH®;1<j<r For feM

f=erthi+ -+ fe, f; € M(B)
and

WFlae = llonfs + -+ @r frlly
= lkprfallfe + -+ ller fellir (0 M(B) Lo M(B); i <4, k<7 j#k)
= Allks +- + 151k (by Lemma 4.2).

The following are immediate from our Theorem 4.1.

CoROLLARY 4.4. ([8], Theorem) Let M be a Hilbert space contained in HZ
as a vector subspace such that:

(i) S(M)C M;

(ii))'S acts as an isometry on M.
Then M = bH? where b is an H® functions and ||bflls = ||fll2, ¥V f in HZ.

CoRroOLLARY 4.5. ([2], Theorem 15 (scalar case)) Let M be a Hilbert space
contractively contained in H?, such that:

(i) S(M)yC M;

(i1) S acts as an isometry on M.

Then M = bH? where b is in the unil ball of H® and ||bf||ar = ||fllz, V f
in H2.

We are now in a position to describe the invariant and reducing subspaces
of Ty as well as its commutant.
We first observe that for each B-inner function ¢ in H®, the space

¢M(B) = {¢f : f is in M(B)}

is a closed subspace of H? invariant under T5. We prove this as follows: @M (B)
is clearly invariant under Tg. We show it is closed.
Let f be any element of M(B) and let ¢ have the decomposition ¢ =

n-1
e;op; as given in Remark 3.5. Then
i=0

llefll? = ”(gemw)f”z = ” :Z;::CjO‘ijn? = jz;é llesoe; £11%,
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(by the fact that ¢; f is in M(B) and by the orthogonal decomposition of H? as
given by Corollary 3.4),

n—1 n—1 n—1
lefl? = X liesf I = Y [lesPlsiam= [ (3 tesl) 1517 dm
j=0 T =0

j:OT 7

= / |f|>dm (since ¢ is B-inner)
T

=A%

Hence multiplication by ¢ is an isometry on M(B) so that @M (B) is closed.
We can now state the invariant subspace theorem.

THEOREM 4.6. Let M be ¢ Tg-invariant subspace. Then there are B-inner
functions ¢y, ..., ¢p (r < n) such that

M=o M(B)&-- & o, M(B)

and the B-matriz of (py1,...,¢r) is B-inner. Further, the above representation ts
unique in the sense that if

M:WM@WHQ%ij

.
thenr = s, p; = y_ a;;3p; for scalar oy and the matriz (0y;) is unitary.
=

Proof. The proof of this theorem is more or less a direct consequence of
Theorem 4.1. We just remark that the B-matrix of (¢1,...,®,) is B-inner, since
{@:B™} is an orthonormal set.

Now suppose M has another representation
(4.5) M=yv1M(B)® - - & ¥, M(B);

then by looking at the statement of Theorem 4.6 we conclude that the multiplicity
of T® on M is 7. On the other hand by looking at the second representation in
(4.5). we conclude that the multiplicity is s. Thus r = s.

Next from (4.5), foreach 7, 1 < i< r

(4.6) 0i =y fiity, fii € M(B)

=0
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and similarly for 1 < j < r

(4.7) Y = Zgijsoi, 9i; € M(B).

=1
So from (4.6) and (4.7) above we conclude that
(4.8) (9:5)(£i3) = (Brs) (1< k, s < 7).

Also, letting (px;) and (vx;) be the B-matrices of (y;) and (v;) respectively we
get from (4.6)

(4.9) (o) = (e )(fz:) (O<k<a—1),

and from the first part of the theorem each ¢; and ; are B-inner so their B-
matrices are B-inner and hence

(4.10) (®5E)(#rs) = (6s1)

(4.11) (Bi1) (i) = (852).
Putting the values from (4.9) in (4.10), we get that
(Fii) (i) () (i) = (8:1)

and so

(4.12) (Fii)(fis) = (8:2).
This gives from (4.8) and (4.12) that

(fii) = (953)

so that each f;; is in H2. Since each fij 1s already in H? we conclude that fi; is

a constant for each ¢ and j. This completes the proof of the theorem in view of
(4.6).

CoroLLary 4.7. ([1], Beurling’s Theorem) Let M be a closed subspace of
H?, which is invariant under the multiplication by z. Then there exisis an inner

function ¢ which is unique up to a constani of absolute value 1, such that M =
eH?.

We are now in a position to describe the reducing subspaces of Ty, for n > 1,
since for n = 1, T is irreducible.
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THEOREM 4.8. Lei M be a reducing subspace of Tg. Then
M=pMB)® & e M(B)

with r < n and each ¢; 15 given by
n—1
i = Zﬂijev:m w;; € C
i:o
and
n—1
Z |(¥5j‘2 = 1.
=0
Conversely every such subspace is a reducing subspace.
Proof. Since M is an invariant subspace of Ty it follows by Theorem 4.6 that

M=piM(B)&---dp,M(B), r<n,

where the ;’s are B-inner function. We shall first show that r < n. So suppose
r = n. Now, since M is a reducing subspace we get

Te(M+)c M*
and hence, once again by Theorem 4.6
Mt = ’(/)IM(B) B--Pp #)kM(B)

Since M+ # {0} and H? we conclude that k > 1. But & + = is the multiplicity of
Tg on H?. So k +r = n and hence r < n.

It is also obvious that the kernel of T% on H? is the span of {ejo: 0 < j <
n — 1}. Thus to complete the proof of the necessary part of the theorem all we
need to show is that each ¢; is in the kernel of Tj;. To do this we shall show that
T4 i is orthogonal to both M and ML. Now, let f be any element of M so that

f=oh+-- 4o fr

where each f; is in M(B). Then
r r r
(Taei, f) = <T1§<Pi,2<pjfj> = <‘Pi,TB Z%‘f;’> = <‘Pi;Z§0jij>
i=1 i=1 i=1

= (@i, 9iBf;) = (¢i,0:Bf)

i=1
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(because @; L o; M(B) for j # i and since Bf; € M(B));

(TE(Pi, f) = (1, sz)

(because by the observation immediately preceding the statement of Theorem 4.6,
multiplication hy cach such ¢; is an isometry on M(B));

(because z devides B).
Now suppose fisin M+. Then (T}, f) = (i, Bf) = 0 (because Tg(M*) C
+ and ¢; € M). Hence each g; is in the kernel of T},

n—1

The statement about E || = 1 follows from the fact that each g; is a

B-inner function. The converse is easy and we omit the proof. &

We now define a particular partial isometry on H2 and use it to give another
characterization of the invariant subspaces of T2 on H2.

Let (¢1,...,¢,) be an r-tuple of H* functions.

Recall from Corollary 3.4 that H? = eggpM(B)® --- D en_y oM(B)

Define s, : H* — H? as follows: for each f = egofg +-+ep_1,0fnin H?
Sef =¢1fo+---+@rfr_1 where r < n. S, is clearly a partial isometry when the
B-matrix of (¢1,. .., ¢,) is B-inner (with initial space epg M (B)®- - -®er_1,0M(B)
and range space ¢y M(B) @ --- & ¢, M(B)), and S, becomes an isometry when
r = n. Hence Theorem 4.6 can be rewritten as

THEOREM 4.9. Let M be an invariant subspace of T®. Then
M= Sw(Hz)
where S, is as described above, and the B-mairiz of (¢1,...,¢,) is B-inner.

Now we describe the commutant of Tg.

THEOREM 4.10. The commutant {Tg} pf T® is the set of operators

{Se 1o =(p1,902,- ., 0n), pr EH®, ¢ < k< n}.
Proof. Suppose A € {Tg}. Then

ATp =TgA.

Let A(ex-1,0) = ¢k, 1 < k < n. Then, for a fixed i, 0 < i < n — 1 and
7=0,1,..,

Ales;) = A(B es0) = AT§(ei0) = Th Aleio) = Th(pis1) = Bl pipr.
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So, if pm is a polynomial in B, then A(pneic) = pmpi+1- Since polynomials in
B are dense in M(B), we get A(eng) = gpsqr for all ¢ € M(B). This gives
@iptM(B) C H2. So ;g1 € H®; 0<i<n~—1 Andfor f € H?

n—1

n-1 n—1
A(S) = A(Z €z'ofi) = Alenfi) = 3 fipin.
i=0 i=0 i=0

This gives A = S, where ¢ = (p1,92,...,%n)-
Conversely, for some n-tuple @ = (@1, @3,...,¢n) and f € H?

n-1 n—1
TrSo(f) =18 ( Z <Pz'+1fi) =B ( Z Pit1 fz’)
i=o i=0
n—1
= Z pi+1(Bfi) = Sp(By) = SpTh(f)-
1=0

5. A GENERAL INNER-OUTER FACTORIZATION ON H?

In this section we shall assume that B(z) = z" where n is any natural number.
Thus all our results so far are valid when we assume B(z) = 2" where n is any
natural number. We would also like to state that what we are going to say for
B(z) = z" is also true for an arbitrary B(z). The results for an arbitrary B(z)
will be that much more technical. Thus for the sake of simplicity we shall take
B(z) = 2™.

DEFINITION 5.1. An n-inner function in H? is a B-inner function as defined
in 3.7 when B(z) = 2.

DEFINITION 5.2. An n-outer function in H? is a function f such that

VA{72"*} = p(z)M(2")

k=0
where p is a polynomial of degree less than n.

REMARK 5.3. By virtue of
H> =M@ zM() @ & 2" M(2")
every f(z) in H? is of the type
£(2) = fo(2) + 2f1(2) + -+ 2" fasa(2)
Hence, by virtue of Definition 3.7, if f(z) is n-inner then
[fol?>+ -+ {fa-1l’ =1

a.e. on 1. The converse is also true.
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REMARK 5.4. Every inner function is n-inner for an arbitrary n. (The con-
verse is obviously not true.) To see this, let f(z) be an inner function. Then
{f(2)z*}* is an orthonormal set. It then follows that {f(2)2*"}2, is an or-

thonormal set. Hence, by Remark 3.10, f(z) is an n-inner function.

THEOREM 5.5. (i) Every n-outer function in M(2") is an outer funciion.
(1) Bvery n-outer function f(2) in H? is of the lype

f(2) = p(2)0(2)

where p(z) is a polynomial of degree less than n and O(2) is an outer function in
H? and conversely.

Proof. (i) Let f(2) be an n-outer function in M(z"). Since f is in M(z"),
we conclude that

(5.1) V {5(z)2"%) = M(z").

k=0

Now, by Remark 3.5, or even directly every polynomial p(z) in H2, can be written
as

p(2) = po(2) & zp1(2) @ -+~ B 2" pai(2)

where each p; is a polynomial in M (2").
Hence, using the fact that f(z) € M(2"), so p;f € M(z"), we get

V{fr}=V{fpol & & V{fz" 'pn-1}
=V{ipo} & - ®z""V{fpr-1}
=ME)G @ IM(2Y)
= H?
where the span on the left is over all polynomials p in H? and the span on the
right is over all polynomials p; in M(z").
Hence f is outer in H2.

(i) Let f be n-outer and in H2. Then there exists a polynomial p(z) of
degree less than n such that

(5.2) VAF2" Y = p(2)M (7).
k=0
Thus

(5.3) f(z) = p(z)O(2)
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for some O(z) in M(2"). We shall first show O(z) is n-outer. By (5.2) and (5.3)
above, and the facts that degree p(z) less than n and O(z) € M(2"), we get that

oo

(5:4) V (:0@:") = () (2) V {0(2)z"}

k=0 k=0
(because if p(z) = ag 4+ + qp_12""" then p(2)0(2)2™ = aO(2)z"F & -+ @
n-12""10(2)2z™). So by (5.2), (5.3) and (5.4)

M(z") = \/ {0(z)z**).

k=0

This means O(z) is n-outer. But O(z) is in M{(z"), so by (i) O(z) is outer. This
proves the assertion.

The converse of statement (ii) is quite obvious in view of the above arguments
which proved (i) and hence we omit its proof. 8

THEOREM 5.6. A function f of unit norm in H? is n-inner as well as n-
outer if and only if [ is a polynomial of degree less than n.

Proof. If f(z) is a polynomial of unit norm and of degree less than n then
obviously {f(z)z"* : k = 0,1,...} is an orthonormal sct and so it is n-inner. On
the other hand

\/ {£(2)2"} = f(2)M(2")

(because of the orthonormality of {f(z)z"*}) so that f(z) is n-outer.
Conversely, suppose f(z) is n-inner as well as n-outer. Then since f(z) is
n-outer

f(z) = p(2)0(2)
and

N7 = llp(2)ll = 1,

where p(z) is a polynomial of degree less than n and O(z) is an outer function in
M(z") which is also n-outer (by Theorem 5.5). Now letting p(z) = ap + a1z +
.-+ 2" such that r < n we have

f(z) = aoO(2) + -+ o, 2" O(2)

and since O(z) is in M(z") and f is n-inner we conclude by Remark 5.3 that

(Sl 00 = 1

i=0
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ae. on T, ie |O(z)] =1, ae. on T (since [|p(2)|| = 1), which means O(z) is
an inner function. But we know O(z) is an outer function also. Thus O(z) is a
constant and hence

f(2) = p(2)
where p(z) is a polynomial of degree less than n. &

Finally, we present the factorization of H? functions into sums of products
of n-inner and n-outer functions.

THEOREM 5.7. If f is in H? then
f=p1/i® - ®efr (r<n)

where for each i, f; is in M(2™) and is n-outer and @; is n-inner.

Proof. Let M = io/ {fz"*}. Then M is invariant under the action of 2" and
so by Theorem 4.6 £

M=pM(") & - ®p,M(Z") (r<n)
where each ¢; is an n-inner. Since f is in M we conclude that
f=pfi® @ fr

where each f; is in M(2"). We claim each f; is n-outer. If this is not so, then for
at least one i say i = j,

V52" & M(").

k=0
This means
@i \/ {fiz nk} = P M(2")
k=0
ie. -
V ¢ifiz""} & ‘PJM(ZH)

k=0

(because @; k\?g{sz”k} = ? {@j fiz™*}). Hence

M = \/{fz"*}
k=0
= \Vi{ph* o--a \{pifi" e o\ {o fr2")
k=0 k=0 k=0

SaMED - @pM(E") S @ o, M(2")
=M



MULTIPLICATION BY FINITE BLASCHKE FACTORS ON DE BRANGES SPACES 243

re. M g M. This contradiction implies that each f; is n-outer and hence the
theorem is proved. &

6. INVARIANT SUBSPACES IN H!

In this section, we describe the invariant subspaces of 5% on the Hardy space H?,
where 52 is multiplication by 2.

THEOREM 6.1. Let M be a closed subspace of H invariant under S*. Then
M = oN(z*) @ $pN(2?)

where @, are 2-inner funclion in H? and N(2?) is the closure of the span of -
{z} in H'.

Proof. We first claim that
MnH? £ {0).

This is proved as follows: fix any f in M. Then |f]'/? is in L%. Put

(2) = ()7 + 1£(=2)2)

g 2

Clearly ¢(z) is in L? and its Fourier series consists of even powers of z only. So let

g(z) = Z o 227

n=—00

Let h(z) denote the harmonic conjugate of g(z). Clearly h(z) has Fourier series in
oo
which only the even powers of z occur. Hence g + ik is in M(2?) = V {z*"} in
n=0
L2, Put
k(2) = exp[—(g +ih})].

Then k is an outer function in M(2z?2). Further by its very construction it can be
seen that kf is in H* and hence in H? We show kf is in M. Let k, be the nth
Cesaro means of k. Then each k, is a polynomial in M{22) and so k,f is in M
for every n. Further ||k,|loo < {k|loo and k, — & almost everywhere. Thus

enf —kflji =0 as n— oo

This means &f is in M.
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We have thus shown that M N H? is a non-trivial subspace of H2. Further
MnNH?is closed in H? because M is closed in H'. Also M H? is invariant under
52 so by the invariant subspace theorem (Theorem 4.6) for the case B(z) = 22
conclude that

we

MNH? = pM(2%) & pM (%)

where ¢ and ¢ are 2-inner function in H%.
Our theorem will be proved if we show that the arbitrary f that we started
with is in N (2?) @ $N(2?). Now

kf = ph+ g
(for some g,h in M(z?}). Also, it can be verified that

(k(2)f(2) + R(=2)f (=2)* + [k(2) f(2) — k(=2)f(=2)|*)
4

= |h* + lgI*.
But k(z) = k(—2), so that

7+ 1o = TR 1162) 4 sy + 15621 - s

so that

h

k

h

- L |2 = WL+ Q6 + 1)

2
<
= 2 2

Hence

< W+ 172

2%
so that h/k is in L! because f isin H'. But hisin H? and k is an outer function,
so h/k isin H'. Similarly, g/k is in H'. But

h(z)  h(-z)

h
k

k(z) ~ k(—2)
and

9(z) _ 9(=2)

k(z)  k(-z)

so h/k and g/k are in N(2?). Since
F=pttwd
TR

our theorem is proved. &
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