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ON CRISS-CROSS COMMUTATIVITY

ROBIN HARTE

Communicated by Norberto Salinas

ABSTRACT. Equality of the non zero spectrum of products eb and ba of
Banach algebra elements extends to many different kinds of joint spectrum
for “criss-cross commuting” pairs of tuples.
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Recall that if 7: X — Y and 5:Y — X are linear operators then
(0.1) (I - T8)1(0) C T(J ~ ST)~1(0)

and hence there is implication

(0.2) I — ST onc-one = [ —71'S one-one:

for if (I —7'S)y = 0 then y = T(Sy) with (I — ST)Sy = S(I —TS)y = 0. Dually
there 1s inclusion

(0.3) S™HI - STYX) C (I -TSNY)
and hence implication

(0.4) I — ST onto =1 — TS onto:
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forif Sy=(I —ST)z then y= (I -TS)y+TSy=(I-TSyy+T( -ST)z =
(I =TS)(y + Tz). For bounded linear operators between normed spaces we have
also implication

(05)  YoeX:|zl| <k|(I-ST)zl| = VyeY :|lyll < AT - TSyl :

argue

llyll < 17 =TSyl + 1T ISyl < 17 = TS)yll + ITNKI( = ST)Syl|
= I =TSyl + |1 THENS (T — TS)yll < L+ (TNENSIDI - TSl

If more generally a,b € A are in an additive category then also
(0.6) c(l—ba)=1= (1+ acb)(1 —ab) =1,
so that there is implication

(0.7) 1—ba€ Ay, =>1—abe A,

It is familiar that these elementary observations have consequences in spectral
theory: for various kinds of “spectrum” w on linear algebras A there is equality,
for arbitrary pairs of elements a,b € A,

(0.8) w(ab) \ {0} = w(ba) \ {0}.

These equalities have extensions to “criss-cross commuting” systems of operators
or ring elements:

DEFINITION 1. n-tuples a € A™ and & € A" of elements in an additive
category A are said to criss-cross commute if there is equality, for each 4, 5,k in

{1,2,...,n},

(1.1) (z,-bkaj = ajbk(l,; and biakbj = bj(lkbi.

An immediate consequence is that each of the n-tuples
(1.2) ba = (biay, baas, ..., bpan), ab= (a1by,azds, ..., a0b,)

is commutative. By Grimus and Ecker ([1]) there is implication (1.2) = (1.1) when
A=C"*" and b = a*.
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THEOREM 2. If (a,¢) € A® x A™ and (b,d) € A™ x A™ criss-cross commute
there 1s implicalion

(2.1) el —brar) + Y ey —bjas) + Y (uj —djc;)fy = 1

i=2 j=1

implies

(22) (14 aresbr)(1—arbr) + ) (are;bn)(h —azbs) + Y {15 — jds)ar fiby = 1.

ji=2 j=1

Proof. Compute

(l + (L1€1b1)(1 —albl) =1-ab +alcl(l —b1(1.1)b1

1

=l—-aib +a (l—z ej(X; — bjaj)'f'Z(ﬂj_dej)fj)bl
1=2 i=1
n
=1-) arej(X —bja;)by — Zal(uJ — dje;)b,

i=2 i=1

which by part of the criss-cross condition equals

1—Za1€jb1(A a]b ) Z —CJ alf}bl B
=2

THEOREM 3. If (a,c) € A™ x A™ and (b,d) € A™ x A™ criss-cross commute
then there is implication

vl < kllull (= Bras)oll + > kjllull 103 — bia;)e]
i=2

m
+ ) hllu(ps — dic;)l] o]

ji=1
implies

IZEHIES

B IDITHIQ = a1b1)v'|

+ D Esllanll 1bal 11 — az85)2)]
(3.2) j=2

+ > hillanll bl 1 (s — ezdg) 11
i=1
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There is also implication
(33) (1 — blal)v = ()\j - bjaj)v = u(,uj - dej) =0—=uv=0
implies

(3.4) (I —a1bh)v" = (A —ajbi)v’ = W' (p; — cjd;) =0 = v'v' = 0.
Proof. If (3.1) holds then compute, for arbitrary «’, v' in A,
v/l < by + [0~ by

<kl | I(1 = bran)ous || 4+ D ksllwan[|11(A — bia;)bi/ |
j=t
m

+ D hgllwan (g~ die)l a0/ || + ll'(1 = brea )V

j=1

= Eallu’ar | [1Bs(1 = abi )|} + Y ksllwenl| [ba(Ay — a;b;)v|
i=2

m
+ 3 (5 = cids)anll 1bav' [+ [l (1 — brag)o'||. 8
i=1
The argument of Theorem 2 extends to the situation, for a normed linear

category A, in which the tuples ¢ € A" and f € A™ are replaced by bounded
sequences; the reader can check that if

(3.5) ”elk(l —biay) + iejk(Aj —bja;) + i(w — djej) i — 1” —0
i=2 J=1
with
(3.6) sup (Jlexe] +i2||€fk“ +;i1||fik||) <o
iz =
then also

111

(3.7) |’(1+a181kb1)(1—a1b1)+z ejk(/\j-ajbj)—FZ(uj _dej)alfjkbl_lH — 0.
i=2 J

=1

There is also an operator analogue of Theorem 3, based on “almost exactness”
([2], Definition 1.1; [3], Definition 10.3.1):
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THEOREM 4. If (T1,T3) € BL(X,Y)? and (S1,S2) € BL(Y, X)? criss-cross
commaule, and if there are k > 0 and h > O for which for arbitrary w € X there 1s
z € X for which

(A1) = (= ST)el < Hi(al ~ SeTo)ull with ]| < hljw]
then for arbilrary z € Y there is y € Y for which

|z = (I = TuS1)yll < KTl IS1 ]} | (AT — T252)2|
with |yl| < (1 + RT3 {IS1IDH |-
Proof. Take z € X from (4.1) with z = Sjw and find y = z + Ty z:

(4.2)

||Z — (] - TxSl)(Z + T1:U)|| = ||T]S1Z — ‘(] - T1.5'1)T11‘”
< ([T 1512 = (I = ST )|
SR [|(A2f — S2T2)50 2|

which by criss-cross commutativity is

EITa{][151(A2] — T2S2)z|] <

Sl 1(A2d — T252)z]|;
also
Iz + Tiz|) < [lzll + 1Tl =)l < (L4 AT IS DIz w

We offer the following hybridizations of the spectrum, approximate point and
point spectrum for systems of algebra elements:

DEFINITION 5. If @ € A" and ¢ € A™ for a complex (normed) linear algebra
A (with identity 1), then

(5.1) o™ (a,c)= {(\,w) eC* xCT™: 1 ¢ Do AG = a)+ (w5 = e)A;

i=1
Tl‘eft,right(a’ C) = {()‘:/J') ceCtx C™ -

(5.2
) ZH [l 1(A; — aj)vlf +ZIIU(MJ —ep)lilvll = 0}

Iluvll>1

53 picthright g 0y = {()\,,u) €C” xC™:3uv # 0 € A such
. (A —a)v,u{pr — c)) = (0,0) € A" x Am}.

With this notation, we can state a theorem about joint spectra:
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THEOREM 6. If (a,c) € A® x A™ and (b,d) € A" x A™ criss-cross commute
there is equality

(6.1) Wi (b, ed) \ {(0,0)) = WS (ba, de) \ {(0, 0))

for each w of {o,T,7}.

Proof. Without loss of generality suppose that among all the A; and y; of a
point (A, 1) € w!e®rEM it is X; £ 0 and then normalise by scalar multiplication to
A1 = 1; now Theorem 2 and Theorem 3 give the argument. I

These hybrid results can be used in the argument of Li Shaukuan ([4]) in
establishing the analogue of Theorem 5 for the Taylor spectrum. We offer only a
fragment:

THEOREM 7. If (T1,T3) € BL(X,Y)? and (S1,S2) € BL(Y, X)? criss-cross

commule then

. _ - T N I- SlTl Lo
(71) (I - .SlTl)l'g = (Az] - .SQTQ):EI _— (;pz) = (/\21 _ Ssz)

implies

i I-T151 \ w
7.2 I-Ti5 = —T58 =
(12 (=Tism =l -Tasam = (1) = (|77 ),
and also
(7.3)
I - 5T (R’I I2) + _R’ZI (—AQI + STy, I—-5T ) _ I 0)
Al — S5Ty RY 0 I

implies

( I1-T15 ) ([ + T R’1,5'1 T R’251 )
(7.4) Aol — T35,
( —TIR’Q’SI ) (—Ag[—{- T9S8 I — T1.5'1) _ (I 0)

I+7T1 R’{Sl 0 I

Proof. The left hand side of (7.2) and criss-cross commutativity gives
(I = 51T1)S1y2 = (A2l — S2T3)S1y1 and hence by (7.1) there is yo for which

(yl)_(I—TI.SH 0 y1)+<T1 0)( I—SlT] )yg
v2) 0 I-T15 v2/ \0 T Apd — 52T
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I-T18 \ (51 + Tawo)
Al — T35 '
holds then the left hand side of (7.4) reduces to

If (7.3)

which by more criss-cross commutativity is (

I (I-T18)T3 RYyS; —Ty RS {(I-T} 1)
(Al —S83Ty) Ry — R (Ag I —52T3) Sy 1

B I Ty(I—-T151) Ry — RY(I—$1T3) 5,
T AT (Al -8 Ta) R} — RY (Mgl —5:.T5) 5, I

(o 7)1

In general we are unable to settle whether the analogue of (1.2) is sufficient
for Theorem 2, Theorem 3, Theorem 4 or Theorem 7.
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