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ABSTRACT. For the class of singular integral operators with continuous coef-
ficients and with the conformal shift over a two-dimensional bounded domain
G C C an explicit Fredholin property criterion is obtained. Operators under

consideration have kernels [({ — 7)/(¢ — 2)]*[¢ — 2|~ either with positive or
with negative k € Z \ {0}; the conformal shift We(z) = ¢(w(z)), w : G — G
is of Carleman type: W* £ Ifor k=1,2,...,n—1 and W™ = I. It is proved
also that a Fredholm operator A of such type has trivial index Ind A = 0.
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1. INTRODUCTION

Let (7 be a bounded, simply connected domain in the complex plane with Lyapunov
boundary G € C'** XA > 0 and Sg denote the following singular integral
operator

. _ 1kl (Z_“")k_._l dzd
z,(eGCC ¢=z+iy, z,yeR keZ\{0}.

Integral equations containing operators S, appear in various problems of the
theory of generalized analytic functions ([36]), of the theory of quasiconformal
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mappings and Riemann surfaces ([1], [23], [31]), of the theory of partial differential
equations ([9], [27]), etc.

Two-dimensional singular integral equations of mentioned type are inten-
sively studied by many authors. The first investigations of such equations were
published by F. Tricomi ([34]). Later I. Vekua ([36]) studied them using the con-
traction principle (the fixed point theorem of Banach). A. Dzhuraev investigated
two-dimensional singular integral equations in Lebesgue spaces L,(G), 2 < p <
co, by reducing them to boundary value problems for generalized analytic fune-
tions with further reduction to one-dimensional singular integral equations on the
boundary of the domain (see [9] and the references there). To extend the study of
such equations to L,((7) spaces for all 1 < p < oo, I. Komyak applied composition
formulas for model operators and localization techniques ([21], [22]).

In the papers [4] and [32] there was developed an Lp-theory for multidi-
mensional singular integral equations on manifolds with smooth boundary (1 <
p < o). Invoking these results, one can study Fredholim properties of equations
containing Sgx and their combinations, The problem transfers to the problem
of factorization of corresponding rational matrix-functions (symbols), namely into
the problem of finding partial indices of factorization with respect to the variable
in the normal direction to the boundary of the domain G, The most interesting
is to find a criterion for the corresponding two-dimensional singular integral oper-
ator to be Fredholm, in the form of explicit conditions on the coefficients. This is
done in the papers of G. Dzhangibekov ([6], (7], {8]) for sufficiently wide classes of
equations.

It turns out that the operators Sg; are pseudodifferential and have the
transmission property. Applying the method of L. Boutet de Monvel ([3]), one
can investigate corresponding equations in Besov—Triebel-Lizorkin spaces B, (G},
F3 ,(G) (for definitions sce e.g. [35]) provided the coefficients and the boundary 8G
are sufficiently smooth (see [11], [14], [15] and [30], 3.1.1.4). In particular, from the
Fredholm property of a singular integral operator with the transmission property
in Lo{G) space there follows its Fredholm property in all Besov—Triebel-Lizorkin
spaces (we should note that L,(G) = Fo(G), C™H(G) = Bpts(Gy for L < p<
oo, m€Zy =NUO, ve (0,1), cf Subsections 2.5.6-2.5.7, [35]). Therefore the
Fredholm property criterion for the {wo-dimensional singular integral equations
mentioned above is one and the same in all Besov—Triebel-Lizorkin spaces (and in
Holder spaces C™*((7) among them) and coincides with the Fredholm property
criterion in the Hilbert space La((); the latter criterion can be obtained applying
results of [10] and [33].
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In the present paper we consider two-dimensional singular integral operators
with conformal Carleman shift of crder n. Some preliminary results were obtained
in [5]. The theory of one-dimensional singular integral equations with a shift is
far developed. The results obtained in this direction up to the middle 70-ies are
reflected in the monograph [24]. More recent results are observed in {18], [19], [20].

There exist several general approaches, which can be applied to both one-
dimensional and multidimensional operators with a shift (see e.g. [2], [16], [17]).
In Lemmas 4.1 and 4.2 below we will apply the approach suggested in [16] in
axiomatic form, which eliminates the shift by increasing the dimension of the
system.

2. MAIN RESULT

Let w : (¢ — (& be a conformal automorphism of the domain ¢ such that

wp(z)#z fork=1,...,n—1,
wa(2) =2z, Vz€@G, (nx2),

(2.1)
where w; denotes the k-th iteration

(2.2) wi(z) :=wr—q(w(z)), wi(z) = w(2).

Then the operator W : L,(G) — Lp(G), 1 < p < o0, where

(2.3) Welz) = (pow)(2) = p(w(2)), Z€G:=GUIG,

is known as the Carleman shifi determined by w and has order n.

The asserted property 8G € C'** X € (0,1) and Kellogg theorem (see
e.g. Chapter X, Section 1, [13]) yield w € C't*(G) (see Chapter IX, Section 5,
Theorem 4, [13]). Moreover, w'(z) # 0 for all z € G.

In the next section we shall prove that w can be represented in the form

(2.4) w=7yoeoyT,

where v is a conformal mapping of the unit disk onto G,
2m
(2.5) e(w) := w - exp Tﬁ , Jwl<1,

and £ € T,n is coprime with n. We can suppose £ = 1 without restricting the
generality, since the general case can be easily reduced to the present one by
renumerating operators A in (2.6) (see below).
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Let us consider the operator

n—1
(2.6) A=Ao+ Y WEAL 1 Ly(G) = Ly(G), 1<p< oo,
k=1
where
N
(2.7) Ay = akOI”‘Z ar; S, Ok € C(_(_-';), i=0,1,..., N, k=0,1,...,n—1,
j=1

and [ denotes the identity operator.
We introduce the symbol of the operator A in (2.6) as follows

(28) A(Z, Ti) = ”bmt(zﬁ 73)“nxm 4 E a) 77 E C:

Nr('n+l 2} w (z)
(2:9) bme(z,1) = pimar-2y0(we(2)) + Z Cr(mte-2)j(we(2)) ( £ ) 7,

(@)

where r(7) is the integer remainder of the division 7 : n (i.e. 7 = mn + 7(7),
meNU{0},0< r(r) <n).

THEOREM 2.1. The operator (2.6) is Fredholm if and only if
(2.10) det A(z,n) #0 forallz€ G, In|< 1

If condition (2.10) holds, the operalor A has irivial indez: Ind A = 0.

We postpone the proof of Theorem 2.1 to Section 5 since we need some
preparation for this.

3. PROPERTIES OF CONFORMAL CARLEMAN SHIFTS

For the proof of the main Theorem 2.1 we need information about fixed points
of a conformal Carleman shift, exposed in forthcoming Lemma 3.1. Since we can
not give a precise reference, we prefer to provide a detailed proof, based on a
well-known properties of conformal mappings, available from standard textbooks
on complex analysis (¢f. e.g. Chapter III, Section 1 and Chapter XII, Section 6,
[29]).

Let us consider a conformal mapping « of the unit disk onto G, which exists

due to Riemann Theorem. ot

ow o« is, clearly, a conformal automorphism of
the unit disk. Therefore a~! o w o « is a linear-fractional mapping and has two

fixed points.
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LEMMA 3.1. If wi,ws € C are the fized points of a™ ! ow o «, then they do
not belong lo the unit circumference and are symmetric with respect to .

1
(3.1) w2 = o fwi| < 1.

1

Proof. Let us prove first that the fixed points of ¢ = o™ ! o w o  must be

different. In fact, if they coincide then
1 1

W) —w  w—w teo c#0,

where w; = wy is the fixed point of € (see Chapter III, Section 1, Subsection 11,
[29]). Then clearly
1 1

= +ke, VEEN,
er(wy—w  w—w

(see (2.2)). This however contradicts the property e,(w) = w, jw| < 1 (see (2.1)).
Next we shall prove that the assumption

(3.2) wy =exp(idy), 0K dp <2w, k=12, 91 #9,,

also leads to a contradiction.
In fact, if £ is a conformal automorphism of the unit disk, transforming points

lowoaop

1 and —1 into exp(id;) and exp(ids) respectively, then vy := =1 o~
is a conformal automorphism of the unit disk with the fixed points at +1. For ¥
we have the following representation

cay W@
(3.3) Y(w) = exp(lﬁ)m, 0€<9< 2, lal< 1.

If we insert w = 1 into the equation y(w) = w we obtain exp(i9) = (1—a)/(1 —a).

Inserting next w = —1 and invoking the previous relation we find e = @, i.e.
a€(~-1,1).
Thus,
w—a
(3.4) ' 1(w) = T a€(—1,1).

After a routine calculation we find out that the composition of 4 and of the map-

ping
) = 2=

— be(-1,1)
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equals
w— e a+b
(yeo&)(w) = T—de ©° T+ ab
and leads to the formulae
W — Ay

3.5 = —— = .
(see (2.2)) with
Ay 1= o Omo1 ay=a
m - l+ aam_l’ 1~ .

If a # 0, the sequence {a,, }$° is strongly monotone and has the limit sgn a.
Equality (3.5} contradicts the property y.(w) = w, jw| € 1 (see (2.1)) pro-
vided a # 0.
If a = 0, we run into contradiction with (2.1) since from (3.4) there follows
Yw)=w. *

Now let # be a conformal automorphism of the unit disk and B(0) = w;.
Then £ = B~ oa~! ow o a 0 B represents a conformal automorphism of the unit
disk with the fixed point at 0. Such an automorphism has the form

(3.6) k(w) = w-exp(iv), 0<£ ¢ < 2m.
From (2.1) we infer

ke(wyZw fork=1,...,n-1,
(3.7) Hw) # _
kn(wW)=w, Yzed.
(3.6) and (3.7) yield
(3.8) k(w) = w -exp (—2—7—?8) , w1,

where £ € 1,7 is coprime with n. We can suppose £ = 1 without restricting
generality since the general case can be easily reduced to this one by renumerating
the operators Ay in (2.6).
Further we shall suppose that
(3.9) : w=7yoeoy ),
where 7 is a conformal mapping of the unit disk onto G and
omi
(3.10) e(w) = w~exp—7rl, jlw| < 1.
n
The mapping w has the unique fixed point z; = ¥(0) € G in G. Moreover,
W(z1) = ¥ (elyHzn))e' (7 (z)) v ™) (1)
(3.11) = 7'(e(0))e' (0)(v' (v (1))
2mi

= YOO (0)" = €(0) = exp .
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4. AUXILIARY RESULTS

LEMMA 4.1. The operator (2.6) is Predholm if and only if the operator

(4.1)

AO W.AIW_I Wﬂ".lAﬂ—].W_n_l_l
r A WA W—l U Wn—lA W_n+1
A= 1 '2” 0 :Lp(G:Cn)’*LP(G,C")
An—1 WAoW_l ce Wn—lAn,_QW_n‘H

15 Frredholm.

For the proof of the formulated assertion we need some aunxiliary results.
First of them is based on the local principle of Gohberg—Krupnik (see Section 5.1,
[12]). We suppose the knowledge of the basic definitions of this particular local
principle, such as covering system of localizing classes, local equivalence and local
invertibelily. Let B be a Banach algebra with the identity e and ¢ € B, ¢” = e,
nx2 ¢ #£eforj=1,...,n— 1.
We should suppose that there exists a covering system of localizing classes
{Ms}scn with the following properties:
(1) msar = arms, msq =qms, VEk €0, n—1,Ym; € M5, V6 € A;
(ii) for each § € A there exists an Mj-invertible element ¢s such that:
(a) csms = mycs, ¥Ymy € Ms,
(b) c,sak%akc§, k=0,1,...,n-1
() esg % exp (22) ges.

b

LEMMA 4.2. If the conditions (i) and (ii) hold, then the element

n—1
(4.2) a=a+ Y ¢fax, ar€B, k=0,1,...,n—1,
k=1

is invertible in the algebra B if and only if the following matriz element

ao qchq"l . qn—laﬂ__lq—n+l
(4.3) o | @ amgt o g TlaggnH
An_1 qaoq—l L qn—lan_2q—n+1

s tnvertible in the matriz-algebra B *".

Proof. 1t is easy if we invoke the local principle of Gohberg-Krupnik (see
Chapter XII, Section 1, [12]) and follow the proof of Theorem 18.1 in [16]. W
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REMARK 4.3. Invertibility of the element G in (4.3) yields the invertibility
of a in (4.2) even if conditions (i) and (ii), formulated before Lemma 4.2, fail to
hold (see Remark 18.1, [16])

LEMMA 4.4, Letk=1,2,...,n— 1. The operators

—\ 4
(4.4) T ;= WkSG,jW_k - (g'%) Sg; forjeZ\ {0}
3
and
(4.5) T = WrCeW—* — 2h g,
|
(see (2.2)) with
1 (-7 )
(4.6) Cep(z) == ;// W(p(() dzdy, (=z+1y,
G

are compact in the space L,(G), 1 < p < oo.

Proof. Let us recall that w is a conformal mapping and, therefore, transforms
infinitely small disks onto infinitely small disks with small perturbations of higher
order. Applying the theorem on change of variables in singular integrals (see e.g.
Chapter IX, Section 1, formula (8), [26]) we get the following

Tugole) = (WS, W~ - (:_:) Se.3)(2)
_lil @Y P
// [(wk C)—wk(Z)) lwi(¢) — wi(2)]?

- (28) (g:j) |¢_lz|z] p(¢}dzdy, z€G.

Using the mean value theorem we can rewrite the kernel in the form
il | (@) [« _ (F@) (c;) L
T [\wi(€) ) |wi(é) wi(z) (—z) (-2
_ il (Z—z)f’ 1 4@\ _ (7@
T \(—2z] [(—=z2 wi (&) wi(2)

@\ WLUQP - W)
+(w;(z)) PAGIE }

2

wi ()
wi (€)
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where € = 9¢ + (1 — 9)z for some ¢ € [0,1]. Recalling that w € C'T*(G), A > 0,
one can easily obtain that the integral operator 7y ; has a weakly singular kernel
and therefore is a compact operator in L,(G) (see e.g. Chapter VIII, Section 3,

[26)).

Compactness of the operator 7; is proved analogously. I

Proof of Lemma 4.1. Let B be the quotient algebra of all linear bounded
operators in L,(G) modulo the ideal of all compact operators in Ly(G), known
as the Calkin algebra. The quotient class in B which contains an operator T' is
denoted by [T7].

With any point z € G different from the unique fixed point z; € G of the
mapping w we associate some neighbourhood U, such that

wi(U, NGYNwe(U, NG) =0 fork#4, k,£=1,.. ,n.

In the algebra B we define the following localizing classes

([

#; = 1 in some neighbourhood of z}, 2€G, 24 n,

M, = { [%(i”x Owk)I] lﬂzl € C°(R?),

k=1

pz € CP(R?), supp p, C U,

s, = 1 in some neighbourhood of zl}.

The system {M,} .7 is, clearly, a covering system of localizing classes and
the quotient classes [W],[4x],k = 0,...,n — 1, (see (2.7)) commute with all ele-
ments of |J M, in the Calkin algebra B.

2€G

Let us define the following operator

;'__11 for =z # 21,

(4.7) C,: Ly(Q)— Ly(), C.:= {
Ceg forz=12n

(see (2.4), (4.6)). The elements {C] are M. -invertible for all z € G. For z # z; this
follows from the property y~1(z) # 0, while for z = z; we remaind that 2 is an
inner point of the domain G and the operator Cg has an elliptic (non-degenerate)
symbol (see Chapter X, Section 2, Chapter XI, Section 7, Chapter XII, Section 3,

(26])-
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The following relations are easy to be obtained:

(a) [C:llgI] = [¢1][C.],V g € C(G); in particular [C,)m, = m,[C,],Ym, €
M, VzeG,

(6) [CIlAR) % [A[C) k= 0,1,...,n—1,¥z € G (see (2.7));

(c) [CAIW) % exp (228) W][C.],V 2 € G (see (2.3).

In fact, if z # z; the relations in (a) are evident, the relations in (b) follow
from Theorem 7.1 in Chapter XI, [26], while (¢) is a consequence of the equality

271 e
Y low=eoy ! =exp—+~!
A

(see (3.9), (3.10)).

If 2 = z; the relations (a), (b) are consequences of Theorem 7.1, Chapter XI
in [26]; here it is essential that z; is an inner point of the domain G and therefore
it is sufficient to consider the integral operators on the entire space R2.

The relation in (c) for z = z; is already obtained in Lemma 4.4, since

wiz) _ o 2m
o (z1)] ‘e"p( )
(see (3.11)).

Thus, both conditions (i) and (ii) of Lemma 4.2 are justified and the asserted
claim follows because [A] € B is invertible (because [A] € B**" is invertible) iff
the operator (2.6) is Fredholm (iff the operator (4.1) is Fredholm, respectively; see
e.g. Chapter XII, Lemma 1, [26]). 8

5. PROOF OF THEOREM 2.1

Proof. Let us consider the operator

(5.1) B = {|Bmtllaxn : Lp(G,C") = L,(G,C"), 1< p< oo,

No(mpt—2) o H
(5-2) By = ((lr(m+L—~2)0 sz)l + Z (ar(m+z—2)j Owe) (‘:’f) ‘S'G,j:

i=1

where, 7(7) is known from (2.9). Due to (2.7) and to Lemma 4.4 the operator
A — B is compact in Lp(G,C") (see (4.1)). Then the operator (2.6) is Fredholm
if and only if the operator (5.1) is Fredholm (see Lemma 4.1). Let us note that
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(5.1) is a two-dimensional singular integral operator without shift and the results
from [4] can be applied.

For the investigation of the operator (5.1) we apply localization techniques
from [4]. With each point z € G we associate the following special local coordinate
system: for an inner point z € G the system coincides with the original one on C,
while for z € G the abscissae axis is directed along the tangent to G and the
ordinates axis — along the inner (with respect to ) normal at z € 9G.

Recalling formulae (8), (9) from Chapter X, Section 2, [26] (see also Chapter
X, Section 3, [26]) one can easily find that the symbol of the operator (5.1), written
in such a special local coordinate system, has the form

o (5,00 221

£ —i&y , 2€G, (&1,&) €R*\ {0},

nxn

(5.3) oB(2,61,&) =

(see (2.8), (2.9)) where ¥(z) = 0 for 2 € G while for z € 3G, ¥(z) designates
the angle between positive direction of the tangent to dG at the point z and the
abscissae axis of the original coordinate system.

For £; > 0 (for £; < 0) the symbol op(z, €1, £2) has the analytic continuation
into the lower complex half-plane Im &3 < 0 (into the upper half-plane Im¢; 2 0,
respectively). While €; ranges over the above-mentioned half-plane the variable

n = 290 & + %61
&2 — 16

covers the unit disk |9 € 1.

According to [4], the operator (5.1) is Fredholm if and only if the following
conditions hold:

(i) det op(z,&1,&) # 0 for all z € G and all (&,£3) € R?\ {0};

(i1) detop(z,£1,&) £ 0forall z € 8G, & #0,&6 - Imé < 0.

Thus, the operator (2.6) is Fredholm if and only if:

(i) det A(z,m) #0forall z € G, |n| = 1;

(i) det A(z,n) £ 0 for all z € 3G, |n| £ 1.

From the argument principle (see e.g. Chapter IV, Section 3, [25]) and with
(it’), the argument

(5.4) arg det A(z, )

has no increment with respect to the second variable along the unit circumference
F={y€C:|y =1} forall z€ G. On the other hand from (i') and from the
continuity of det A(z, -) with respect to z € G we obtain that the integer

inddet A(z, -) = %r. A [arg det A(z, - )Ir
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is independent of z € G; therefore ind det A(z, - y=0forall z € G. Again invoking
the argument principle we find that conditions (i), (ii’) are equivalent to (2.10).
The first half of Theorem 2.1 is proved and there remains to find the index
of the operator (2.6).
Let us introduce the following parameter-dependent operator

n—1
(5.5) A(t) = Ao(t) + Y WFA(t) : Lp(G) — Lp(G), l<p<oo, 0<t<1,
k=1
where
Ny, '
(5.6) Ak(t) = apol + ZakjtJSG,j.

1=1
The symbol A; of this operator (cf. (2.8), (2.9)) has the form
Az, n) = A(z,tn), 2€G, neC, telo1).

Due to condition {2.10) A(t) are Fredholm operators for all t € [0,1] (see (5.1)-
(5.4)). Moreover, A(t) depends continuously on ¢ and
n—1
A=A, A(0)=agl + Y Wrapl.
k=1
It is well-known that under stated conditions the indices of A(1) and A(0) coincide
(see e.g. Chapter I, Theorem 3.11, [26]).
According to Remark 4.3 the operator A(0) is invertible in L, (G) provided
the operator )

aoel  WapW=1 .. Wrlag,_ W=t
I W W_l - Wn—l n W_"'+1
0.1.0. a20 Gno . L,(G,€™) — L,(G,C")
a(n-1)0d WaggW-1 ... Wn_la(n_g)gW"”"'l

is invertible, i.e. the symbol matrix A(z,0) is invertible for all z € G. The latter
condition is implied by (2.10). Thercfore Ind A = Ind A(0) =0. &

REMARK 5.1. If n = 2 and
(57) A =agel + angG,j + W((llgf + aljSG,j)

(cf. (2.6), (2.7)), the function det A(z,n) is a polynomial of order 2 with respect
to the variable 7/; then condition (2.10) can be written explicitely in the form of
inequalities for the coefficients aqg, ag;, a10 and ay; in (5.7) (see [5] for details).
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6. SOME GENERALIZATIONS
The norm of the operator
Saj Lp(G) — Lp(G), 1<p< oo,
can be estimated as follows
15,51l € Cplil, Vi €Z\{0},

(see e.g. Chapter XI, Section 3, {26]). Thus, the operator

Ak = apol + ZakjSG,js ax; € C(G),

i=1

(cf. (2.7)) exists and is bounded in L,(G) provided

(6.1) Z(l + j) sup |ag;(z)| < +oo.
Jj=0 2EG

Let us suppose (6.1) holds for k = 0,1,...,n— 1 (see (2.7)).

The operator A, defined by formulae (2.6), (2.7) with Ny(m4ye-2) = o0, is
obviously bounded in L,(G,C"), 1 < p < oo. On defining the symbol matrix
function A(z,7) by formulae (2.8), (2.9) with Ny(n4¢-2) = o0 , we can prove
Theorem 2.1 for A under asserted assumptions. The proof is analogous to that
from Section 5 and is based on the following variant of the Wiener theorem.

THEOREM 6.1. Let Wy be the Banach algebra of all functions h,

(o]
(6.2) h(zm) =Y hi(z), z€G, nl<1, hj € C(G),
j=0
such that
o0
W =D (L4 5y sup [hj(2)] < +oo.
ji=0 2EG

Then h € Wi is invertible in Wi iff

(6.3) h(z,n) #0 forall 2€G, |n <1

For the proof we refer to Chapter 111, Section 11, Subsection 2, Proposition
IV and Example 2; the last example of Subsection 3, [28].
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REMARK 6.2. Since the operators
SG’j.S'G,m — S(;,j+m : LP(G) — LP(G), 1< p<oo, YimeWN

are compact, (see Chapter 2, Section 10, [9]) one can easily verify that if & € wit

satisfies condition (6.3), the corresponding operator

H=hol+Y hjSc;j: Ly(G) = Ly(G), 1< p< oo,
i=1

(see (6.2)) has a regularizer

R=1rgl + erSG,j,

i=1

where

> . 1 —
ri(z)f = ——, z€@, [n|<1.
; i = s i
For the operator which is obtained from (2.6), (2.7) by replacing Sg ; with
Sg,-j there holds an analogue of Theorem 2.1. The proof is the same.

Complications appear if we try to replace operators A4 in {2.6) with

-1 Ny
A;C = apol + Z (lkjSG'j + ZakjSG,j, My, N e N.
j=—My j=1

The Fredholm properties of such an operator depend on the Fredholm properties of
matrix singular integral operator without shift (cf. Lemma 4.1). But the symbol in
this case is a general rational matrix-function with respect to the variables (é1,€2).
Threre are known only few explicit conditions which can ensure the partial indices
of factorization of a matrix-function to be trivial; one of such conditions is the
strong ellipticity, i.e. when Re A(z, £1,&2) is positive definite. However there exist

algorithms which can be applied in each concrete case.
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7. THE CASE OF BESOV-TRIEBEL-LIZORKIN SPACES

THEOREM 7.1. Let 0 < p< o0 (0 < p < oo if we consider Fy ), 0 < ¢ < 00,
max(n/p — n,1/p—1) < 5 < o0; let G C C be a bounded, simply connected
domain with an infinitely smooth boundary 8G, ar; € C®(G), 5 =0,1,..., Ny,
k=0,1,...,n—1.

If condition (2.10) holds, the operator A in (2.6), (2.7) is Fredholm in the
spaces By (G), Fy () and Ind A = 0.

Proof. Let us note that G € C* yields w € C®(G). To prove this it
suffices to apply the Lindelof formula (see e.g. Chapter X, Section 1, Theo-
rem 4, [13]) and recall that a function which is analytic in G and has C'*°(G)-
smooth real part belongs to C®(G) itself. Thus, the operator W is continuous in
the spaces By ,(G), F; ,(G) (see 2.10.2, [35]) and ensures the continuity of A in
B; ((G), F; (G) for 5 > max(n/p—n,1/p~1) (see [L1], [15]). Due~to Remark 4.3
the operator A is Fredholm in Bj ,(G), F; ,(G) if the operator A (see (4.1)) is
Fredholm in B; (G,C"), F; ,(G,C").

From the theorem on change of variables in pseudodifferential operators (see
e.g. 1.2.3.4, [30]) it follows that A is pseudodifferential and has the transmission
property (see 2.3.2.2 and 2.3.3.1, [30]). The difference 7= A — B (see (5.1), (5.2))
has order —1 and posseses the transmission property. T is compact in B;,Q(G,
C™), F¢ (G, C™) (see [11], [15] and Remark 4.3.2-1, {35]). Now the asserted claim
follows from [11], [14], [15] and 3.1.1.4, [30]. &
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