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ABSTRACT. Let A be a unital C*-algebra and K the C*-algebra of all com-
pact operators on a countably infinite dimensional Hilbert space. Let Kqa(A}
and Ko(A ® K) be the Ko-groups of A and A ® K respectively. Let 3. be
an automorphism of Ko(A ® K) induced by an automorphism § of A® K.
Since Ko(A) 22 Ko(A ® K), we regard £« as an automorphism of Ko(A). In
the present note we will show that there is a bijection between equivalence
classes of automorphisms of A® K and equivalence classes of full projections
p of A® K with p(A® K)p & A. Furthermore, using this bijection, we
give a sufficient and necessary condition that there is an automorphism 8 of
A ® K such that f. # . on Ko(A) for any automorphism o of A if A has
cancellation or A is a purely infinite simple C*-algebra.
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0. INTRODUCTION

Let B be a C*-algebra and M(B) its multiplier algebra. Let Aut(B) be the
group of all automorphisms of B. For each « € Aut(B) we can extend it to an
automorphism of M(B) by Busby ([4]) and we also denote it by «. For each
unitary element w € M(B) let Ad(w) denote the automorphism of B defined by
Ad(w)(b) = wbw* for any b € B. We call Ad(w) a generalized inner automorphism
of B, and we denote by Int(B) the group of all generalized inner automorphisms
of B. It is easily seen that Int(B) is a normal subgroup of Aut(B). We denote by
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Out(B) the quotient group Aut(B)/Int(B). We note that if B is unital, Int(B)
is the group of all inner automorphisms of B since M(B) = B. Furthermore, for
any n € N, M;, denotes the n x n-matrix algebra over C and M, (B) denotes the
n X n-matrix algebra over B. We identify it with B ® M,,. If B is not unital, we
denote by Bt the unitized C*-algebra of B.

Let Ko(B) be the Ko-group of B and Aut(Ko(B)) the group of all auto-
morphisms of Ko(B). Let Tp be the homomorphism of Aut(B) to Aut(Kq(B))
defined by Tg(a) = o, for any & € Aut(A4) where «, is the automorphism of
Ko(B) induced by o. Furthermore let range Ts be the range of 7.

Let H be a group and L a normal subgroup of H. For any { € H we denote
by [t] the corresponding class in H/L.

Let A be a unital C*-algebra and K the C*-algebra of all compact operators
on a countably infinite dimensional Hilbert space. Since Ko(A) = Ko(4 ® K),
we identify Aut(Ko(A)) with Aut(Ko(A ® K)). Hence range T is a subgroup of
range Tagk.

For some unital C*-algebras A, range Ty = range Tagx. But for some unital
C*-algebras A, range T4 is a proper subgroup of range Tagk.

For example, let # be an irrational number and Ay the corresponding irra-
tional rotation C*-algebra. If # is not quadratic, then for any 8 € Aut(4s ® K),
B« = id on Ko(Ag) by Theorem 2, [5]. Hence range T4, = range Ts,ok. But if &
1s quadratic, then there is a # € Aut(Ay; ® K) such that 8, # id on Ko(As) by
Theorem 5, {5}, hence range T4, is a proper subgroup of range T4, gk since o, = id
on Ko(Ap) for any @ € Aut{4,).

Let n be an integer with n 2 2 and O, the corresponding Cuntz algebra.
If n = 2,3, for any # € Aut(O, ® K), B. = id on Ko(O,) by Proposition 14,
[6]. Hence range Tp, = rangeTo, gx. But if n is not a prime number, then there
is a # € Aut(O, ® K) such that 3, # id on Ko(0O,) by Theorem 16, [6], hence
range Top, s a proper subgroup of range Tp, gk since o, = id on Ko(Oy) for any
a € Aut(O,).

It is natural to ask why the above facts happen. In this note we attempt to
shed some light on this question. Let A and K be as above and let {e;;}:jez be
matrix units of K. Throughout this note we suppose that 4 is a unital C*-algebra.
We will show that there is a bijection between equivalence classes of Aut(A ® K)
and equivalence classes of full projections p of A ® K with p(A®@ K)p = A. In
particular, if Out(A) is a normal subgroup of Out(A ® K), then the equivalence
classes of full projections p of A@K with p(A®K)p = A is a group. Furthermore,

using this bijection, we give a sufficient and necessary condition that range Ty is
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a proper subgroup of range Tagx if A has cancellation or A is a purely infinite
simple C*-algebra.

1. AN EQUIVALENCE RELATION IN Out{A®K)

We begin this section with simple lemmas.

LEMMA 1.1. For any unitary element w € M{A ® K), Ad(w), = id on
Ko(A ® K).

Proof. Since A is unital, we have only to show that [wpw*] = [p] in Ko(AQK)
for any projection p in A ® K. For any projection pe A K,

[wpw"] = [wp(wp)] = [(wp)*wp] = [p]
in Kg(A®K) sincewpe AQK. 1

LEMMA 1.2. Let p and ¢ be projections in A® K. Then the following con-
ditions are equivalent:

(1) There is a partial isomelry z € A Q@ K such that z*z = p, 22" = q.

(i) There is a unitery element w € M(A ® K) such that ¢ = wpw™.

Proof. (i) = (ii). By Mingo ([7], p. 401, Lemma), there are partial isometries
21,22 € A Q@ M(K) C M(A®K) such that
min
=191, 212] =1®1 —p,
229 =1®1, z325 =1®1 —gq,
where A ® M(K) means the minimal tensor product of A and M(K). Let w = z+
mmn
z927. Then by easy computation we see that w is a unitary element in M(A®K).

And
wpw® = (2 + 2227)p(2" + 2125) = (z + 2227 21 2] p) (2" + 2123)

=q+z22"z2512525 = q.
Hence we obtain (ii).
(i1) = (i). Put z = wp € A®K. Then z*z = p, z2* = ¢q. Thus we obtain (i). 1

LEMMA 1.3. We suppose that A has cancellation or that A is a purely infinite
simple C*-algebra. Lel B € Aut(A®K) with i = id on Ko(AQK). Then there are
an o € Aut(A) and a unitary element w € M(A®K) such that f = Ad(w)oa®id.

Proof. If A has cancellation, then by Proposition 6, [6], we obtain the con-
clusion. If A is a purely infinite simple ("*-algebra, then we can prove this lemma
in the same way as in Proposition 14, [6]. 1
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Let ¥ be the homomorphism of Aut(A) to Aut(A ® K) defined by ¥(a) =
a ®id for any o € Aut(4). And let ¥ be the homomorphism of Out(4) to
Out(A®K) defined by ¥([a]) = [¥(a)] = [« ®id] for any a € Aut(A). By [6] ¥ is
injective. We identify Out(A4) with ¥(Out(A)). We define an equivalence relation
~ in Out(A ® K) as follows: for any 1,82 € Aut(A ® K), (4] ~ [Ba] if there is
an o € Aut(A) such that [B;] = [3;][ ® id]. By an casy computation we sec that
~ is an equivalence relation in Out(A ® K). We denote by [[#]] the equivalence
class of [#] € Out(A ® K) and we denote by P the quotient set of Out{A ® K) by
the above equivalence relation ~. If Qut(A) is a normal subgroup of Out(A ® K),
the quotient set P is the quotient group Out(A @ K)/Out(A).

REMARK 1.4. We can regard Out(A) as a group acting on Out(A @ K) by
right multiplication. Thus P is the orbil. space of Out(A @ K) on which Out(A)
acts. Furthermore by Brown, Green and Rieffel ([3], Corollary 3.5), Out{A4 & K)
1s isomorphic to Pic(A), the Picard group of A. Hence we can regard Out(A4) as a
group acting on Pic(A) and P as the orbit space of Pic(A) on which Qut(A) acts.

ProrosiTiON 1.5. With the above notations, if Out(A) is a normal subgroup
of Out(A ® K), then range T, is a normal subgroup of range Tagx. Furthermore
the converse is true if A has cancellation or A is a purely infinite simple C”-
algebra.

Proof. We suppose that Out(A) is a normal subgroup of Out{A4 & K). Then
for any 8 € Aut(A ® K) and « € Aut(A), [8][e ®id][F]~! € Out(A4). Hence there
is a v € Aut(A) such that [flle ® id]{f)~! = [y ® id]. Thus there is a unitary
element w € M(A ® K) such that foa ®ido 87! = Ad(w) oy ® id. Hence by
Lemma 1.1 (Boa®ido 7). = (y ®id). € rangeT4. Therefore range T4 is a
normal subgroup of range Tagk.

Next we suppose that range T4 is a normal subgroup of range Tagk. We also
suppose that A has cancellation or that A is a purely infinite simple C*-algebra.
Then for any § € Aut(A® K) and o € Aut(A), (Boa®ido B71). € rangeTy.
Hence there is a v € Aut(A) such that (foa®idof ). = (v®id). on Ko(ARK).
Thus (Boa®ido B~ o(y®id)™!). =id on Ko(A®K). Since A has cancellation
or A is a purely infinite simple C*-algebra, by Lemma 1.3 there are a § € Aut(A)
and a unitary element w € M (A ® K) such that

Boa®idof ' o(y®id)~! = Ad(w) 0 § ®id.

Hence [f]{a ® id][8]™! = [(6 0 y) ® id] € Out(A). Therefore Out(A) is a normal
subgroup of Qut(A® K). a
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2. AN EQUIVALENCE RELATION IN FULL PROJECTIONS

Let p and ¢ be projections in A ® K. Then p is equivalent to g, written p ~ g, if
there is a partial isometry z € A ® K such that p = z*2, ¢ = 2z*. We denote by
(p) the equivalence class of the projection p.

Let FP be the set of all full projections p € A ® K with p(4 ® K)p = A and
FP/ ~ the quotient set of FP by the above equivalence relation ~.

REMARK 2.1. For any n € N we regard M,,(A) as a C*-subalgebra of AQ K.
By Blackadar ([1], Proposition 4.6.6) and Lemma 1.2, for any p € FP there is a

full projection ¢ € |} M,(A) such that (p) = (), (AR K)q = A.
nemN

3. AMAP FROM FP TO P

In this section we will construct a map from FP/ ~ to P. Let p be any element
in FP. Since p € FP, there is an isomorphism y, of A onto p(4 ® K)p and by
Brown ([2], Lemma 2.5) there is a partial isometry z € M (A ® K ® K) such that
Z*2=p®1L, 227 =1®1®1. Let ¥ be an isomorphism of K ® K onto K with
Y. = 1d of Ko(K ® K) onto Ko(K). Let (p, xp) be the automorphism of A ® K
defined by

Bp, xp) = id @ 9 o Ad(2) 0 xp @ id.

LEMMA 3.1. With the above notation [B(p, xp)] € Out(AQK) is independent
of the choices of z and 1.

Proof. For j = 1,2 let z; be a partial isometry in M{A @ K @ K) with
%z =p®1, 227 =1®1® 1. Let 4 be an isomorphism of K ® K onto K with
¥» = id of Ko(K®K) onto Ko(K). Forj = 1,2, let 5;(p, X») be the automorphism
of A® K induced by z; and 1. Then:

Pa(p, xp) =1d @ 1o Ad(22) 0 xp @ id = id ® 9 0 Ad(292}) 0 Ad(21) 0 xp @ id
= Ad((id ® ¥)(z227)) 0 Ad(z1) 0 xp ® id
= Ad((id ® ¥)(z221)) o Bi(p, xp)-

Hence [B1(p, xp)] = [B2(p, xp)] since z22] is a unitary element in M(A® K ® K).

Next for j = 1,2 let 4; be an isomorphism of K ® K onto K with i = id
of Ko(K ® K) onto Ko¢(K) and let z be a partial isometry in M (A @ K @ K) with
Z*2=p®1, 222 =1®1® 1 Forj =12, let B;{p, xp) be the automorphism
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of A® K induced by z and ;. Then ;0 1/)1_1 is an automorphism of K. Hence
there is a unitary element w € M(K) such that ¥, 0 ¥7! = Ad(w). Thus

Ba(p,xp) =1d®@ P20 Ad(2) o xp, @1d = Ad(1 @ w) 01d ® 9y 0 Ad(2) o xp ®1d
= Ad(1 ®w) o Bi(p, xp)-
Hence [61(p, xp)] = [Ba(p; Xp))-
We define a map F from FP/ ~ to P by F((p)) = [[B(p, xp)]]. We show that
it 1s well-defined:
LEMMA 3.2, F s well-defined.

Proof. First we will show that [[#(p, xp)]] is independent of the choice of xp.
Let p, be another isomorphism of A onto p(A ® K)p. Let o be the automorphism
of A defined by o = x;‘ o pp. Let 7 be an isomorphism of K @ K onto K with
¥y = id of Ko(K ® K) onto K¢(K) and z a partial isometry in M(A ® K ® K)
with 2*2=p®1, 22" =1®1®1. Then

B(p,pp) =id @ o Ad(z) 0 pp ®id =1d @ Yo Ad(2) o (xp o) ®id
=id®@vpoAd(z)ox, ®idoa ®id = B(p, xp) 0o @ ®id.

Thus [[B(p, £p)]] = [[B(p, xp)]l-

Let p,q € FP with (p) = (¢). Let x, be an isomorphism of A onto p(A ®
K)p and x, isomorphism of A onto ¢(A ® K)q respectively. Since (p) = (¢), by
Lemma 1.2 there is a unitary element w € M (A& K) such that p = wqw™. Hence
Ad(w) is an isomorphism of g(AQK)g onto p(AQK)p. Let v be the automorphism
of A defined by ¥ = x; ' o Ad(w) o x4. Then

Bp, xp) = 1d ® 1h 0 Ad(2) 0 xp @ id
=id® Yo Ad(z(w® 1)) o x4 ®idoy ! ®id.
Let Z = z2(w®1). Then Z2*Z = q® 1, ZZ* =1®1& 1. Thus by Lemma 2.1
(B, xp)] = [B(g, xo))[(¥ ® id)']. Therefore [[B(p, xx)Il = [(8(g,x)]]. ®

From now on we simply denote B(p, x,) by 8, since [[3(p, x,)]] is independent
of the choice of x,.

4. A MAP FROM P TO FP/ ~

In this section we will construct a map 7 from P to FP/ ~ and we will show that
J is bijective.

For each f € Aut(A®K), B(1®ego) is a full projection in A®K since 1®epo
is full in A ® K. We define a map 7 from P to FP/ ~ by J{[[8]]) = (B(1 ® eqo))-
We can easily show that it is well-defined by Lemma 1.2.

Before we show that 7 is injective, we need a lemma.
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LEMMA 4.1. Let 8 € Aut{AQK). We suppose that (8(1®eqp)) = (1@ eqo)-
Then there are an o € Aut(A) and a unitary element u € M(A ® K) such that
B = Ad(u) o ®id.

Proof. Since (f(1®eqo)) = (1®eqg), by Lemma 1.2 there is 2 unitary element
z € M(A ® K) such that (1 ® ego) = 2(1 ® egg)z*. Since K has cancellation,
there is a unitary element w; € M(K) such that ej; = wjeqow; for any j € Z.
Then for any j € Z

Bl ®ej;) = B((1® w1 ®eoo)(1®w;)*) = (1@ w;)B(1 @ eno)B(1 @ w;)*
= B(1 & w;)2(1 @ w;)" (1 ®ej5)(1 ® wy)z"B(1 ® w;)”.

Hence by Proposition 6, [6] we obtain the conclusion. 1

LeEmMMA 4.2. 7 is injective.

Proof. Let 1 and f, be in Aut(A @ K) with J([[A]]) = J(([:)]). That
18, (,31(1 2 800)) = (,62(1 ® 600)). Hence (ﬁl_l o ﬁg(l @ 600)) = (1 ® 600). By
Lemma 4.1 there is an o € Aut{A4) and a unitary element v € M(A4 ® K) such
that 87! o B2 = Ad(u) o a @ id. Thus [5]] = [[%]]. ®

LEMMA 4.3. Let 9 be an isomorphism of K ® K onto K with ¥, = id of
Ko(K ® K) onto Ko(K). Then for any n € N there is a partial isomelry v € K

such that . .
vu= Y ey, vt = Y e ® eno),
ji=—-n j=—n
ves; v = leij @ego) fori,j=-n,...,0,...,n

Proof. Since (ego @ ego) is equivalent to eqq, there is a partial isometry
n
w € K such that w*w = epo, ww* =1p{ego @ epo). Let v =Y t(ej0 ® ego)weo;.

i==n
Then for 4,5 = —n,...,0,...,n

veij vt = ( Z Plexn ® eog)weoyc)ei,-( Z ennw* Y{eor ®eog))

k=—n l==n
= (€50 ® eoo)wepow* P(en; @ eqp)
= t(ei0 ® ego)¥(ego & eno)¥(eo; ® eoo)
= (ei; & eog).

Furthermore by the direct computation we see that

n n
vio = Z ejj, vt = Z ’lﬂ(e“’ ® eqp). W
j=—n

- j=—n
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LEMMA 4.4. For any p € FP, (J o F)((p)) = (p) where F is the map from
FP/ ~ lo P defined in Section 3.

Proof. Let p be any element in FP. Then
(7 o FY)(P) = T(([B]1) = (8 (1 ® €np)),

where 8, is an automorphism of A ® K induced by the projection p. Let 9 be
an isomorphism of K ® K onto K with 9, = id of Ko(K ® K) onto Ko(K) and
z a partial isometry in M(A®@ K® K) with z*2 = p® 1, zz* = 1®1® 1.
Furthermore let x, be an isomorphism of A onto p(A @ K)p. By the definition of
Bp, By =id @ 9 0 Ad(z) o xp ® id. Thus

Bp(1 @ eoo) = (id ® $)(2)(id @ ¥)(p & eao) (id ® ¥)(2)".

By Remark 2.1 we may assume that there is an n € Nsuch that pisin My, 1(A) C
n
AQK. Since p € Mzp41(A), we can write p = 3 a;; ® ;;, where a;; € A.

i,j==n

Hence
n

(d® ¥)(p ® eqo) = z ai; ® Y(ei; @ ego).

{,j=—n

By Lemma 4.3 there is a partial isometry v € K such that

™ n
v = Z ejj, vv* = Z P(ej; ® eno),

j=—n j=-n
veijv" = P(e;; @ego) fori,j=-n,...,0,...,n.
Then
n 143
1®up(lev) = D a;@ve;v" = Y ay;® Plei; ® eoo)
i, j=-n i,j=—n

= (id ® ¥)(p ® eo0)-

Hence

Br(1® coo) = ({4 @ $)(2)(1 ® v)p(L & v)"(id @ ¥)(=").
Furthermore
[p(1 ® v)"(id ® ¥)(2")][p(1 ® v)"(id ® ¥)(=")]"
=p(1@v) (i[d@¥)(p®1)(1®v)p =p(1 ® v)" ([d® ¥)(p ® e0o)(1 @ v)p

n

=p(1®v)"(1Rv)p(1®v)"(L®v)p = pw(l ® Z ij)P(l ® i 3;'1')17

=p.
Thus (8,(1 ® e00)) = (p). 1
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THEOREM 4.5. Let A be a unital C*-algebra. Let F, J and P, FP/ ~ be as
above, Then J is a bijection from P onte FP/ ~. Furthermore F is the inverse
map of J from FP/ ~ onto P.

Proof. This is immediate by Lemmas 4.2 and 4.4. 1
By Theorem 4.5 we can easily obtain the following carollaries.

COROLLARY 4.6. With the ahove notations the following conditions are equiv-
alent:

(1) There is a 8 € Aut(A & K) such that [3] ¢ Out{4);

(ii) There is a full projection p € A @ K such that

P(ARK)p=A, (p)# (1 en)

COROLLARY 4.7. With the above nolations we suppose that A has cancella-
tion or that A is a purely infinite simple C*-algebra. Then the following conditions
are equivalent:

(1) There 1s a B € Aut(A ® K) such that B, # . on Ko(A) for any o €
Aut(A),

(i1) There is a full projection p € A % K such thaei

COROLLARY 4.8. We suppose that Out{A) is a normal subgroup of Out(A®

K). Then FP/ ~ is a group and we have a short exact sequence

I — Out(A) — Out(A® K) — FP/ ~— 1.

REMARK 4.9. (i) With the same assumptions as in Corollary 4.8, the product
of the group FP/ ~ is the following: for any p,q € FP, (p){(¢q) = (8»(q)) where S,
is the automorphism of A ® K induced by p € FP.

(ii) We suppose that A has cancellation or that A is a purely infinite simple
C*-algebra. If rangeT, is a normal subgroup of range Tagk, we have the same
thing as in Corollary 4.8 by Proposition 1.5. Furthermore since we can easily
see that rangeTugx/rangeTs = Out(A ® K)/Out(A) in the same way as in

Proposition 4, [6], FP/ ~ is isomorphic to range Tsqk /range Ta.



366 KazZUNOR!I KoDAKA

5. APPLICATION

In this section we apply our results to Heisenberg C*-algebras of class 2 and class 3.
Following Packer ([8], (9]) we will define Heisenberg C*-algebras. For any 8, n € R
let H(8,7) be the universal C*-algebra generated by unitary elements u, v and w
satisfying

21rn9,vu

Uy =e , wu=e™pw,  uw = vwu.

If 7 is any normalized faithful trace on H(6,n), H(8,5) will be said to be of class
L, 2 0r 3if n(Ko(H(#,7m))) =2+ 28 + Zn is generated by 1, 2 but not 1 or 3 but
not 2 elements in R respectively.

We suppose that # and 5 are irrational numbers and 1, § and 5 are linearly
independent. Then H (6,5} is of class 3. By Packer ([8]), H(#,n) is simple and
has the unique tracial state . For each n € N we extend it to the unnormalized
finite trace on M,(H(8,7)). We also denote it by r. By Packer ([9], Section 2)
there are projections p and ¢ in some M, (H(8, 7)) such that

Ko(H(8,m)) =Z1])® Z[p)® Z[g), t(p) =8, =(¢)=1.

In the same way as in the proof of Theorem 2, [5], for any 8 € Aut(H(6,7) ®
K) f. = id on Ko(H(0,n)) if the numbers 1, 8, 82, 5, #? and 69 are linearly
independent. Hence we obtain the following proposition.

PrROPOSITION 5.1. Let 6 and 5 be irrational numbers. We suppose that I,
8, 6%, 5, n° and Oy are linearly independent. Then there is no projeclion f in
H(0,m) ®K such thal

FHEM@K) = H(0n), [fl#[1®ew] in Ko(H(8 1) K).

Proof. By the above discussion for any # € Aut(H(8,n) ® K), B, = id on
Ko(H(8,17) ® K). And by Packer ([9], Proposition 2.1} H(#,3) has cancellation.
Thus by Corcllary 4.7 we obtain the conclusion. 1

Next we'suppose that # is irrational and that # = 0. Then the corresponding
Heisenberg C*-algebra H(8,7) is of class 2. We denote it by Hg. By Packer ({8]),
Hy is simple and has the unique tracial state 7. For each n € N we extend it
to the unnormalized finite trace on M,(Hg). We also denote it by 7. Let p be a
projection in some M, (Hg) with 7(p) = #. Let p(1, ) be the projection in M(Hy)
defined in Rieffel ([12]) or Packer ([9]) which is called to have trace 1 and twist
—1. Then by Packer ({9])

Ko(Ho) = Z[p] & Z[1] & Z([1] - [p(1, 1)}).
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Furthermore by Packer ([9], Lemma 2.9} there is a non-zero projection g in some
M. (Hjp) with

g} = a[p] + b[1] + c([1] — [p(1,1)]) in Ko(Hy)

if and only if a®+6 > 0, where a, b and ¢ € Z. Let ¢ be such a projection. Let d be
the greatest (positive) common divisor of a, b and ¢ and write (e, 4, ¢) = d({,m, k)
where I, m, k have no common factor. Let f be the greatest (positive) common

divisor of {,m and write
{a,b,¢) = d(fg, fh,k) where (g,h)=1

We note that g6 +h > 0 since af 4+ b = dfgf +dfh > 0 and that (f, h) = 1. Hence
there are r,s € Z with rf — sk = 1. Since (g, h) = 1, there are z,y € Z such that
zh — yg = 1. By Packer ([9], the proof of Lemma 2.9),

s (n(37)

where n = (28 + y)/(90 + h).

THEOREM 5.2. Let @ be an irrational number and Hy the corresponding
Heisenberg C*-algebra. Then there is a § € Aut(Hy ® K) such that B, # «, on
Ko(Hp) for any o € Aut(Hy).

Proof. We use the same notations as in the above discussion. Put @ = 0,
b=1and ¢ = 1. By Packer ([9], Lemma 2.9) there is a projection ¢ in some
M, (Hg) such that [¢] = [1] + ([1] = [p(1, 1)]} in Ko(Hg). Thend=f=h=k=1
and g =0. Putr=1,s=0andz=1,y=0. Thenrf—sk=1and th—yg = 1.
Hence

gM,(Hg)g = H(6,0) = Hy.

Since Hy is simple, ¢ is full in My, (Hy) and since [g] = [1]+([L]—[p(1,1)]) in Ko(Hs),
[q} # [1] in Ko(Hg). Therefore by Corollary 4.7 we obtain the conclusion. B
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6. A MAP FROM Pic(4) TO FP/ ~

Let Pic(A) be the Picard group of A which is defined in Brown, Cireen and Rieffel
([3])- In this section we will construct a map J from Pic(A) to FP/ ~ by modilying
the method stated in Rieffel ([11], Propostion 2.1).

Let X be an A — A-equivalence bimodule. Then we can find Zn elements

Tly .oy Tny Yiy-- -, Yn Iin X such that

> e w)a =1
=1

Let B = M,(A) and we consider X™ as an E — A-equivalence bimodule in the
evident way. Let ¢ = {a1,..., 2, andy = {y1,..., ¥} In X" Lel z =g (v, v}/ %=
and p =g (2,2). Then by Rieffel ([11], Propostion 2.1) p is a full projection in E
and pEp = A. We can regard p as a full projection in A K. Hence we can define
an element (p) € FP/ ~. Then the element (p) € FP/ ~ is independent of the

choices of 2,y € X™.

LEMMA 6.1. The element (p) € FP/ ~ defined in the above is independent
of the choices of x,y € X™.

Proof. Let X be an A — A-equivalence bimodule and p the projection in E
defined in the above. We will show that X is isomorphic to (1 ® f1,)Ep as left
Hilbert A-modules, where {fij}fj=1 is matrix umts of M,,. For any ¢ € X" we regard
t as an element {¢,0,...,0} € X™. Let p be the map of X to (16 f1,)Ep defined
by p(t) =g (t,z) for any t € X. By using (z,z)4 = | and routine computation,
we can see that p is an isomorphism of X onto (1 &® f1;)Ep. Therefore (p) is

independent of the choices of z,y € X". 1

By the above lemma we can define a map J from Pic(4) to FP/ ~ by
J([X)) = (p) where p is a full projection in A % K defined in the above way.

For any # € Aut(AxK) we can construct an A-— A-equivalence himodule Xp
as follows: let X be the vector space defined by X = (1®eqo)( AR K)B(1&eqq).
We define the obvious left action of 4 on X and the obvious A-valued inner
product, but we define the right action of A on X defined by z -« = z8(a % egq)
for any @« € A and z € X and the A-valued inner product by {z,y)4 = 8~ Hx*y)
for any z,y € X;. By Brown, Green and Rieffel ([3]) the map [#] — [X;] is an
isomorphism of Out(A ¢ K) onto Pic(A). We denote by ¢ the map [4] — [Xg].
And we define the map J from Out(A ® K) onto FP/ ~ by j((ﬁ]) = J{[4]) for
any f € Aut(4 & K).
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ProrosiTiON 6.2. With the above notations j; =Fo ®.

Proof. Let B € Aut(A ® K). By the definition of 7, J([8)) = (B(1 & ego)).
And by the definition of 7, (Fo@)([8]) = T([Xg]) = (p) where pis a full projection
in A ® K defined in the same way as in Rieffel ([11], Proposition 2.1). Then by
Lemma 6.1, X3 is isomorphic to (1 ® ego)(A ® K)p as left Hilbert A-modules.
Thus (1 ® ego) (AR K)B(1 ® eqo) is isomorphic to (1 ® epq)(A® K)p as left Hilbert
A-modules. Hence (p) = (8(1 ® e0p)). Therefore we obtain the conclusion. 1
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