ON CRISS-CROSS COMMUTATIVITY

ROBIN HARTE

Communicated by Norberto Salinas

ABSTRACT. Equality of the non zero spectrum of products ab and ba of Banach algebra elements extends to many different kinds of joint spectrum for "criss-cross commuting" pairs of tuples.

KEYWORDS: Criss-cross commutativity, spectrum, exactness.

AMS SUBJECT CLASSIFICATION: 47A10.

Recall that if $T: X \to Y$ and $S: Y \to X$ are linear operators then

$$(0.1) (I - TS)^{-1}(0) \subseteq T(I - ST)^{-1}(0)$$

and hence there is implication

(0.2)
$$I - ST$$
 one-one $\implies I - TS$ one-one:

for if (I - TS)y = 0 then y = T(Sy) with (I - ST)Sy = S(I - TS)y = 0. Dually there is inclusion

$$(0.3) S^{-1}(I - ST)(X) \subseteq (I - TS)(Y)$$

and hence implication

(0.4)
$$I - ST$$
 onto $\Longrightarrow I - TS$ onto:

304 Robin Harte

for if Sy = (I - ST)x then y = (I - TS)y + TSy = (I - TS)y + T(I - ST)x = (I - TS)(y + Tx). For bounded linear operators between normed spaces we have also implication

$$(0.5) \qquad \forall x \in X : ||x|| \leqslant k||(I - ST)x|| \Longrightarrow \forall y \in Y : ||y|| \leqslant h||(I - TS)y|| :$$

argue

$$||y|| \le ||(I - TS)y|| + ||T|| ||Sy|| \le ||(I - TS)y|| + ||T||k||(I - ST)Sy||$$

= ||(I - TS)y|| + ||T||k||S(I - TS)y|| \le (1 + ||T||k||S||)||(I - TS)y||.

If more generally $a, b \in A$ are in an additive category then also

$$(0.6) c(1-ba) = 1 \Longrightarrow (1+acb)(1-ab) = 1,$$

so that there is implication

$$(0.7) 1 - ba \in A_{\text{left}}^{-1} \Longrightarrow 1 - ab \in A_{\text{left}}^{-1}.$$

It is familiar that these elementary observations have consequences in spectral theory: for various kinds of "spectrum" ω on linear algebras A there is equality, for arbitrary pairs of elements $a, b \in A$,

(0.8)
$$\omega(ab) \setminus \{0\} = \omega(ba) \setminus \{0\}.$$

These equalities have extensions to "criss-cross commuting" systems of operators or ring elements:

DEFINITION 1. n-tuples $a \in A^n$ and $b \in A^n$ of elements in an additive category A are said to *criss-cross commute* if there is equality, for each i, j, k in $\{1, 2, \ldots, n\}$,

$$(1.1) a_i b_k a_j = a_j b_k a_i \quad \text{and} \quad b_i a_k b_j = b_j a_k b_i.$$

An immediate consequence is that each of the *n*-tuples

$$(1.2) ba = (b_1 a_1, b_2 a_2, \dots, b_n a_n), ab = (a_1 b_1, a_2 b_2, \dots, a_n b_n)$$

is commutative. By Grimus and Ecker ([1]) there is implication (1.2) \Rightarrow (1.1) when $A = \mathbb{C}^{n \times n}$ and $b = a^*$.

THEOREM 2. If $(a,c) \in A^n \times A^m$ and $(b,d) \in A^n \times A^m$ criss-cross commute there is implication

(2.1)
$$e_1(1-b_1a_1) + \sum_{j=2}^n e_j(\lambda_j - b_ja_j) + \sum_{j=1}^m (\mu_j - d_jc_j)f_j = 1$$

implies

$$(2.2) (1 + a_1c_1b_1)(1 - a_1b_1) + \sum_{j=2}^{n} (a_1e_jb_1)(\lambda_j - a_jb_j) + \sum_{j=1}^{m} (\mu_j - c_jd_j)a_1f_jb_1 = 1.$$

Proof. Compute

$$(1 + a_1e_1b_1)(1 - a_1b_1) = 1 - a_1b_1 + a_1e_1(1 - b_1a_1)b_1$$

$$= 1 - a_1b_1 + a_1\left(1 - \sum_{j=2}^n e_j(\lambda_j - b_ja_j) + \sum_{j=1}^m (\mu_j - d_jc_j)f_j\right)b_1$$

$$= 1 - \sum_{j=2}^n a_1e_j(\lambda_j - b_ja_j)b_1 - \sum_{j=1}^m a_1(\mu_j - d_jc_j)b_1,$$

which by part of the criss-cross condition equals

$$1 - \sum_{j=2}^{n} a_1 e_j b_1 (\lambda_j - a_j b_j) - \sum_{j=1}^{m} (\mu_j - c_j d_j) a_1 f_j b_1. \quad \blacksquare$$

THEOREM 3. If $(a,c) \in A^n \times A^m$ and $(b,d) \in A^n \times A^m$ criss-cross commute then there is implication

$$||uv|| \leq k_1 ||u|| ||(1 - b_1 a_1)v|| + \sum_{j=2}^{n} k_j ||u|| ||(\lambda_j - b_j a_j)v|| + \sum_{j=1}^{m} h_j ||u(\mu_j - d_j c_j)|| ||v||$$

implies

$$||u'v'|| \leq (1 + k_1||a_1|| ||b_1||)||u'|| ||(1 - a_1b_1)v'||$$

$$+ \sum_{j=2}^{n} k_j ||a_1|| ||b_1|| ||u'|| ||(\lambda_j - a_jb_j)v'||$$

$$+ \sum_{j=1}^{m} h_j ||a_1|| ||b_1|| ||u'(\mu_j - c_jd_j)|| ||v'||.$$

306 Robin Harte

There is also implication

$$(3.3) (1 - b_1 a_1)v = (\lambda_j - b_j a_j)v = u(\mu_j - d_j c_j) = 0 \Longrightarrow uv = 0$$

implies

$$(3.4) (1 - a_1 b_1)v' = (\lambda_i - a_i b_i)v' = u'(\mu_i - c_i d_i) = 0 \Longrightarrow u'v' = 0.$$

Proof. If (3.1) holds then compute, for arbitrary u', v' in A,

$$\begin{aligned} \|u'v'\| &\leq \|u'a_1b_1v'\| + \|u'(1-b_1a_1)v'\| \\ &\leq k_1\|u'a_1\| \|(1-b_1a_1)b_1v'\| + \sum_{j=2}^n k_j\|u'a_1\| \|(\lambda_j-b_ja_j)b_1v'\| \\ &+ \sum_{j=1}^m h_j\|u'a_1(\mu_j-d_jc_j)\| \|b_1v'\| + \|u'(1-b_1a_1)v'\| \\ &= k_1\|u'a_1\| \|b_1(1-a_1b_1)v'\| + \sum_{j=2}^n k_j\|u'a_1\| \|b_1(\lambda_j-a_jb_j)v'\| \\ &+ \sum_{j=1}^m \|u'(\mu_j-c_jd_j)a_1\| \|b_1v'\| + \|u'(1-b_1a_1)v'\|. \quad \blacksquare \end{aligned}$$

The argument of Theorem 2 extends to the situation, for a normed linear category A, in which the tuples $e \in A^n$ and $f \in A^m$ are replaced by bounded sequences; the reader can check that if

(3.5)
$$\left\| e_{1k}(1 - b_1 a_1) + \sum_{j=2}^{n} e_{jk}(\lambda_j - b_j a_j) + \sum_{j=1}^{m} (\mu_j - d_j c_j) f_{jk} - 1 \right\| \to 0$$

with

(3.6)
$$\sup_{k} \left(\|e_{1k}\| + \sum_{j=2}^{n} \|e_{jk}\| + \sum_{j=1}^{m} \|f_{jk}\| \right) < \infty$$

then also

$$(3.7) \left\| (1 + a_1 e_{1k} b_1) (1 - a_1 b_1) + \sum_{j=2}^{n} e_{jk} (\lambda_j - a_j b_j) + \sum_{j=1}^{m} (\mu_j - c_j d_j) a_1 f_{jk} b_1 - 1 \right\| \to 0.$$

There is also an operator analogue of Theorem 3, based on "almost exactness" ([2], Definition 1.1; [3], Definition 10.3.1):

THEOREM 4. If $(T_1, T_2) \in BL(X, Y)^2$ and $(S_1, S_2) \in BL(Y, X)^2$ criss-cross commute, and if there are k > 0 and k > 0 for which for arbitrary $k \in X$ there is $k \in X$ for which

$$(4.1) ||w - (I - S_1 T_1)x|| \le k||(\lambda_2 I - S_2 T_2)w|| with ||x|| \le h||w||$$

then for arbitrary $z \in Y$ there is $y \in Y$ for which

(4.2)
$$||z - (I - T_1 S_1)y|| \leq k||T_1|| ||S_1|| ||(\lambda_2 I - T_2 S_2)z||$$
 with $||y|| \leq (1 + h||T_1|| ||S_1||)||z||.$

Proof. Take $x \in X$ from (4.1) with $z = S_1 w$ and find $y = z + T_1 x$:

$$||z - (I - T_1 S_1)(z + T_1 x)|| = ||T_1 S_1 z - (I - T_1 S_1) T_1 x||$$

$$\leq ||T_1|| ||S_1 z - (I - S_1 T_1) x||$$

$$\leq k||T_1|| ||(\lambda_2 I - S_2 T_2) S_1 z||$$

which by criss-cross commutativity is

$$|k||T_1|| ||S_1(\lambda_2 I - T_2 S_2)z|| \le |k||T_1|| ||S_1|| ||(\lambda_2 I - T_2 S_2)z||$$

also

$$||z + T_1 x|| \le ||z|| + ||T_1|| ||x|| \le (1 + h||T_1|| ||S_1||) ||z||.$$

We offer the following hybridizations of the spectrum, approximate point and point spectrum for systems of algebra elements:

DEFINITION 5. If $a \in A^n$ and $c \in A^m$ for a complex (normed) linear algebra A (with identity 1), then

$$(5.1) \ \sigma_A^{\text{left,right}}(a,c) = \left\{ (\lambda,\mu) \in \mathbb{C}^n \times \mathbb{C}^m : 1 \notin \sum_{j=1}^n A(\lambda_j - a_j) + \sum_{j=1}^m (\mu_j - c_j) A \right\};$$

$$\tau_A^{\text{left,right}}(a,c) = \left\{ (\lambda, \mu) \in \mathbb{C}^n \times \mathbb{C}^m : \right.$$

$$\inf_{\|uv\| \geqslant 1} \sum_{j=1}^n \|u\| \|(\lambda_j - a_j)v\| + \sum_{j=1}^m \|u(\mu_j - c_j)\| \|v\| = 0 \right\};$$
(5.2)

(5.3)
$$\pi_A^{\text{left,right}}(a,c) = \left\{ (\lambda,\mu) \in \mathbb{C}^n \times \mathbb{C}^m : \exists uv \neq 0 \in A \text{ such} \right. \\ \left. ((\lambda-a)v, u(\mu-c)) = (0,0) \in A^n \times A^m \right\}.$$

With this notation, we can state a theorem about joint spectra:

308 Robin Harte

THEOREM 6. If $(a,c) \in A^n \times A^m$ and $(b,d) \in A^n \times A^m$ criss-cross commute there is equality

$$(6.1) \qquad \qquad \omega_A^{\text{left,right}}(ab,cd) \setminus \{(0,0)\} = \omega_A^{\text{left,right}}(ba,dc) \setminus \{(0,0)\}$$

for each ω of $\{\sigma, \tau, \pi\}$.

Proof. Without loss of generality suppose that among all the λ_j and μ_j of a point $(\lambda, \mu) \in \omega^{\text{left,right}}$ it is $\lambda_1 \neq 0$ and then normalise by scalar multiplication to $\lambda_1 = 1$; now Theorem 2 and Theorem 3 give the argument.

These hybrid results can be used in the argument of Li Shaukuan ([4]) in establishing the analogue of Theorem 5 for the Taylor spectrum. We offer only a fragment:

THEOREM 7. If $(T_1,T_2) \in BL(X,Y)^2$ and $(S_1,S_2) \in BL(Y,X)^2$ criss-cross commute then

$$(7.1) (I - S_1 T_1) x_2 = (\lambda_2 I - S_2 T_2) x_1 \Longrightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} I - S_1 T_1 \\ \lambda_2 I - S_2 T_2 \end{pmatrix} x_0$$

implies

$$(7.2) (I - T_1 S_1) y_2 = (\lambda_2 I - T_2 S_2) y_1 \Longrightarrow \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} I - T_1 S_1 \\ \lambda_2 I - T_2 S_2 \end{pmatrix}^{y_0},$$

and also

$$\begin{pmatrix} (7.3) \\ I - S_1 T_1 \\ \lambda_2 I - S_2 T_2 \end{pmatrix} \begin{pmatrix} (R_1' & R_2') \\ R_1'' \end{pmatrix} + \begin{pmatrix} -R_2'' \\ R_1'' \end{pmatrix} \begin{pmatrix} (-\lambda_2 I + S_2 T_2 & I - S_1 T_1) \\ R_1'' \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$$

implies

(7.4)
$$\begin{pmatrix} I - T_1 S_1 \\ \lambda_2 I - T_2 S_2 \end{pmatrix} \begin{pmatrix} I + T_1 R_1' S_1 & T_1 R_2' S_1 \end{pmatrix} \\ + \begin{pmatrix} -T_1 R_2'' S_1 \\ I + T_1 R_1'' S_1 \end{pmatrix} \begin{pmatrix} (-\lambda_2 I + T_2 S_2 & I - T_1 S_1) \\ \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}.$$

Proof. The left hand side of (7.2) and criss-cross commutativity gives $(I - S_1 T_1) S_1 y_2 = (\lambda_2 I - S_2 T_2) S_1 y_1$ and hence by (7.1) there is y_0 for which

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} I - T_1 S_1 & 0 \\ 0 & I - T_1 S_1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} T_1 & 0 \\ 0 & T_1 \end{pmatrix} \begin{pmatrix} I - S_1 T_1 \\ \lambda_2 I - S_2 T_2 \end{pmatrix} y_0$$

which by more criss-cross commutativity is $\begin{pmatrix} I - T_1 S_1 \\ \lambda_2 I - T_2 S_2 \end{pmatrix}$ $(y_1 + T_1 y_0)$. If (7.3) holds then the left hand side of (7.4) reduces to

$$\begin{pmatrix} I & (I-T_1S_1)T_1R_2'S_1-T_1R_2''S_1(I-T_1S_1) \\ (\lambda_2I-S_2T_2)R_1'-R_1''(\lambda_2I-S_2T_2)S_1 & I \end{pmatrix}$$

$$=\begin{pmatrix} I & T_1(I-T_1S_1)R_2'-R_2''(I-S_1T_1)S_1 \\ T_1(\lambda_2I-S_2T_2)R_1'-R_1''(\lambda_2I-S_2T_2)S_1 & I \end{pmatrix}$$

$$=\begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}. \quad \blacksquare$$

In general we are unable to settle whether the analogue of (1.2) is sufficient for Theorem 2, Theorem 3, Theorem 4 or Theorem 7.

REFERENCES

- W. GRIMUS, G. ECKER, On the simultaneous diagonalizability of matrices, J. Phys. A 9(1986), 3917-3919.
- R.E. HARTE, Almost exactness in normed spaces, Proc. Amer. Math. Soc. 100(1987), 257-265.
- 3. R.E. HARTE, Invertibility and Singularity, Dekker, 1988.
- LI SHAUKUAN, On the commuting properties of Taylor's spectrum, Chinese Sci. Bull. 37(1992), 1849-1852.
- LI SHAUKUAN, Taylor spectral invariance for criss-cross commuting pairs on Banach spaces, Proc. Amer. Math. Soc. 124(1996), 2069-2071.

ROBIN HARTE
Department of Mathematics
Trinity College
Dublin 2
IRELAND

Received January 7, 1996.