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ABSTRACT. In [17], we studied the natural u-topology on the endomorphism
semigroup End(M) of a von Neumann algebra M, given by pointwise conver-
gence in the predual. For many purposes, however, the topological approach
seems to be difficult. In this paper, the Borel structure induced by the u-
topology on End(M) is then investigated. In particular a Borel implementa-
tion of endomorphisms is found and applied to prove that invariants such as
the dimension mapping are Borel. Moreover we prove that End(M) is Borel
isomorphic to the cartesian product of automorphisms and subfactors of M,
and some related problems for quotient spaces of End(M) are discussed.

KEYWORDS: Endomorphisms, von Neumann algebras, Borel structure.

AMS SUBJECT CLASSIFICATION: Primary 46L37; Secondary 46L10.

1. INTRODUCTION

Over the last decade, the theory of endomorphisms on von Neumann algebras has
received growing attention by many scientists. Powers’ program for classification
of (shift type and semigroups of) endomorphisms on factors of type I, and type
II; has created an area where many interesting results and techniques have been
obtained (see e.g. [1] and references therein).

From a different point of view, endomorphisms of type III factors serve as
models for superselection sectors in algebraic quantum field theory, and the stas-
tistical dimension in that theory has been related to generalizations of Jones’
index for subfactors (see [10] and its references). Moreover, the ‘sector technique’
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has become an important tool in general subfactor theory and its applications to
quantum groups, as a pleasant variation of the bimodule approach.

The theory of endomorphisms can (for the moment, in a non-formal sense) be
considered as a ’cartesian product’ of automorphism theory and subfactor theory,
both of which are by now highly developped. We should thus expect techniques
from both areas to play important roles; in fact, Popa’s classification of subfactors
does have some direct implications for endomorphisms (see [15]).

Nevertheless, although concrete examples of individual endomorphisms have
been studied, very little is known about the semigroup of endomorphisms of a von
Neumann algebra as a whole. In the. view of automorphism theory, the first step
is to study its natural topology; a first attempt in this direction was presented
in {17]. The definition of this topology, called the u-topology, is given (in a more
general context) in Section 2.

The main fact for automorphisms is the canonical implementation by uni-
taries on a standard Hilbert space for the algebra (cf. [6]), but for endomorphisms
the continuous choice of range algebras causes severe troubles, since we cannot
choose a common standard representation for all of them. However, another im-
portant fact about the automorphism group is that it is Polish, and its Borel
structure (just as much as the topology) plays a vital role. The main purpose of
this paper is to see what can be recovered in this weaker set-up for endomorphisms.
In fact, most of the results in [17] required severe assumptions on the range al-
gebras of the endomorphisms considered. The Borel structure approach is more
compatible with algebraic manipulations, and we can disregard range algebras
completely.

We first extend our study of the u-topology to all bounded normal operators
on M in order to extract certain global properties of End(M) from properties in
this bigger space (Section 2); a keypoint here is that although End(M) is not
u-closed, it is anyway a Polish space (in u-topology, assuming M, is separable).
Instead of a canonical continuous implementation, we can then exhibit a unitary
Borel implementation which at least in some sense is unique (Section 3).

A main motivation for considering the Borel structure rather than the topol-
ogy on End(M) is the realization (cf. Example 5.1) that the dimension, one of the
important invariants that do not show up when we consider automorphisms (or
more generally, fixed range), is not compatible with a topological approach, but
we shall see that it is in fact a Borel map (Theorem 5.3). To prove this, we use the
Effros—Borel structure on intertwiner spaces; these technicalities are dealt with in
Section 4.
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It goes without saying that the idea of considering Borel structure rather than
topology is inspired by Mackey’s viewpoint in representation theory (cf. e.g. [12]).
We end this paper with some remarks along this line, and use the Effros—-Borel
structure to give a precise meaning to the isomorphism

End(M) 2 Aut(M) x {N C M : N = M}.

Throughout, we indicate important problems which are left open and that
we think should be solved.

2. TOPOLOGICAL PRELIMINARIES

In this section, M will denote a von Neumann algebra. Let B.(M) denote the set
of linear, bounded, normal maps from M into itself, and B,(M); its unit ball. On
B.(M), the u-topology is defined as the locally convex topology induced by the
separating family of seminorms

T llpoT|, & M..

Convergence in u-topology of a net (T3) C B.(M) to T € B, (M) will be expressed
as Ty — T. The u-topology was introduced in [6] on the automorphism group
Aut(M), where it has been studied extensively.

The following two lemmas are probably well known and may be hidden many
places in the literature, but we include proofs for completeness’ sake.

LEMMA 2.1. Let B(M.): denote the unii ball in the Banach space of bounded
operators on M.. Then B(M,); = B,(M),, namely, for any S € B(M.), there is
a uniqgue T € By (M) such that S(p) = oT, ¢ € M,.

Proof. Represent M on a some Hilbert space H; for any £,5 € H we define
wey € M, as the vector functional z — {z&,n)}. Let S € B(M.);. Given z € M,
a sesquilinear form H x H — C is defined by (£,7) — S{w¢)(z), and this form
is bounded with norm less than ||z||. By Riesz representation there is a (clearly
unique) T(z) € B(H) with ||T(z)|] < ||=}| such that

(T(x)}¢,m) = S(wen)z), &neH.
If 2 € M’ then
(2T(2)€,m) = (T(2)€, 2" ) = S(we,eon)(x) = Swze 0 )(x) = (T(2)2€,7)

for all {,n € H, and thus T(z) € M. Thus we have T € B,(M);. As moreover
wgnoT = S(wegy) for all §,1 € H and S is bounded, in fact ¢ o T' = S(¢p) for all
p espan{wey E,nEH}=M,. 1
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If M, is separable, its unit ball contains a separating sequence, 1.¢. a sequence
such that any element of M, can be approximated arbitrarily well by finite sums
of elements from the sequence.

LEMMA 2.2. Assume M, is separable and fix a separaiing sequence () tn
the unit ball of M. The u-topology on B.(M); is induced by the melric d defined
by

(e 0]
d(S,T) =3 2 "lgnoS—gnoTll, S,T€B.(M).
n=1

Moreover (B4(M)1,d) is a complete melric space.

Proof. It is routine to check that d does indeed define a metric which induces
the u-topology. Let (Ty,) be a d-Cauchy scquence in B.(M);. As M, is a Banach
space, (¢ o T,,) will be convergent in M, for any ¢ € M,. Call the limit S(¢p).
Then clearly S € B(M.,), so by the previous lemma there is T € B,(M); such
that ¢ o T' = S(p) = ligngo oT, for all ¢ € M,, and hence d(7,7,) = 0. &

In addition to the space of normal conditional expectations of M, the fol-
lowing two subsets of B.(M); are particularly important: the group Aut(M) of
automorphisms of M, and the semigroup End(M) of endomorphisms of M. It
is immediate from 2.2 in {17] that Aut{M) is closcd in u-topology as a subset of
End(M). In general, however, End(M) is not closed in B,(M) (cf. below and
Lemma 3.3}, but of course the above gives:

COROLLARY 2.3. In the u-topology of Bu(M), the closure End(M) of End(M)

15 a complete melric space.

It is also straightforward to see that the limit of a net of endomorphisms is
a unital *-mapping, so the problem is that it nced not be multiplicative,

EXAMPLE 2.4. Let H be a separable Hilbert space, and u; a sequence of
unitaries converging strongly to v € B(H). Then v is necessarily an isometry, but
it might not be surjective as familiar examples show (Lake for instance H = £% with
ux, given as a cyclic permutation of the first & elements in a sequence, converging
strongly to the right l-shift on £2). Assume this is the case. Let ay = ad(uf) €
Int(B(H)) and let T € B,.(B(H)); be given by T(z) = v*zv, z € B(H). Clearly T
is not multiplicative. If ¢ € H and wg is the induced vector functional then (cf. [6])

lwe 0 T' — we o ag|] = [lwoe - wuyel|

< w8 + urd v — ekl
< 2glIvE —uell =0 (k= o0)
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u
hence ap — T

So, even the closure Int(M) of the inner automorphisms need not be con-
tained in End(M); by considering 1 ® T as above, this effect can be turned on in
any properly infinite von Neumann algebra. To see that even in the finite case,
End(M) is not closed, we include the following example, which can obviously be
generalized to other infinite tensor products (cf. Example 5.1):

ExampLE 2.5. Consider the hyperfinite type IIy-factor realized as the infi-
nite tensorpower of the full 2-by-2 matrix algebra with respect to its normalized
trace tr:

R = M3(C) @ M2(C) ®¢p -+ -

Here the tracial state on R is obtained as 7 = tr @ tr @ ---. Let Rg € R be the
subfactor
Ry=C1 ®tr MZ(C) Rer Mz(C) ®er - - -

then the unique conditional expectation Ey : R — R satislying 7o Eg = 7 is given
by
Ey(ei@ze® ) =tr(z1)1 @22 @23 ® -+

where each x; € M»(C). If we define (pr)ren € End(R) by
P21 220 ) =1lRT® T QT @ Thq Ty ® -+

then it is not difficult to see py — Ey in By(R); so the limit is not in End(R).

ProrosiTioN 2.6. Assuming M. is separable, the space End(M) with u-
topology is Polish.

Proof. The idea is to consider the topology of pointwise o-strong *-conver-
gence on B, (M), that we will refer to as the ps*-topology. Namely, in this topology,
End(M) is closed, because the algebra multiplication is strongly *-continuous on
the unit ball M; of M. Moreover, the o-strong *-topology on M, is induced by
the complete norm

T ||:c||;’2e =z + a:a:')%

where ¢ is some fixed normal faithful state on M;. Let (2,) be a fixed o-strongly
*-dense sequence in My. The ps*-topology on B.(M); is then induced by the
metric

di(5,T) = > 27™1S(2n) = T(xa)IE-

Let d be as in Lemma 2.2, then d + d; is a metric inducing the u-topology on
End(M), because the p-topology and the ps*-topology coincide on End(M) {(cf.
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[17], 1.4) and the former is weaker than the u-topology. Moreover, the restriction
of d+ dy to End(M) is complete: if (p,) C End(M) is a Canchy-sequence with
respect to d+dy, then by completeness of || {|¥, there is T € B(M) with p, LN T,
and by Lemma 2.2, p, 2 S for some S € B.(M). But then p, P, S and hence,
for all ¥ € M, and all z € M,

$oS(z)= lim popa(z)=voT(z)

so 5 =T and hence (d+di)(pn,5) — 0. Finally as pn P 7= 8 and End(M) is
ps*-closed, we have S € End(M). 1

3. BOREL IMPLEMENTATICON OF ENDOMORPHISMS

In this section we assume that M is a properly infinite von Neumann algebra with
separable predual. On B,(M) and its subspaces, we always consider the u-topology
and its associated Borel structure, as defined in the previous section.

Consider M in a standard representation M C B(H). Let A(M) be the
subset of the unitary group U(H) of H defined by

N(M)={U €U(H): UMU* C M}.

The interest of this semigroup in connection with the study of End(M) is the
natural map o : N(M} — End(M) defined by

oy(z)=UzU*, ze€ M, UecN(M).

We always regard 4{H) in the strong (equivalently, weak) operator topology. We
shall use standard terminology and results from the theory of Borel spaces. The
main source for these is [12] and a very good introduction can be found in [16],
Appendix.

The starting point for our discussion is the following:

LEMMA 3.1. As a subset of U(H), the set N(M) is closed, hence il is a

Polish semigroup.

Proof. Let (uy) € N (M) converge strongly to some u € Y(H). Then for any
z € M, a routine calculation shows ugpzu} —+ uzu* strongly, so vzu™ € M. 1
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LeMMa 3.2. The map o is continuous and surjective.

Proof. The map ¢ 1s continuous by the argument in Example 2.4, and it
is surjective because! by 1.2 in [3], we may choose a joint separating cyclic vec-
tor for M and the image of any element of End(M), and thus obtain a unitary

implementation for any endomorphism. 1

LEMMA 3.3. The semigroup End(M) is a standard Borel space which is Borel
isomorphic to N(M)/U(M’).

Proof. This is immediate from Proposition 2.6, Lemma 3.2 and 4.2 in [12]. &

NoTE 3.4. The last lemma being of vital importance here, we mention that
a more direct proof goes as follows: Consider the equivalence relation ~ on N{M)
given by
u~v<<=IzeU(M') :u=vz.

It is easy to see that the orbits of ~ are closed in A (M) and that the saturation
AU(M') of an open set A under ~ is Borel {in fact, open). Hence by Lemme 2 in
[2] there is a Borel set S C A(M) which meets each orbit at exactly one point;
S is a standard Borel space by Lemma 3.1. Moreover o maps S injectively onto
End(M), so ¢S5 is a Borel isomorphism according to 4.2 in [12].

TrEOREM 3.5. (Borel implementation) Let M be a properly infinile von

Neumann algebra. Then there is ¢ Borel map
u: End(M) — N (M)

such that
P = 0up), pEEnd(M).

Proof. By the above, o : N(M) — End(M) is a surjective Borel map between
standard Borel spaces. In particular these spaces are Souslin and are equiped with
o-finite complete measures. Applying the Mackey-von Neumann measurable cross
section theorem (see 6.3 in [12] or p. 384 in [16]) to o we obtain a Borel map
u: End(M) — N (M) such that o u is the identity mapping. 8

The above implementation is, in contrast with the standard implementation
of automorphisms 3.6 in [6], not canonical. But by the same argument as above,

we do have:
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COROLLARY 3.6. The inverse u : End(M) — N(M)/U(M') of the (continu-
ous, injective) map ¢ : N(M)/U(M') — End(M) induced by o, is a multiplicative

Borel map.

Assume now that M is represented on a Hilbert space H that contains a cyclic
separating vector for M. Let J denote the corresponding modular conjugation.
Define a map I' : U(H) — U(H) by

M(u) = wJu"J, uecl(H).

It is casy to see that I' is continuous. Moreover T(N (M)} C N (M) since, for any
u € N(M):
Pu)MT(u)" = uJu"JM JuJu*

= wJu* M uu”

CuJM'Ju*

=uMu* C M.
In fact, if v € N (M) then (uMu*, H,uf,uJu*) is a standard form. Hence by
definition (cf. [10]), Yuarus = 0r(u) is a canonical endomorphism for M D uMu*.

As T is continuous we thus have a continuous choice
N(M) 3 uv— Yupue € End(M)

of canonical endomorphisms. Combining with the previous theorem we conclude:

PROPOSITION 3.7. Let vy = ool ou : End(M) — End(M). Then v is a
Borel map with the property that y(p) is a canonical endomorphism for M D p(M)
for all p € End(M). In particular, p — p~'vy(p) is a Borel choice of conjugate
endomorphisms (cf. [11]).

We shall mostly use the more familiar notation vy, for y(p) as above.

PROBLEM 3.8. Does there exist an involutive Borel choice of conjugates on
End(M), i.e. a Borel map ¢ : End(M) — End(M) such that co ¢ = id and ¢(p)
is a conjugate to p for each p € End(M)? Does such a mapping exist at least on

irreducibles?
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4. INTERTWINER SPACES

We prove some technical lemmas which will be needed in the next section. Readers
may skip them and Proposition 4.3 first, and return when the lemmas are applied.

For any separable von Neumann algebra M C B(H), we let W(M) denote
the set of o-weakly closed subspaces of M. The Effros-Herel structure on W(M)
is the weakest Borel structure on W(M) in which the map F — [jo|F| is a
Borel function on W(M) for all ¢ € M,. By Theorem 1 and Corollary 1 of [4],
this Borel structure is standard. Moreover by Theorem 2 of [4], there are Borel
choice maps a, : W(M) — M, (where M; denotes the unit ball of M) such that
{an(F) : n € N} is o-weakly dense in Fy, for all F € W(M).

For all p,n € End(M) we consider the space H,, of intertwiners between p

and 7, i.e.

Hyn={veEM:p(x)v=uvn(z) forallze M}

Clearly H,, € W(M). We write H, = H, 1; if M is a factor, then v*v € [0,00)-1
forallv e H,.

LEMMA 4.1. The map (p,n) — H,, is a Borel map of End(M) x End(M)
into W(M).

Proof. The method of the proof is taken from the proof of the second part
of Theorem 3 in [4], so we only indicate how to apply it in the present situation.
We need to prove that the map (p, ) — ||¢|H, || is a Borel function on
- End(M) x End(M) for every ¢ € M,. Let (p,n} € End(M) x End(M). Note first

that, with (b,) a o-weakly dense sequence in the unit ball of M, we have
Hon={veEM:pb)v—vp(b,)=0, n=12,..}

Now let {4’} be a norm-dense sequence in > @ M), = £1@M,, so P = {1/);:} is

a l-summable sequence in M, for each j. Then as in [4], for each p € M, we get
o .
ol Hpall = infsup |ip(8) = 3 v (p(be)bn = ban(bi))|,
" k=1

and the right hand side is clearly a Borel function of (p,7). 1



350 CARL WINSLBW

LEMMA 4.2. Assume M s properly infinite. With p — vy, as in Propes:-
tion 3.7, the maps p— H., and p— H., |,ar) are both Borel.

Proof. Since p — 7, is Borel, the map p — H,, is clearly Borel by Lemma4.1.
Similarly, the map p — H,-, , is Borel. A simple calculation (cf. 5.1, [11]) shows
that for any p,

Haoyp(m) = p(Hp=14,,)

(in fact, the right hand side may be taken as the definition).
Let a, : W(M) — M; be as above, and let b, : End(M) x W(M) — M; be
given by
balp, F) = plan(F)), p € End(M}, F € W(M).

Then all b, are Borel maps and {b,(p,F) : n = 1,2,...} is g-weakly dense in
p(F1) = p(F)1 for all (p, F). Hence, by p. 1158, [4] the map (p, F) — p(F) is a
Borel map of End(M) x W(M} into W(M). Now the lemma follows. 1§

We denote by W*(M) the set of sub-von Neumann algebras of M. By
Theorem 3 and Corollary 2 of [4] this is a Borel subset of W(M), and the map
(M,N) — M (N’ is Borel on W*(M) x W*(M). The map p — p(M) is Borel
on End(M) because p — [|¢|p(M)]|| is a continuous function on End(M) for every
@ € M., by the definition of u-topology. Hence the map p — M N p{(M) follows
Borel. Thus we get:

PROPOSITION 4.3. The sel of irreducible endomorphisms is Borel in End(M).

A similar argument, using Proposition 3.7, shows that the standard invariant
of M D p(M) is a Borel function of p.

5. APPLICATIONS TO INDEX THEORY

In index theory, one considers a o-finite factor M and its subfactors. For technical
convenience, we shall assume further that M is infinite and has separable predual
(cf. Remark 5.5). If N is a subfactor of M, we denote by £(M, N) the set of
normal conditional expectations of M onto N; each £ € £(M, N) has an index
which can be defined or shown to be

Index(E) = (sup{A > 0: E(z) 2 Az forall € M, })7},

cf. [14] and [8). Either all, or none, of the elements of £(M, N) have finite index
(see [9]), and in the first case there is a unique element of £(M, N) whose index
is least possible (cf. [7])). This minimal indez is denoted [M : Nlo. In the case no
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element of £(M, N) has finite index, or if the set is just empty, we decide to put
{M . N]o = 0.

The study of the minimal index as a map arises most naturally in the more
’dynamical’ setting of endomorphisms. We define .

Endg(M) = {p € End(M) : £(M, p(M)) # 0}.

In the terminology of Longo ([10]), for any p € End(M), the dimension is given
by d(p) = [M : p(M)]é/2 (so that, by definition, d(p) = oo if p ¢ Endg(M)). The
natural question whether this map is continuous has a negative answer in general;

ExaMPLE 5.1. Let F' be a factor with a fixed state ¢, and let M be the
inifinite tensor power of (F,¢). Its predual M. contains, as a total subset M2,
functionals of the form ¢ ®¢2®- - - Q¢nVP¢RPIR- -+, wheren € Nand ¢y,...,¢, €
F, have ¢;(1) = 1. Now consider the sequence (p,)'C End(M) defined by its
action on elementary tensors as follows:

Pr(@1Rz20 ) =210 @2 W1 QZnp1 ® L2 ® -

Clearly
m if F is type Ly;

d(pn) =
(pn) {oo otherwise;

so all p, share the same dimension which, according te our choice of F, could
be any number in N U {oco}. Nevertheless p, — 1 (the identity in End(M)):
considering the action of p, on M?, we find

(61©62@ - )0pn =10 ¢2® B Pn O Prn42 D Pnsz ® -+
and hence the map ¥ — ¥ o p,, converges to the identity mapping in M,

Thus, in general, the dimension function d : End(M) — {1,00] is not con-
tinuous. However, using Lemma 4.2 together with the algebraic formulation (via
intertwiners) of index theory due to R. Longo, we get nice properties of maps and
sets in the Borel structure of End(M) studied above.

PRrOPOSITION 5.2. The sets Endo(M) = {p € End(M) : d(p) < oo} and
Endg(M), defined above, are both Borel subsets of End(M).

Proof. According to [10], 5.1,
Endg(M)={pe End(M) : Hy,]p(M) # {0}}
so the claim follows from Lemma 4.2. Similarly, 4.4 in [11] means that
Endo(M) = Endg(M) N {p € End(M) : H,, # {0} and dim(M Np(M)") < oo}

so this set is Borel by Lemma 4.2 and the fact that finite dimensional von Neumann
algebras form a Borel subset of W*(M) (see 2.4 in [5]). 1



352 < CARL WINSLOW

Pushing this argument further, we get:
THEOREM 5.3. The dimension d : End(M) — [1,00] is a Borel map.

Proof. For brevity, we let
So = Hy, o), p € End(M).

By the preceding proposition, we need only prove that the restriction of d to
Endo(M) is Borel, in particular the above space will be non-zerc for the endomor-
phisms under consideration, and we may then assume that the maps a,, introduced
in Section 4, satisfy a,(S,) # 0 for all such p and all n € N, upon replacing each
an by the map F — an(F)+ n~'150)(as(F)). Further, by the method of 2.6 in
[5) one can assume that {a,(F):n = 1,2,...} is strongly dense in F) for all F.
From 5.1, [10] the map E : 5, \ {0} — £(M, p(M)) given by

Ey(z) = (v*v) v y,(z)y, ze M, veS,\{0}

is surjective and strongly continuous when £(M, p(M)) is considered in the p-
topology (cf. Section 2). Note here that, as M is a factor, v"v is a scalar for
all v € S, and p € End(M). Moreover, the map £ — Index(E) is a continuous
function on £(M, N) in the same topology, for any subfactor of N, in fact more
holds: whenever (E,) C £(M, N) and £ € £(M, N) satisfies En(z) — E(z), o-
weakly for all z € M OO N’ one has Index{E,) — Index(E) (cf. [9]). Hence the
composed map v — Index(E,) is continuous on 5, \ {0}. It follows that, for any
p € Endo(M), we have

d(p)? = inf{Index(E,,(s,)} i m=1,2,..}
and this also shows that d is Borel by the above, since £(M, N) is p-closed for each
subfactor N of M. 1

Note that, for an irreducible inclusion M D N of factors, there is at most
one expectation, so in this case we can simply speak of the index [M : N], infinite

if no expectation exists.

COROLLARY 5.4. The set Iy = {{M : N]: N is en irreducible subfactor of
M} is an analytic subset of [1, o0}

Proof. Immediate from Theorem 5.3 and Proposition 4.3. 1
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REMARK 5.5. In index theory, as well as its applications, the interesting case
is the properly infinite one as treated here. Moreover, the finite case is usually
trivial from the infinite one. In fact, the results of this section hold for finite
factors as well, because the map p — p®1 is a u-u-continuous map from End(M)
to End(M & N) for any pair M, N of von Neumnann algebras.

PROBLEMS 5.6. In view of earlier work of Mashhood and Taylor ([13]) (on
a similar but different problem in the Il;-case), the following questions seem in-
teresting: Is d continuous on the set of irreducible endomorphisms? Is d lower
semicontinuous?

6. CARTESIAN PRODUCT OF TWO THEORIES

We end this paper by proving a rather precise version of our claim in the intro-
duction, namely that the theory of endomorphisms in von Neumann algebra is
essentially a cartesian product of subfactor (or, more precisely, subalgebra) theory
and the theory of automorphisms.
In order for the subfactor part to materialize, we consider as in Section 4 the

set W*(M) of sub-von Neumann algebras of M, where M denotes throughout a
fixed separable properly infinite von Neumann algebra. Moreover we let Wi (M)
denote the subset of W*(M) consisting of subalgebras which are algebraically
isomorphic to M.

LEMMA 6.1. The set WH(M) = {N € W*(M) : N = M)} is a standard
Borel space when equipped with the Effros—Borel structure.

Proof. Represent M standardly in B(H). With a,, : W(B(H)) — B(H); as
in Theorem 2, [4], we let fs m : W*(B(H)) — B(H) be given by

fam(N) = an(N)am(M') — am(M')an(N), N € W*(B(H))
for all n,m € N. Then
oo
W (M)= () fam({0D
n,m=1

so W*(M) is a Borel subset of W*(B(H)). Let [M] = {N € W*(B(H)) : N = M}.
Then [M] is Borel by 2.2 in [5] and hence Wi(M) = W* (M) N [M] is Borel in the
standard Borel space W*(B(H)). 1

As all standard Borel spaces are either countable or isomorphic to [0, 1], it

is now immediate that End(M) and W (M) x Aut{M) are Borel isomorphic. But
we can make this more concrete:
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THEOREM 6.2. There is a Borel choice of endomorphism for subalgebras,
namely a Borel map ¢ : Wi(M) — End(M) such that, with ey = e(N), we have
en(M) = N for all N € Wi(M). Moreover the map I : End(M) — W§(M) x
Aut(M) given by

1p) = (p(M), p™ epar)), P € End(M)

is a Borel isomorphism.

Proof. The map ¢ is oblained as a Borel section of the surjective Borel map
p— p(M) of End(M) onto W;(M). The map I thus defined is then clearly Borel
and it is straightforward to see that it is bijective. Hence also its inverse 1s Borel
by 4.1in [12).

As in Mackey’s classical work on group representations {(see [12] and refer-
ences), a main goal for investigating the global structure of End(3) is to decide
whether classification is possible in principle; so we wish to prove that relevant
quotient spaces (with quotient Borel structure, cf. p. 137 in {12]) are countably

separated. The main two equivalence relations on End(M) are outer equivalence:
pr~p <= 3Jaent(M):p =aop

and conjugacy:

p=p = JacAut(M):p=aopoa™.
Here, the quotient space End(M)/ ~ is usually denoted Sect(M), its elements
being called sectors. The classification of (certain) sectors is particularly important
to applications in quantum field theory (cf. e.g. [10]).

PRrROBLEMS 6.3. Is Sect(M) a standard Borel space? (A famous result due
to Glimm suggests that the answer is usually no.) What about End(M)/ =7

The equivalence relations defined above are of course just generalizations
of the usual ones in automorphism theory; however, as End{M) is not a group
there is a right outer equivalence which is strictly stronger than the usual outer
equivalence:

prrpl <=3 aent(M):p =poc.

(A similar asymmetry is discussed in [1].) For this relation, the quotient space can
be identified, using Theorem 6.2:
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COROLLARY 6.4. With Qut(M) = Aut(M)/ ~, we have
(End(M)/ ~p) = W5 (M) x Out(M)
(Berel isomorphism).

Proof. For u € M unitary and p € End(M), and with [ as in the theorem,
we have

I(poad(u)) = (p(M),ad(u)p™ € 0an)),
so p ~, p' means that I(p) = I(p") in WE{M) x Olit(M). ]

REMARK 6.5. If an involutive Borel choice ¢ of conjugates as defined in
Problem 3.8 existed, then the map Ioc would give a Borel isomorphism of Sect(M)
with Wi (M) x Out(M) as in the proof of Corollary 6.4.
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