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ABSTRACT. Subfactors of the form P¥ C P x K, where H, K are finite
groups of outer automorphisms of a finite factor P, are studied. The corre-
sponding Jones tower and some relative commutants are explicitly described.
Hopf *-algebras related to the depth 2 case are calculated. These turn out to
have the structure of cocycle twisted bicrossed products. Definitions, prop-
erties, and several examples of such twisted bicrossed products are given.
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1. INTRODUCTION

Since the V. Jones’ history making article ([8]) the theory of subfactors has been
among the most interesting and rapidly growing areas of research in Functional
Analysis. Among the deepest resulls obtained so far is §. Popa’s classification
of amenable subfactors ([21]). The basic invariant used in the classification is
paragroup (or standard invariant), e.g. cf. [8], [17], [21].

An abstract paragroup is a complicated object, equipped in an intricate
algebraic structure. As explained by A. Ocneann, in the special case of a depth 2
subfactor the corresponding paragroup reduces to a Hopf (or Kac) algebra. This
important observation provides an interesting link between subfactors and Hopf
algebra actions. By now several rigorous proofs are already available ([5], [11], [24],
[26]), covering both finite and infinite factors, as well as subfactors with infinite
indices.
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Since full understanding of the enormous variety of possible subfactors seems
an exceedingly hard and rather hopeless enterprise, much effort has been devoted
lately to the investigation of some of their special, more accessible subclasses. Here
belong subfactors related to gronp actions, which have recently attracted attention
of a number of researchers. In particular, D. Bisch and U. Haagerup calculated
principal graphs for inclusions of the type P¥ C P x K, where P is a type II;
factor and H, K finite groups of its outer automorphisms ([2]). In this article we
undertake to continue the investigation of such subfactors and their invariants,
though from a somewhat different angle.

In Section 3 of the present paper an explicit description of the Jones tower,
associated with an inclusion P# C P x K, is given. The elements of the tower are
obtained as crossed products for suitable H and K actions. This allows us to give
a concrete description of the first non-trivial relative comtutant. These results
are then used in Section 4 in the calculation of Hopf algebras corresponding to the
depth 2 case. For this we employ a general method developed in [24] and based
on a duality between consecutive relative commutants.

As shown in [2], an inclusion P# C P x K has depth 2 if and enly if HK
is a group in Qut(P). Thus, H and K form a matched pair, and it turns out
that the Hopf algebras have the structure of bicrossed products twisted by unitary
2-cocycles. The bicrossed product is a basic general method for constructing Hopf
algebras. Its origins go back to G.I. Kac (e.g. cf. [9]). For a more recent presenta-
tion we refer the reader to the fundamental works of S. Majid, e.g. [12], [13].

Cocycle deformations of Hopf algebras have heen previously studied by
S. Baaj and G. Skandalis ([1]). Their approach is different from ours and in-
volves perturbations of multiplicative unitaries. In our opinion such cocycles for
multiplicative unitaries (cf. Definition 8.24, [1]) do not readily lend themselves to
a thorough analysis. In particular, the structure of the resulting algebras is not
immediately clear. Nor is it easy to construct such objects. Therefore, we feel that
an attack on the problem carried from a different angle, as in the present paper,
might shed more light on it and increase the understanding of this important and
complicated construction.

Reversing the order in which things were discovered, we present our theory
of twisted bicrossed products in Section 2, and illustrate it with several examples.
We show that a classical construction of (+.I. Kac and V. Paljutkin from [10]
corresponds to a very special class of twisted bicrossed products, closely related
to simple ergodic actions of finite abelian groups (see [18]).

At the closing of Section 4 we show that the two unitary 2-cocycles nsed in
the twisting of a bicrossed product, related to a depth 2 inclusion P¥ ¢ Px K,
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can be recovered from the numerical 3-cocycle obstruction ([4], [15], [23], [25}).
This gives a hint of a deeper connection between deformation theory and third
cohomology.

After the work on this paper had been completed we learnt that about the
same time some similar results were obtained independently by M. Izumi and H.
Kosaki ([7]).

2. TWISTED BICROSSED PRODUCTS

In this section we describe cocycle deformations of finite dimensional bicrossed
product Hopf #-algebras (cf. [12}, {13]) and give several examples. An analogous
construction from a different point of view can be found in [1]. Our definitions are
motivated by the class of examples calculated in Section 4, and related to depth 2
subfactors.

Let (i be a finite group and H, K subgroups of it such that ¢ = HK and
HN K = {e}, where ¢ is the neutral element. H acts on K (as on a set) by
{h-t}y =KnHth~', he H,t € K. Indeed,

{g-(h-8)}y=KnH(KNHsh )y~ ' C KNH(Hsh™")g™!
= KN Hs(gh)™! = {gh - s}.

Similarly, K acts on H by {t - h} = H N Kht~!. We have (h-t)h = (I - h)t,
(h-t) - R~ =(- W)}, (t-h)y -t t=(h-)" " and h-e=t-e=e.

Let C(K) denote the C*-algebra of functions on K, with a basis of minimal
projections {p; | ¢ € K}. There is an action 7y : H — Aut(C(K)), v(p:) =
pht. Let u @ H x H — U(C(K)) be a normalized unitary 2-cocycle for 7,
ie., vo(u(h, Nulg, hf) = plg, h)plgh, f) and p(h,e} = 1 = ple,h). We will
use the notation pu(h,g) = Y. p(h, 9)t]p:, where u(h,g){t] € T (T denotes the
torus). Let A be the twistfeﬁ crossed product C'(K)x, . H. A has a basis
{pivn | h € H, t € K}, where v, unitary, pivapsvy = 61,n.sPtt{h, g)vng, and
(prvn)* = pa-r.p(h™1 A) w1

Similarly, C'(H) has a basis {gn | h € H}, and there is an action ¢ : K —
Aut(C(H)), o¢(gn) = qen. Let v K x K — U(C(H)) be a normalized unitary
2-cocycle for o, and B = C(H) X ,,, K be the corresponding twisted crossed prod-
uct, with a basis {qnz: | h € H, t € K}.

We define a bilinear form (-,-) : Ax B — C by

<pt'Uh y ngs) = 6t,h-36g,s<hV(3_l ) S')[h']
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This form establishes a duality between A and B. Thus, B can be identified
through (-, -) with A® — the dual of A. Consequently, we can define linear maps
AA—-ARA e:A—>C and S:A— Aby
(A(a), b1 @ ba) = {a, b1bs)
(@) = (a, 1)
(S(a),b) = (a*,5%).
A tedious but not complicated calculation yields (for any h € H,t € K):
é(pevn) = 61
S{psvp) = p(h, h”’l)[t]v(t‘l,t)[h“l]p(h-x.,)_xvt,h_x

A(ptvh) - Z V((/l_l - ]C)—l, (h’.l . ’C)(h—l 't)_l)[h»]ﬁlpﬂc—l'l)(k.h-x)—1 ®pk'l)h.
kEK
ProroOsSITION 2.1. A eguipped with A, S, and ¢ is ¢ Hopf *-algebra if and
only if v(s™t, s)[h] € {£1} (i.e. v(s™1,s) is self-adjoint) and
1((g-8)-h),s-g)[(hg -t)(hg - s)  lp(h, g)[hg - 5]

_ (g s)t (g s)(g - t)"D[AIw(s™" st~ M) g].
v(s~1, st=1){hg] ’

p(h R slu((s - R) ™Y, s - RY[(RT - 1))
(2.2) p(h, h=1)[t]
=w((h-s)7 (- s)t )[R (s~ s(h™1 - )T H[A]
forany hyge H, s,t € K.

Proof. Equality (2.1) holds if and only if A preserves the multiplication.
Equality (2.2) holds if and only if A preserves the x. Both have to be checked only
on the basis {p;vn |t € K, h € H}. Moreover, v(s7 %, s)[h] € {£1} is equivalent to
S5 * S+ = id. Consequently, the above conditions are necessary for A to be a Hopf
x-algebra.

To see that these conditions are sufficient, we first observe that the very
definitions imply that (A ® 1d)A = (id ® A)A and (e ® id)A = (id ® €)A = id.
Setting ¢ = s = ¢ in (i) we get p(h,g)le] = 1, which is equivalent to £ being a
*-homomorphism. Similarly, setting h = g = e in (i) we get v(s,t){e] = 1 for any
5,0 € K. Now setting g = h™! and t = e in (i) we get

p((s- A~ s s u(h, A D)[s] = w((h71-s)" Y R s)[Ale(sTY, s)[A Y.
This means that (m : A ® A — A is the multiplication)
m(S Q id)A(psvp-1) = e(psvp-1 )] = m{id @ S)A(psvp-1),

i.e. S is an antipode. §
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If the conditions of Proposition 2.1 are satisfied then the Hopf x-algebras A
and A° will be called fwisted bicrossed producis.

Suppose that A is a Hopf x-algebra. We denote by G(A) the collection of
group-like elements of A. That isa € G(A) if a # 0 and A(a) = a®a. Itis
well known that group-like elements arc unitary, linearly independent, and form a
group under multiplication. Moreover, ¢ is a group-like element of A° if and only
if ¢ is a character of A. Groups and their duals provide the simplest examples of
Hopf +-algebras. Thus, the smaller the collections of group-like elements of a Hopf
*-algebra and its dual are, the farther away is the algebra from the trivial group
case.

Lett € K and h-t =t forany h € H. Then (-, )[t] is a numerical 2-cocycle
on H. We denote

Ko={te K|h-t=1t,Yhe H, and pu(,-)[t] is a coboundary}

and K — the group of characters of K. We define Hp and H analogously.

PRropPOSITION 2.2. If A s a twisted bicrossed product, then both Ko and Hy
are subgroups, and there exist short ezact sequences:

(e) = K — G(A) — Ho — {¢)
(&) = H — G(A®) — Ko — (e}
Proof. For any t € Ko we fix a function A; : H — T such that p(h,¢)[t] =
A(R)A(9)A:(hg). Since p(h, g)[e] = 1 by Proposition 2.1, we may select A, = 1.
Let ¢ € G(A°), i.e., ¢ is a character on A. Since |C(X)is a homomorphism,
there exists a ¢t € K such that ¢(ps) = & ¢. Since u(h, g)[tle(vag) = (vn)e(vy),
u( -, )[t] is a coboundary and, hence, ¢ € Ko. Therefore, there exists a £ € H such
that @(psvn) = 65,1 A:(h)E(R). If t = e then we write o = £'.
Let @1,02 € G(A°) be such that ©y(psvr) = 65,1, e, (A)E1(R), w2(psvn) =
8,02 Aes (R)E2(R), for £y, 15 € Ko, €1,€2 € H. We have

(p192)(Psvn) = (91 ® 2)A(psvn) = b4 1,0,0(25 27 1) [B]Ae, (W) Ae, (R)(E162)(R).

This equality implies that £ — &’ is an imbedding and H is a normal subgroup of
G(A®). Furthermore, Ky is a group and G’(A")/I;r is isomorphic to Ko.

This proves one part of the proposition. The remaining part is established
in a similar fashion. 1

We wonder if there exists a (twisted bicrossed product) finite dimensional
Hopf #-algebra A such that neither A nor A° possesses non-trivial group-like
elements.
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EXAMPLE 2.3. Semi-direct products. Suppose that K acts trivially on H.
Therefore, H acts on K by automorphisms /-t = hth~!, and G is isomorphic to
a semi-direct product K x H.

In order to formulate the conditions of Proposition 2.1 in a more conve-
nient way, we introduce new cocycles i and 7. Namely, we define g, M) =
p(h=t g7 H(gh)~1 -] and v(t,s)g] = v(s~,t"Wg~!], forany g, h € H,t,s € K.
One can easily check that Ji, 7 are 2-cocycles for v and ¢, respectively. We consider
an action of H on Z2(K,U(C(H))), given by (gA)(s,t) = A(g=* - 5,97 - t). Then,
condition (1) of Proposition 2.1 is equivalent to the following:

g, W7, W) _ (a7 (2, 8)[A(E, 5)[o)
g, (i3 P o)h

We can view zi and ¥ as elements of C(K,C?(H, T)) and CY(H,C*(K,T)), re-
spectively. Denoting by dx and dg the coboundary maps for the related cochain

complexes, we can further rewrite it as

(2.3) (OB}t 5))(g, k) = (O T)(g, )2, 5).

If this equality holds and p has been selected in such a way that ph=4h) =1
(this is always possible, e.g. see Lemma 4.3), then condition (ii) of Proposition 2.1
becomes (e) = I. Therefore, if G = K x H and we choose 1 = I, then any
normalized element ¥ of Z'(H, Z%(K, T)) determines a twisted bicrossed product.

EXAMPLE 2.4. Hopf algebras of the Kac-Paljutkin type. The following con-
struction is due to G. Kac and V. Paljutkin ([10]).

Let K be a finite group of order n?, and C(K) be the algebra of functions
on K with a basis {e, | s € K}, where each ¢, is a minimal projection. We denote
M = M,(C) and fix a system of matrix units w; ; in M, thus identifying elements
of M with matrices. Suppose there exist unitaries 7', {u, | s € K} in M, and
functions {,p: K x K — Tsuch that 7* =T (T denotes the matrix whose entries
are complex conjugates of the entries of 7) and

(2.4) ue = I, and tr(u;) = 0 unless s = ¢

(2.5) sty = (s, )usy

(2.6) u, T5,T* = p(s, t)Tu, T" u,
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where tr denotes the normalized trace on M. Then B = C(K)® M is a Hopf
+-algebra with a comultiplication given by the following formulae:

Aley) = Z eg-1 @ ey + |K|73 Z (s T)im (s T); Wi j ® Winn

teEK 1,5,m,n
Alz) =Y e @ uezu; + 3 (T8,T)e(TE,T*) & ¢
seK SEK

where z € M. Furthermore, K is isomorphic to G(B®). Conversely, it is shown in
Section 8, [10] that any Hopf #-algebra B, with underlying C*-algebra isomorphic
to C(K)® M and ((B°) = K, must be of this form. A detailed description of the
structure of B and its dual, in the special case when K = Z,, x Z,,, can be found
in [22].

We are going to show that any Hopf algebra of the Kac-Paljutkin type is
a twisted bicrossed product corresponding to a semi-direct product, as in Exam-
ple 2.3. In the special case when K = Zj x Z3 it is shown in [1] that such an
algebra can be constructed from a suitable cocycle deformation of a multiplicative
unitary corresponding to a bicrossed product.

We denote m; = Ta,T*. It follows from (2.5) that m,m; = mnzst.
Since usu,—r s = (5,5~ Dy = {(s71, 5)us, we have {(s,s7') = ((s7',s). Thus,
replacing u; by C(s,s1)""%u, and m, by ((s,5™)*/?>m, we may assume that
¢(s,s™1') = I and, consequently, u} = u;-1 and m} = m,-1.

Analyzing the Kac-Paljutkin construction (cf. [10]) from the point of view
of the theory of ergodic actions of compact abelian groups developed in [18], one
obtains the following.

LEMMA 2.5. For any B, a Hopf x-algebra of the Kac-Paljutkin type, as
described in Example 2.4, the following hold:

(i) There exists an abelian group T such that K is isomorphic to TxT.

(ii) s — Adwus is a faithful ergodic aciion of K on M, for which {m;}
is a complete set of unitary eigenoperators. We denote by x the corresponding
symplectic bicharacier (cf. [18]). Both p and x are nondegeneraie bicharacters,
i.e. they deiermine isomorphisms befween K and K.

(ili) There exzists an automorphism h of K such that up(sy = §sms for some
& € T. We have h? = id, & = €ns), Esbs-1 = €. = 1, p(5,8) = x(s, h(t)), and
X(5,1) = x(h(t), h(5)).

(iv) The M & M-component of A(es) s equal to

K|t Z p(s,1)my ® us.

teK
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Proof. Formula (2.5) implies that Adw is an action. By (2.4) {u,} form
a v.s. basis of M and, hence, the action is ergodic. As |K| = dimM, it must
be faithful. (2.6) means that (Adu,)m; = p(s,t)m; and, hence, {m,} form a
complete set of unitary eigenoperators for Ad u. This implies that Ad v, commute
and, consequently, K is abelian. If x is the associated symplectic bicharacter (cf.
[18]), then it follows from Theorem 5.8, [18] that x is nondegenerate, i.e. the map
s+ p(s,-) is an isomorphism. It is clear that p is a nondegenerate bicharacter.
Theorem 5.9, [18] implies that there exists an abelian group I’ such that K is
isomorphic to T x T. In this way parts (1) and (ii) of the lemma are proven.

Since K is abelian, (2.5) implies that (Ad s Jur is a scalar multiple of u;.
Thus, {w} is another complete set of unitary eigenoperators. Consequently, there
exists a bijection h : K — K and a function K 3 5 +— £, € T such that Up(s) =
§smg. Since my, = T4, T* and T = 7™, it follows that A is an automorphism and
h? =id. It is clear that £, = Enisy and £;€-r =€, = 1.

According to [18] we have

x(s,8) = {(5,£)C(t, 5) = mymymim;

and, similarly,
X0 = C(,0C05) = uswulu.

Thus, (Ad us)us = x(s,{)us. Consequently,
p(s,t)ymy = (Adu,)m, = €,(Ad us)ungey = Ex(s, R(E) uneey = x(5, h(t))m..

Hence, p(s,t) = x(s, h(t)). Since

x(s,t}) = mmemim; = T U, 11" = Usll, 1U;=7
and
* * % —
x(h(t), h(s)) = A1) () Mly(1) Mip(s) = elUsty Uy = Ty llly—1 g1,

we have x(s,t) = x(h(t), h(s)). Thus, part (iii) of the lemma is proven.
There exist matrices z; € M such that the M ® M-component of Afey)
equals )" z; ® u;. By (2.4) we have
1eK

zy = (id @ tr){Ale; (I ® ug-1)).

Using the expression for A(e;) from Example 2.4 this can be easily calculated to
be equal to |K|~'p(s,t)m;. This proves part (iv). &
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THEOREM 2.6. A Hopf *-algebra B of the Kac-Paljutkin type is isomorphic
to a twisted bicrossed product A° = C(H) X , K, where H =75, K = T'xT for an

abelian group T', and the crossed product is with respect to the irivial aclion.

Proof. Let H = {k), and define an action of /7 on X by & -s = h(s), where
h is the automorphism of K from Lemma 2.5. We set G = K x H. We also
define a unitary 2-cocycle for the trivial action of X on H by setting v(s,{)[e] = 1,
v(s, 0)[h) = (£:6£,,)"1%((s,1), with & as in Lemma 2.5. By virtue of Lemma 2.3
we have v(s,s™1) = I and v(h-s, h-t)[h] = v(s, 1)[h]. It follows from Example 2.3
that A® = C'(H) %, K is a twisted bicrossed product.

To show the existence of a Hopf %-algebra isomorphism between A° and B,

we define in B projections g = Y €5, gn = I — ¢, and unitaries
seK

S _1
Zs = Z pls,t)es + & *u,

tEX

for s € K. Clearly, we have z,2; = v(s,t)z,;. Furthermore, A(¢e) = ¢e®qe+q1 0
and A(gn) = gn & ge + e & qn.

In order to complete the proof it sufficies to show that
A(zs) = 25 ® ezs + 215 @ qnzs.

This is easiest seen by cutting both sides of the above equality by the central
orthogonal projections ge ® ¢, qn & ge, ge ® ge, and gx ® ¢a. The first three cases

are straightforward, and the fourth is equivalent to

Z p(S, t)(qh b qh)A(ef) = (gsﬁh-s)_—%uhrs ®Q us.

teX

However, applying Lemma 2.5 several times and using the orthogonality relations

for group characters we get

> 00, 0 (an ® an)Aled) = K71 D o5, 0)p(t, kymy & ug
teF t,keK

|K|! Z (Z x(sk_l,h(t))) my & Ur
KEK 1K

- L
ms Qus = (Esf)vs) 2Up.s B Us,

I}

as required. B



290 JEonG HEE HoNG AND WOICIECH SZYMANSKI

A concrete realization of such a Hopf x-algebra can be described as follows.
Let ' be a finite abelian group, T its dual, and {-,.) : T x [ — T the pairing.
Let H = (h) = Z; and K = T x I'. We choose an isomorphism 6 : T' — T' such
that {s,o) = (#71(c),0(s)} (there is always one), and define an action of H on
K by h-(0,5) = (8(s),6'(s)): Finally, we define a unitary 2-cocycle on K (for
the trivial action) by setting v(-,-)[e] = L, v((7,5), (r,))[A] = {s,7)(¢,c). One
can easily check that the conditions of Example 2.3 are satisfied and the resulting
twisted bicrossed product A® = C'(K) x ,H is isomorphic to a Hopf *-algebra of
the Kac-Paljutkin type.

3. SUBFACTORS OF THE FORM PH CPxK

In this section we study the class of irreducible, finite index subfactors related to
outer actions of finite groups on type II; factors. Such inclusions were recently
studied by D. Bisch and U. Haagerup ([2]), who among other things determined the
corresponding principal graphs. We are going to describe here the related Jones
tower, as well as the structure of the first non-trivial relative commutant. This
information will be used in Section 4 to determine Hopf x-algebras corresponding
to the depth 2 case.

Let P be a type II; factor and H, K be finite groups acting outerly on P
by @ : K — Aut(P) and 8 : H — Aut(P). We will often identify H, K with
subgroups of OQut(P). We denote N = P¥ and M = P x K, type [I; factors. The
Jones index ({8]) of the subfactor N C M is [M : N} = |H| | K[, where |G| denotes
the order of a group (.

We consider a tower N C M = My C M; C M, C - - of Jones extensions
([8]), with the corresponding Jones projections ex € My. We denote by 7 the
unique normalized trace on any of the elements of the tower. We also denote by
E} the T-preserving conditional expectation onto My, (from any M, with k < n).
The index k£ = 0 will be usually omitted.

LEMMA 3.1. If @ € Aut(P) and = € P\ {0} satisfies yz = z0(y) for all
y €N, then there exist A € C\ {0}, v € U(P), and h € H such that ¢ = du and
(Adw)f = By.

Proof. We have yxz = zf(y) and, consequently, z*y = 0(y)z* for any y € N.
Therefore, z*z8(y) = z*yz = 6(y)z*= and, hence, z*z € N’ NP = CI, since g
1s outer. Thus, there are A € C\ {0} and u € U (P) such that * = Au. Since
0(y) = u*yu, (Adu)d is an element of G(P, P#) — the Galois group of P# C P.
By [16] there is an h € H such that (Adu)f = 8, as required. &
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It is shown in Corollary 3.1, [2] that the inclusion N C M is irreducible (i.e.
N’'NM = CJ) if and only if H N K = {e) in Out(P) (e is the neutral element of
a group). In fact, the following holds.

PropPOSITION 3.2. There exists a 2-cocycle w on H N K C Out(P) (with
values in the torus T) such that N' (M is wsomorphic to the twisted group algebra
C.[H N K].

Proof. Let S z,s € N'NM, with 2, € P. If y € N, then ) ya,s =

se K sEK

Y w5y = Y, zsa5(y)s and, hence, yr, = 2 o (y) for any s € K. If x4 # 0,
SEK SEK
then by Lemma 3.1 there are A, € C\ {0}, u, € 4(P), and h(s) € H such that

(Aduy)as = i), 1.e. 5 = h(s) in Out(P). Consequently,

N'AM={ 5 Mus|\ €C, u, €U(P), Adu, = fia7" }.
seHNK

Since the unitaries {u,} are determined up to scalars, it follows that for any
5,t € K there exists an w(s,?) € T such that wssust = s (us)st = w(s, t)usst. I

From now on we assume that the inclusion N C M isirreducible, 1.e. HNK =
(e) in Out(P).

Let K° be the Hopf #-algebra dual to K, & : K° x M — M be the action dual
to o, and Py = M x4 K(° be the corresponding crossed product ([19]). We identify
K° with a subalgebra K? of Py, whose minimal projections are {p} |t € K}. For
any s,t € K we have spis~ = pl, in P;. By [14] we have P; = P ® B(£*(K)).
More specifically, one can easily verify the following.

PROPOSITION 3.3. Lel D be the x-subalgebra of Py generated by K and K7,
and Q = D'NP,. We have D = B(f3(K)), Q = P, end P, 2 Q@D =
P & B(£2(K)). The map z — Y. a,(z)p), = € P, establishes an isomorphism

sEN

between P and Q.

Since P; = M x 5K°, there is a dual action, denoted «!, of K on P;. For
this action we have Pf = M. Proposition 3.3 allows us to define an outer action
B of Hon Py =P ®B(£2(K)) as B = Bwid. We have 3} (s) = s, Bi(pi) = P},

and ﬁ}l( > as(m)pi) = Y a,(Br(z))pl, for any h € H, s € K, and z € P.
sEK s€K
Moreover,

i) =B (D op) = B (Y o @)pl) = 3 (aeBrai N(a)ps

sEX seK seEK
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for any h € H, z € P. Clearly, Py X 51 H is a type II; factor containing M, and
[(P1xgH): M] = [H||K|. Moreover, one can easily check that if 7 is the nor-
malized trace on Py X g H and E:Pyx g1H — M the T-preserving conditional
expectation, then F(zspihi) = |K|~'7(2)6; o6 and E(zsplhy) = |K| ' zsbs ..
Here H = Hy = {hy | h € H} is a subgroup of unitaries in P1 X g H implementing
B!. The following proposition follows immediately from Proposition 1.2, [20].

PROPOSITION 3.4. M; can be identified with Py X g1 H, with the Jones pro-

jection ey = |H|™! 5" plhy.
heH

Iterating the above process we obtain the following.

COROLLARY 3.5. There ezist a sequence of type I} factors P and outer
actions of : K — Aut(Py), 8% : H — Aut(P}) such that

- K,a?*
M?k—l X Pop_1X /32}.--1H = sz

o~ o H;/jzk'ld
M;k = ng A O,zkf\ = P2k+1

Pory = (ng X qar K} X q26 K°

Pop = (Pa_y Xﬁ;u.--:H) b ’éZk_l.HOA

Furthermore,

Eop = I[{I—I Z pgk.ﬁ‘gk
sEK

-1 2k+1
eaeqr = [H[TD Y pP by
heH
k41
Ek(:ﬂakpb+ Ck+1) = fi;ilf(lkfsc,e

T(xakpf"'l c;b:_H) = ex7{(x)0a,ebc,e

where ¢ € Py, and g equals |H|™! for k odd and |K|™! for k even.

In the above corollary (and henceforth) we adopt the following notational
conventions:
(i) Hy = {hx | h € H}, H = H); C M, for k odd, and Ad h; = g%,
(i) Kx = {tx |t € K}, K = K C My, for k even, and Adt; = oF.
(ili) HY is a span of its minimal projections {pf | h € H}, H® = H} C Py
for k even, and hy_1pkhil) =pf, .

114

(iv) K} is a span of its minimal projections {pf |t € K}, K° = K? C Py
for k odd, and s;_1pFs; !, = pt,.

K,k H,p2kt1 . T .
Pyy" and Py, denote the fixed point algebras for the indicated actions.



COMPOSITION OF SUBFACTORS AND TWISTED BICROSSED PRODUCTS 293

LEMMA 3.6. There exists a function v : K x H — U(P)U {0} such that the
following hold (u(t,h) = usn).
(1) If ug,p # 0, then there ezist unique s = s(f,h) € K and g = g(t,h) € H

such that

(Ad U‘t‘},,)astﬁh Q-1 = )69 .

(i1) N’ N M has a vector space basis
{ut,hs(t,h)ptl.hl |he H, t € K, u #0}.

(iii) ug,n # 0 if and only if tht~!' € KH in Out(P).
(iv) ug p = I whenever ug p is a scalar. In particular, uy o = I = uey, for any
te K, he H.

Proof. Let So zsenspihy € N' 0 My, for some z, ;5 € P, and let
heH s ek
y € N. We have

Yo vmenspi= Y meawspibiyhil= Y zeaasPi(vp

hel s teK heH s €K heH,s tEK
—_ 1y,.1
= Z xs,t,hs( E (arﬂhar—l)(y)pr)pt
heH,s teK rek

= Z J!s,z,hs(atﬁlzat'l)(y)ptl

heH,ste K

= Z ms,t,h(astﬂhat'l)(y)'sp}'

heH s teK

Thus, S yasenspt € N OMy iff yz,00 = 2s,1,0(0seBroe-1)(y), for any
heH steK

he H,s t€K,and y € N. We fix s,¢, h for which z, ;4 # 0 (if such exists). By
Lemma 3.1 there exist u, ¢, € U(P)and g € H such that (Ad ug s n){asfra-1) =
By and ;4 = Aug,; n for some scalar A.

It is clear from the above reasoning that u, ¢, # 0 implies tht™! € KH C
Out(P), and if tht~! € KH then there exists an s € H such that us¢n # 0.
Moreover, such s if exists is unique, since by assumption H N K = {e). Thus, we
can write s p = Us ¢ h-

Multiplying by appropriate constants we can assure that u,, = I whenever
uy,; is a scalar. In particular u; . = I = u,, for any ¢t € K, h € H. The proof is

complete. @
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Repeating the same argument in higher levels of the tower, we conclude
that there are functions u®**? . H x K — U(Pyy;) U {0} and u?* : K x H —
U(P3x) U {0} with properties analogous to % from Lemma 3.6.

If usn # 0 then we denote wy p = uy p5(t, h)plhy. Clearly, Wy, 18 a partial
isometry with the domain projection p} and the range projection pl,. Since by
Lemma 3.6 {w; s} form a basis of N’ N M,, it follows that for any s,t € K
projections pl, p! are either equivalent in N’ N M, or their central supports are
disjoint. We set s ~ ¢ if p} is equivalent to p} in N’ N M;. We fix X, a set of
representatives of equivalence classes for ~.

For any ¢ € K we denote H; = HN{~*Hi (in Out(P)), Sy = {s € K | (3h €
H)s = s(t,h)}, and |S;] the cardinality of S;. Clearly, [S;] equals the cardinality
of [t], the class of ¢ (with respect to ~}.

PROPOSITION 3.7. There exists an isomorphism

N'NM,; = @(M|s,|(c) ® Co, [H4])
teK

where Cy,[Hy] is the twisted group algebra corresponding to a 2-cocycle (with values
in the torus T) w; on H,.

Proof. It follows from Lemma 3.6 and the above discussion that

N'NM; = @(M,s‘,((?) ® i (N N M )pl)

teK

and p; (N’ N M )p; has a basis {w, s | s(t,h)} = e}. However, s(t,h) = e if and
only if h € H;.

If h,g € Hy then wy pwi g = uy nfh(us 4)prh1g1. On the other hand, Wy p Wy g
is a linear combination of {wy | k € Hy}. It follows that there exists an wy(k, g) €
T such that we pw,, = wi(h, g)we png. Clearly, wy is a 2-cocycle, and the claim
follows. 1

PROPOSITION 3.8. For any t € K we have |S;| < [H : Hy]. The equality
holds for allt € K if and only if N C M has depth 2.

Proof. We work in Out(P). If s € S; then s"' HNtHt~! # () by Lemma 3.6.
For any two elements z1,z5 of s"'!H NtHt~! we have :cl_lxg € H;-1 and, hence,
s~'H NtHt™! intersects only one of cosets Hi-  \tHt™!. If 5,w € S; and both
s H and w™'H intersect the same coset, then Hsw~'H N H,-» # § and, hence,
sw™! € H. By our assumption s = w. Thus, there is an imbedding S; —
H -y \tHt~!. Therefore, |S;| < [tHt™': Hyw] = [H : Hy).
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N C M has depth 2 if and only if dim(IN’ N M;) = [M : N] (e.g. see [24]).
By Proposition 3.7 we have

dim(N' N My) = [H| SIS 21H  H ™ = [H] Y |S[H - 5]
tei? te K

Since |S;| € [H : Hy], we have dim(N’ "' M;) = |H||K| = [M : N] if and only if
|St| =[H : H] forany t € K. 11

4. THE ASSOCIATED HOPF ALGEBRAS

In this section we calculate Hopf #-algebras corresponding to the depth 2 inclu-
sions. These turn out to have the structure of cocycle twisted bicrossed products.
Ir}fact, this was the way we discovered the form of twisted bicrossed products, as
presented in Section 2. In our analysis we follow the general method of [24].

Throughout this section we assume that the depth of N C M is 2. By [2] this
means that a(K)B(H) is a group in Out(P), denoted G. We write A = N’ N M.
As shown in [24], A is a Hopf x-algebra of dimension |H|[K|, which acts on M
in such a way that M, is isomorphic to the crossed product M x A. It follows
(e.g. cf. [24]) that M is a crossed product of M; by an action of A°, the Hopf
*-algebra dual to A.

For h € H we define vy = Y wep, a unitary in A. Clearly, {piva | t €
teX
K,h € H} is a basis of A. Since u¢, = I, we have v, = I. H acts on K and K

acts on H as in Section 2. We have h -t = s(¢, k)t and (h-t)h = (t - h)t. Thus, by

virtue of Lemma 3.6 we have
(4.1) Adutlh = ﬁt.hatﬁh-1a(h.t]—1.

If vy : H — Aut(C(K)) is given by vn(p}) = p} .., then v» = Advs. We remark
that subgroups H; considered in Propositions 3.7 and 3.8 are point stabilizers for
the action of H on K.

Similarly, under the depth 2 assumption, o'(K)8*(H) is a group in Out(P,),
denoted G;. The two corresponding actions will be denoted by —. We have
(Ad u,ll_t)ﬂ}_ha}ﬁ}‘_, = aj_.,, where u}l't is a unitary in P; as in Section 3. We

define unitaries {z; | t € K} by z = Y ul,(t — hhh{'pits. o K —
neH
Aut(C(H)) is an action given by o,(p2) = p?_,, then o5 = Ad 2.
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LEMMA 4.1. The actions - and — of H on K coincide, and so do the actions -
and — of K on H. Consequently, the groups G and G, are naturally isomorphic.
Furthermore, for any h € H, t € K, the following hold:

(4.2) whe = Y ape(tg-r g p)ki(h - t) "1k pl
keK
(43) Zy = Z akt(ut—xlt.h)kt(h M t)_lk‘_lp,lc(t . h)]hl_lp}zliz.
keK heH

Proof. Let h € H,t € K. Since (Adwuj )Bl_peiBio, = of_,, for any
rk € K, z € P we have
(ﬁtl—-ho-’tlﬂ;;—l)(‘”pllc) = (u}l't)’a}z_t(mrpi.)u}ht = (”i,t)*mr?’}c(h—-t)—lui,t-

The left hand side can be calculated as

(C'rlct—1ﬂ¢«ha(rkt—l)~l N krBp a(k,)_l)(x)rp‘}”_l.

Setting k = r~1, we get

(g1 Bi—p s By Nz) = (ullz,t)*‘crpl-l(h—-t)—l “}Ia,: :

Since u}"t € P can be written as a linear combination of elements from P, {w | w €
K}, and {pl, |w € K}, the above equality implies that there exist {ye €U(P) |k €
K} such that

Y& = ar(Yp-11), k€ K, and “Ilz,t = Z yrkt(h — )"k~ 1pl.
keEK
That is, there is a %, ¢ € U(P) such that
uby = > ap(Hne)ki(h — t)~ 1k pk.
keK
Hence, we have
(o-1 Bt s By )(z)pi-.
= (“lli,t)*"’p(lhdt)—lui,t

= > pik(h— O R (@ ) 2pbh gy 0 (U, wt(h — ) wpl
kweK

= at—l(h—-t)t—l(a;;,t)at"l(h—-t)(x)at°1(h—-t)t—1(ah,t)pz—l-
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Therefore,
(ar—lﬁt—hatﬁh—l )(ﬂ?) = at—l(h—t)t—l(ﬁ;;,t)at-l(h—t)(z)a‘t—l(h—t)t“(Hll.t)'
Consequently,
Ad ai"‘(ﬁ;a,t) = a’(h—at)-lﬂt—hatﬁh—l-
This equality and Formula (4.1) imply that the actions - and — coincide. From
now on we will write - instead of —.
Since Br.pofh-1 = apg(Ad ag-1(uy ), and Bepayfh-1 = (Adugp)ane by
Lemma 3.6, we have Ad a,-n(ﬁ;’t) = a;,i(Ad ug p)ovp.;. Hence,
Adug-s o = Brovg-1 B n)-1ap.e.
Now we have
Ad th,y = ayeng)-1 (Ad UL )@ ayr-1 = Cynay—1 (@n 188 y—1 Blen)=1 ) @¥(hay-1
= at(ﬁhar—lﬁ(t-h)—lﬂh-t)ﬂz—l = ay(Ad ut-l,zvh)at-l = Ad at(ut—l,t-h)-
Thus, multiplying the unitaries u}m by appropriate scalars we get up; =
“t(utfl,t'h)- This proves (4.2), and (4.3) is its immediate consquence. 8
According to Section 5, [24], the action of A on M is given by a -y = [M :
N]E(aye1), a € A, y € M. Corollary 3.5 implies that

(4.4) pioy -zk = 6;,.L.,,ukv,h(mﬂhak-: ()t
forany h € H,t,k € K, « € P. Similarly, for the action of A° on M; we have
(4-5) Phzs - yhi = 8o gty (B} 0} B2 ) (@)

for any h,ge H,s€ K,y € Py.

LEMMA 4.2. There exist normalized 2-cocycles p : H x H — U(C(K)) for vy
and v : K x K — U(C(H)) for o, such that for any h,g € H, s,t € K
vpvg = plh, g)vny,  and 2,z = v(s, )z,
Therefore,
A=C(K)Xy,H and A°=C(H)x,, K.
Proof. At first we observe that
N’'NP; =span{p} |t € K} = C(K).
Indeed, we have NN P; = Eg’(N' N M), and by virtue of Lemma 3.6 this set
equals span{u; .s({,e)p} |t € K} = span{p} |t € K}.

However, it is immediate from the definition that for any h, ¢ € H we have
vavgVh, € N’ NPy, Thus, there exist pu(h,g) € U(C(K)) such that vyv, =
p(h, g)vng. Since vy implements action y of H on C/(K), it follows by a standard
argument (associativity of the multiplication) that g is a 2-cocycle for 4. Since
ve = I, p is normalized. This proves one part of the lemma. The other one is
established in a similar fashion. 1§
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LEMMA 4.3. For any h,g€ H, 5,t € K we have

u(h, 9)[t] = :B(t-h—l)—l.(u(hg)-l-t,g)uh—l-t,huz,hg)—l.t,hg
v(s,t)[h] = Ut—xls—Lha(‘,—Lh),t—l(us—lyh)’uz”)_l'h

Upp = [t(h‘l,h)[t]ﬁph(ﬂ.h.t,h—'l) = vt~ ) [h)an.i(u-r 4.0)-

Furthermore, unitaries {u; n} can be selected in such a way that W{h=',h) =1 for

any h € H.

Proof. The definitions of 4 and v from Lemma 4.2, formula (4.1), and Lem-
ma 4.1 lead through a straightforward calculation to the first two equalities. Re-
placing A by ¢g=! in the first and s by t=! in the second we get the third one. The
map f : (t,h) — (h-t,h™) is a bijection of K x H satisfying f¢ = id. Thus,
replacing g n by p(h™", h)[t]=1/? we get p(h=!,h)[t] = 1, as desired. 1

From now on we will assume that, according to the above lemma, the uni-
taries {us 5} were selected in such a way that u(h~!, h) = I.

According to [24], there is a duality between A = N‘NM; and A° = M'NM3;,

given by a bilinear form
(a,b) = [M : N|2r(aeqe; b)

where a € A, b e A°,

LEMMA 4.4. For any h,g € H, 5,t € K, we have

(ptlvh,pzzs) = 6i,h».95g,s~hV(5M1 ) 5)[”']‘

Proof. For any k € K, f € H, we have
pikaplfi = Plai(ph) frks = plpi-i fika = pjos FL(f7 ' P2 1)k = Phos fp}n k.
Hence,
(pon, pyzs) = |HIP| K Pr(pjvneserp)z) = [H| K| > (pivaplkapl fip}z)

feHkeK

=[HIK] Y r(pivaph-s ivd-ikap?z,)
fEHkEK
= [H||K|r(ptongy 'pp(h™" - 1)5 " 2,)

= |H||K|r(pivagy ' Ex(pi(h™" - t)7 " 2,).
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It follows from Corollary 3.5 and Lemma 4.1 that £y (p2(h~" - )5 '25) = 0 unless
t = h-s. For notational convenience we write

0(c) = buns | K|(Boal Brms Y(urale - 7)r™ 1)’
for ¢ € H. Then

(levh,Pﬁzs) = 5t,h-s<P)1;.5Uh,P§Zs) = 6t'h-$(vh)p328}

= b ps|H| |K|T(vhg]‘1p§sz"lzs) = by p.s | H| [K|T(af(vh)g1_1p3zss§1)

=H| Y w(O®)PEhgr pRovks(ttg-s0. k(S - 8) T kT ph(s - )1 £ PR)

b,fEH,r kK
= |H]| Z T(H(ll)hlg;lcvk,(us_:,g)ks(g s ptgi (s -g)l_lpf_l_g)
rkeK
= Z T(()(h)h]gflr,yk,(u.,-l}g)ks(g Tk pia (57T
rkeK
= 57 OBy (tattemr Dhs(g -5~ Y A5~ )7 1)
rkeK

equals 0 unless ¢ = 5 - h. Consequently,

<7)tlvh:p§z«<> = 61,:'»559,8-!1(17}»3”11:Pg.hzs> = bi,hs8g 5.0 {Vh, 2s).

Since ¢z = eap?z} for any s € K, a tedious but straightforward caleulation (using
Corollary 3.5, formula (4.1), and Leruma 4.1) yields
(v, zs) = [HK*r(vnezer2s) = |H || K> r(vnea(pi 2l e12,))
= [H||K} Z r(vneafrogos (crgs (ug=r o 4)s(g - '9)_11’%9-5).9-1)
f.9ed
(s '9)1!}1_11’3)
= [HIIKP Y r(onez filBlyabs Bl pyos et (gm0 )5 - 5) Blgrayems)
fgeH
(s '9’)1!}1_1113)
= |HUK? Y r(uneafi(Begovams By gy-1 g )(ts=1 4.g)
fgeH
+5(g - 5) 7 pg.s (5 - 9)r97 ' 9)
= [HIK[? D r(oneafi(sBegyg-1)(ts-1,0.5)5(g - )" pL (5 - 9)197 'P2)
fr9eH

= II{] E T(Ut)h(h . t)t—lp*}/g}l;(s-h)—-l((as[3(5~h)h"l)(us'],s<ll.))$(h . -S')—lp]l-“,)
teK

= T(’u‘;yha’h-s(us—l,s-h)))

which equals v(s~?, s)[h] by Lemma 4.3. &
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THEOREM 4.5. A and A° have the structure of twisted bicrossed products
dual to one another, as described in Section 2.

Proof. 'This follows from Lemmas 4.1, 4.2, 4.3, and 4.4. 1

Since a(K)B(H) is a group in Out(P), denoted G, it determines a -kernel
(cf. Section 3.1, [23]). We denote by 5 : G x G — U(P) the unitary 2-cocycle
defined by C. Sutherland in Section 3.1, [23]. Our identity (cf. formula (4.1))

s By = (Ad (s s-3.0)) s (nes-1)-1 Brs-1.1)g
gives
7](“!, 9_!]) = at(us,s_l-h)

for any h,g € H, 1,5 € K. Observe that 5 does not depend on g. We denote by w
the normalized numerical 3-cocycle on G (cf. Section 3.1, [23]). In our setting it
1s determined by the identity

(4.6) By(n(th,s))n(g,t(h-s~)") = w(rg, th,sfn(g, )n((g -t~ H7 ™! - g)h, 5)

g.h,f€ H,rt,se€ K. Observe that w does not depend on r, f. In particular, its
restriction to either H or K is trivial. We recall the 3-cocycle identity satisfied by
w

(4.7) w(a, b, c)w(b, ¢, d)w(a, be,d) = w(ab, ¢, d)w(a, b, cd)

for a,b,c,d € G. The normalization of w means that w(a1,az,a3) = 1 if a; = e for
some 1.

PROPOSITION 4.6. The unitary 2-cocycles pp and v are determined by the
numerical 3-cocycle w, according to the following formulae:

u(h, 9)[t] = w(h, g((hg)™ - )71, (hg) "t - w(h™ 1 AR~ - )" 71 1)

v(s,t)lgl = w(((st)™" - 9) ™" ((s) ™" - @)t~ 7).

Proof. Replacing in (4.6) g by ¢-h~! and taking into account that 3(th, sg) =
az(n(h, s)) we get

wt-h=tth,s)nt-h~1t) = Ben-1(n(th, s)n(t - A=, t(h-571)71).
On the other hand, since p(h™!, h) = I for any h € H, Lemma 4.3 leads to

v(s7H (BT t) 5T Rlp(t - AT t) = Byp-r (n(th, $))n(t - R t(h - 57T,
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Consequently,
wlt-h~ 1t s) = v(s™' (b~ )" D[s™L 4.

This gives the second equality of the proposition.
Replacing in (4.6) s by (A= - ¢)~! we get

w(g, ih: ((h—l ‘ 5)_1)77(% t)”((g : tkl )ﬁl(t-l ' g)h, (h’_l ' t)_l)

= By (n(th, (A7 - 0)™"Y).

On the other hand, Lemma 4.3 combined with the expression for 5 above leads to
g, (& =) Dg ¢ (e, On((g - 7))k, (7))

= (e, gl By ((th, (B - 1)71)).

Consequently,

w(g,th, ((h™"-0)™")y = p(g, (¢ - A=Y g -7t ).

From this and the second equality of the proposition we infer that the first one
holds true as well. 1
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