# FULL PROJECTIONS, EQUIVALENCE BIMODULES AND AUTOMORPHISMS OF STABLE ALGEBRAS OF UNITAL $C^*$ -ALGEBRAS

## KAZUNORI KODAKA

### Communicated by Norberto Salinas

ABSTRACT. Let A be a unital  $C^*$ -algebra and K the  $C^*$ -algebra of all compact operators on a countably infinite dimensional Hilbert space. Let  $K_0(A)$  and  $K_0(A \otimes K)$  be the  $K_0$ -groups of A and  $A \otimes K$  respectively. Let  $\beta_*$  be an automorphism of  $K_0(A \otimes K)$  induced by an automorphism  $\beta$  of  $A \otimes K$ . Since  $K_0(A) \cong K_0(A \otimes K)$ , we regard  $\beta_*$  as an automorphism of  $K_0(A)$ . In the present note we will show that there is a bijection between equivalence classes of automorphisms of  $A \otimes K$  and equivalence classes of full projections p of  $A \otimes K$  with  $p(A \otimes K)p \cong A$ . Furthermore, using this bijection, we give a sufficient and necessary condition that there is an automorphism  $\beta$  of  $A \otimes K$  such that  $\beta_* \neq \alpha_*$  on  $K_0(A)$  for any automorphism  $\alpha$  of A if A has cancellation or A is a purely infinite simple  $C^*$ -algebra.

Keywords: Automorphisms, cancellation, equivalence bimodules, full projections,  $K_0$ -groups.

AMS SUBJECT CLASSIFICATION: 46L05.

### 0. INTRODUCTION

Let B be a  $C^*$ -algebra and M(B) its multiplier algebra. Let  $\operatorname{Aut}(B)$  be the group of all automorphisms of B. For each  $\alpha \in \operatorname{Aut}(B)$  we can extend it to an automorphism of M(B) by Busby ([4]) and we also denote it by  $\alpha$ . For each unitary element  $w \in M(B)$  let  $\operatorname{Ad}(w)$  denote the automorphism of B defined by  $\operatorname{Ad}(w)(b) = wbw^*$  for any  $b \in B$ . We call  $\operatorname{Ad}(w)$  a generalized inner automorphism of B, and we denote by  $\operatorname{Int}(B)$  the group of all generalized inner automorphisms of B. It is easily seen that  $\operatorname{Int}(B)$  is a normal subgroup of  $\operatorname{Aut}(B)$ . We denote by

358 KAZUNORI KODAKA

Out(B) the quotient group Aut(B)/Int(B). We note that if B is unital, Int(B) is the group of all inner automorphisms of B since M(B) = B. Furthermore, for any  $n \in \mathbb{N}$ ,  $M_n$  denotes the  $n \times n$ -matrix algebra over  $\mathbb{C}$  and  $M_n(B)$  denotes the  $n \times n$ -matrix algebra over B. We identify it with  $B \otimes M_n$ . If B is not unital, we denote by  $B^+$  the unitized  $C^*$ -algebra of B.

Let  $K_0(B)$  be the  $K_0$ -group of B and  $\operatorname{Aut}(K_0(B))$  the group of all automorphisms of  $K_0(B)$ . Let  $T_B$  be the homomorphism of  $\operatorname{Aut}(B)$  to  $\operatorname{Aut}(K_0(B))$  defined by  $T_B(\alpha) = \alpha_*$  for any  $\alpha \in \operatorname{Aut}(A)$  where  $\alpha_*$  is the automorphism of  $K_0(B)$  induced by  $\alpha$ . Furthermore let range  $T_B$  be the range of  $T_B$ .

Let H be a group and L a normal subgroup of H. For any  $t \in H$  we denote by [t] the corresponding class in H/L.

Let A be a unital  $C^*$ -algebra and K the  $C^*$ -algebra of all compact operators on a countably infinite dimensional Hilbert space. Since  $K_0(A) \cong K_0(A \otimes K)$ , we identify  $\operatorname{Aut}(K_0(A))$  with  $\operatorname{Aut}(K_0(A \otimes K))$ . Hence range  $T_A$  is a subgroup of range  $T_{A \otimes K}$ .

For some unital  $C^*$ -algebras A, range  $T_A = \operatorname{range} T_{A \otimes \mathbf{K}}$ . But for some unital  $C^*$ -algebras A, range  $T_A$  is a proper subgroup of range  $T_{A \otimes \mathbf{K}}$ .

For example, let  $\theta$  be an irrational number and  $A_{\theta}$  the corresponding irrational rotation  $C^*$ -algebra. If  $\theta$  is not quadratic, then for any  $\beta \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$ ,  $\beta_* = \operatorname{id}$  on  $K_0(A_{\theta})$  by Theorem 2, [5]. Hence range  $T_{A_{\theta}} = \operatorname{range} T_{A_{\theta} \otimes \mathbf{K}}$ . But if  $\theta$  is quadratic, then there is a  $\beta \in \operatorname{Aut}(A_{\theta} \otimes \mathbf{K})$  such that  $\beta_* \neq \operatorname{id}$  on  $K_0(A_{\theta})$  by Theorem 5, [5], hence range  $T_{A_{\theta}}$  is a proper subgroup of range  $T_{A_{\theta} \otimes \mathbf{K}}$  since  $\alpha_* = \operatorname{id}$  on  $K_0(A_{\theta})$  for any  $\alpha \in \operatorname{Aut}(A_{\theta})$ .

Let n be an integer with  $n \ge 2$  and  $O_n$  the corresponding Cuntz algebra. If n = 2, 3, for any  $\beta \in \operatorname{Aut}(O_n \otimes \mathbf{K})$ ,  $\beta_* = \operatorname{id}$  on  $K_0(O_n)$  by Proposition 14, [6]. Hence range  $T_{O_n} = \operatorname{range} T_{O_n \otimes \mathbf{K}}$ . But if n is not a prime number, then there is a  $\beta \in \operatorname{Aut}(O_n \otimes \mathbf{K})$  such that  $\beta_* \ne \operatorname{id}$  on  $K_0(O_n)$  by Theorem 16, [6], hence range  $T_{O_n}$  is a proper subgroup of range  $T_{O_n \otimes \mathbf{K}}$  since  $\alpha_* = \operatorname{id}$  on  $K_0(O_n)$  for any  $\alpha \in \operatorname{Aut}(O_n)$ .

It is natural to ask why the above facts happen. In this note we attempt to shed some light on this question. Let A and K be as above and let  $\{e_{ij}\}_{ij\in\mathbb{Z}}$  be matrix units of K. Throughout this note we suppose that A is a unital  $C^*$ -algebra. We will show that there is a bijection between equivalence classes of  $\operatorname{Aut}(A\otimes K)$  and equivalence classes of full projections p of  $A\otimes K$  with  $p(A\otimes K)p\cong A$ . In particular, if  $\operatorname{Out}(A)$  is a normal subgroup of  $\operatorname{Out}(A\otimes K)$ , then the equivalence classes of full projections p of  $A\otimes K$  with  $p(A\otimes K)p\cong A$  is a group. Furthermore, using this bijection, we give a sufficient and necessary condition that range  $T_A$  is

a proper subgroup of range  $T_{A\otimes K}$  if A has cancellation or A is a purely infinite simple  $C^*$ -algebra.

## 1. AN EQUIVALENCE RELATION IN $Out(A \otimes K)$

We begin this section with simple lemmas.

LEMMA 1.1. For any unitary element  $w \in M(A \otimes \mathbf{K})$ ,  $Ad(w)_* = id$  on  $K_0(A \otimes \mathbf{K})$ .

*Proof.* Since A is unital, we have only to show that  $[wpw^*] = [p]$  in  $K_0(A \otimes \mathbf{K})$  for any projection p in  $A \otimes \mathbf{K}$ . For any projection  $p \in A \otimes \mathbf{K}$ ,

$$[wpw^*] = [wp(wp)^*] = [(wp)^*wp] = [p]$$

in  $K_0(A \otimes \mathbf{K})$  since  $wp \in A \otimes \mathbf{K}$ .

LEMMA 1.2. Let p and q be projections in  $A \otimes \mathbf{K}$ . Then the following conditions are equivalent:

- (i) There is a partial isometry  $z \in A \otimes \mathbf{K}$  such that  $z^*z = p$ ,  $zz^* = q$ .
- (ii) There is a unitary element  $w \in M(A \otimes \mathbf{K})$  such that  $q = wpw^*$ .

*Proof.* (i)  $\Rightarrow$  (ii). By Mingo ([7], p. 401, Lemma), there are partial isometries  $z_1, z_2 \in A \underset{\min}{\otimes} M(\mathbf{K}) \subset M(A \otimes \mathbf{K})$  such that

$$z_1^* z_1 = 1 \otimes 1,$$
  $z_1 z_1^* = 1 \otimes 1 - p,$   
 $z_2^* z_2 = 1 \otimes 1,$   $z_2 z_2^* = 1 \otimes 1 - q,$ 

where  $A \underset{\min}{\otimes} M(\mathbf{K})$  means the minimal tensor product of A and  $M(\mathbf{K})$ . Let  $w = z + z_2 z_1^*$ . Then by easy computation we see that w is a unitary element in  $M(A \otimes \mathbf{K})$ . And

$$wpw^* = (z + z_2 z_1^*)p(z^* + z_1 z_2^*) = (z + z_2 z_1^* z_1 z_1^* p)(z^* + z_1 z_2^*)$$
  
=  $q + zz^* z z_1 z_1^* z_1 z_2^* = q$ .

Hence we obtain (ii).

(ii) 
$$\Rightarrow$$
 (i). Put  $z = wp \in A \otimes \mathbf{K}$ . Then  $z^*z = p$ ,  $zz^* = q$ . Thus we obtain (i).

LEMMA 1.3. We suppose that A has cancellation or that A is a purely infinite simple  $C^*$ -algebra. Let  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$  with  $\beta_* = \operatorname{id}$  on  $K_0(A \otimes \mathbf{K})$ . Then there are an  $\alpha \in \operatorname{Aut}(A)$  and a unitary element  $w \in M(A \otimes \mathbf{K})$  such that  $\beta = \operatorname{Ad}(w) \circ \alpha \otimes \operatorname{id}$ .

**Proof.** If A has cancellation, then by Proposition 6, [6], we obtain the conclusion. If A is a purely infinite simple  $C^*$ -algebra, then we can prove this lemma in the same way as in Proposition 14, [6].

Let  $\Psi$  be the homomorphism of  $\operatorname{Aut}(A)$  to  $\operatorname{Aut}(A \otimes \mathbf{K})$  defined by  $\Psi(\alpha) = \alpha \otimes \operatorname{id}$  for any  $\alpha \in \operatorname{Aut}(A)$ . And let  $\widetilde{\Psi}$  be the homomorphism of  $\operatorname{Out}(A)$  to  $\operatorname{Out}(A \otimes \mathbf{K})$  defined by  $\widetilde{\Psi}([\alpha]) = [\Psi(\alpha)] = [\alpha \otimes \operatorname{id}]$  for any  $\alpha \in \operatorname{Aut}(A)$ . By [6]  $\widetilde{\Psi}$  is injective. We identify  $\operatorname{Out}(A)$  with  $\widetilde{\Psi}(\operatorname{Out}(A))$ . We define an equivalence relation  $\sim$  in  $\operatorname{Out}(A \otimes \mathbf{K})$  as follows: for any  $\beta_1, \beta_2 \in \operatorname{Aut}(A \otimes \mathbf{K}), [\beta_1] \sim [\beta_2]$  if there is an  $\alpha \in \operatorname{Aut}(A)$  such that  $[\beta_1] = [\beta_2][\alpha \otimes \operatorname{id}]$ . By an easy computation we see that  $\sim$  is an equivalence relation in  $\operatorname{Out}(A \otimes \mathbf{K})$ . We denote by  $[[\beta]]$  the equivalence class of  $[\beta] \in \operatorname{Out}(A \otimes \mathbf{K})$  and we denote by  $\mathbf{P}$  the quotient set of  $\operatorname{Out}(A \otimes \mathbf{K})$  by the above equivalence relation  $\sim$ . If  $\operatorname{Out}(A)$  is a normal subgroup of  $\operatorname{Out}(A \otimes \mathbf{K})$ , the quotient set  $\mathbf{P}$  is the quotient group  $\operatorname{Out}(A \otimes \mathbf{K})/\operatorname{Out}(A)$ .

REMARK 1.4. We can regard  $\operatorname{Out}(A)$  as a group acting on  $\operatorname{Out}(A \otimes \mathbf{K})$  by right multiplication. Thus  $\mathbf{P}$  is the orbit space of  $\operatorname{Out}(A \otimes \mathbf{K})$  on which  $\operatorname{Out}(A)$  acts. Furthermore by Brown, Green and Rieffel ([3], Corollary 3.5),  $\operatorname{Out}(A \otimes \mathbf{K})$  is isomorphic to  $\operatorname{Pic}(A)$ , the Picard group of A. Hence we can regard  $\operatorname{Out}(A)$  as a group acting on  $\operatorname{Pic}(A)$  and  $\mathbf{P}$  as the orbit space of  $\operatorname{Pic}(A)$  on which  $\operatorname{Out}(A)$  acts.

PROPOSITION 1.5. With the above notations, if Out(A) is a normal subgroup of  $Out(A \otimes \mathbf{K})$ , then range  $T_A$  is a normal subgroup of range  $T_{A \otimes \mathbf{K}}$ . Furthermore the converse is true if A has cancellation or A is a purely infinite simple  $C^*$ -algebra.

*Proof.* We suppose that  $\operatorname{Out}(A)$  is a normal subgroup of  $\operatorname{Out}(A \otimes \mathbf{K})$ . Then for any  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$  and  $\alpha \in \operatorname{Aut}(A)$ ,  $[\beta][\alpha \otimes \operatorname{id}][\beta]^{-1} \in \operatorname{Out}(A)$ . Hence there is a  $\gamma \in \operatorname{Aut}(A)$  such that  $[\beta][\alpha \otimes \operatorname{id}][\beta]^{-1} = [\gamma \otimes \operatorname{id}]$ . Thus there is a unitary element  $w \in M(A \otimes \mathbf{K})$  such that  $\beta \circ \alpha \otimes \operatorname{id} \circ \beta^{-1} = \operatorname{Ad}(w) \circ \gamma \otimes \operatorname{id}$ . Hence by Lemma 1.1  $(\beta \circ \alpha \otimes \operatorname{id} \circ \beta^{-1})_* = (\gamma \otimes \operatorname{id})_* \in \operatorname{range} T_A$ . Therefore range  $T_A$  is a normal subgroup of range  $T_{A \otimes \mathbf{K}}$ .

Next we suppose that range  $T_A$  is a normal subgroup of range  $T_{A\otimes \mathbf{K}}$ . We also suppose that A has cancellation or that A is a purely infinite simple  $C^*$ -algebra. Then for any  $\beta\in \operatorname{Aut}(A\otimes \mathbf{K})$  and  $\alpha\in\operatorname{Aut}(A)$ ,  $(\beta\circ\alpha\otimes\operatorname{id}\circ\beta^{-1})_*\in\operatorname{range} T_A$ . Hence there is a  $\gamma\in\operatorname{Aut}(A)$  such that  $(\beta\circ\alpha\otimes\operatorname{id}\circ\beta^{-1})_*=(\gamma\otimes\operatorname{id})_*$  on  $K_0(A\otimes \mathbf{K})$ . Thus  $(\beta\circ\alpha\otimes\operatorname{id}\circ\beta^{-1}\circ(\gamma\otimes\operatorname{id})^{-1})_*=\operatorname{id}$  on  $K_0(A\otimes \mathbf{K})$ . Since A has cancellation or A is a purely infinite simple  $C^*$ -algebra, by Lemma 1.3 there are a  $\delta\in\operatorname{Aut}(A)$  and a unitary element  $w\in M(A\otimes \mathbf{K})$  such that

$$\beta \circ \alpha \otimes \mathrm{id} \circ \beta^{-1} \circ (\gamma \otimes \mathrm{id})^{-1} = \mathrm{Ad}(w) \circ \delta \otimes \mathrm{id}.$$

Hence  $[\beta][\alpha \otimes id][\beta]^{-1} = [(\delta \circ \gamma) \otimes id] \in Out(A)$ . Therefore Out(A) is a normal subgroup of  $Out(A \otimes \mathbf{K})$ .

# 2. AN EQUIVALENCE RELATION IN FULL PROJECTIONS

Let p and q be projections in  $A \otimes \mathbf{K}$ . Then p is equivalent to q, written  $p \sim q$ , if there is a partial isometry  $z \in A \otimes \mathbf{K}$  such that  $p = z^*z$ ,  $q = zz^*$ . We denote by (p) the equivalence class of the projection p.

Let FP be the set of all full projections  $p \in A \otimes \mathbf{K}$  with  $p(A \otimes \mathbf{K})p \cong A$  and FP/  $\sim$  the quotient set of FP by the above equivalence relation  $\sim$ .

REMARK 2.1. For any  $n \in \mathbb{N}$  we regard  $M_n(A)$  as a  $C^*$ -subalgebra of  $A \otimes \mathbf{K}$ . By Blackadar ([1], Proposition 4.6.6) and Lemma 1.2, for any  $p \in \mathrm{FP}$  there is a full projection  $q \in \bigcup_{n \in \mathbb{N}} M_n(A)$  such that  $(p) = (q), \ q(A \otimes \mathbf{K})q \cong A$ .

# 3. A MAP FROM FP TO P

In this section we will construct a map from FP/  $\sim$  to P. Let p be any element in FP. Since  $p \in \text{FP}$ , there is an isomorphism  $\chi_p$  of A onto  $p(A \otimes \mathbf{K})p$  and by Brown ([2], Lemma 2.5) there is a partial isometry  $z \in M(A \otimes \mathbf{K} \otimes \mathbf{K})$  such that  $z^*z = p \otimes 1$ ,  $zz^* = 1 \otimes 1 \otimes 1$ . Let  $\psi$  be an isomorphism of  $\mathbf{K} \otimes \mathbf{K}$  onto  $\mathbf{K}$  with  $\psi_* = \text{id of } K_0(\mathbf{K} \otimes \mathbf{K})$  onto  $K_0(\mathbf{K})$ . Let  $\beta(p, \chi_p)$  be the automorphism of  $A \otimes \mathbf{K}$  defined by

$$\beta(p,\chi_p) = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z) \circ \chi_p \otimes \mathrm{id}.$$

LEMMA 3.1. With the above notation  $[\beta(p,\chi_p)] \in \text{Out}(A \otimes \mathbf{K})$  is independent of the choices of z and  $\psi$ .

*Proof.* For j=1,2 let  $z_j$  be a partial isometry in  $M(A\otimes \mathbf{K}\otimes \mathbf{K})$  with  $z_j^*z_j=p\otimes 1, z_jz_j^*=1\otimes 1\otimes 1$ . Let  $\psi$  be an isomorphism of  $\mathbf{K}\otimes \mathbf{K}$  onto  $\mathbf{K}$  with  $\psi_*=\operatorname{id}$  of  $K_0(\mathbf{K}\otimes \mathbf{K})$  onto  $K_0(\mathbf{K})$ . For j=1,2, let  $\beta_j(p,\chi_p)$  be the automorphism of  $A\otimes \mathbf{K}$  induced by  $z_j$  and  $\psi$ . Then:

$$\beta_{2}(p,\chi_{p}) = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z_{2}) \circ \chi_{p} \otimes \mathrm{id} = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z_{2}z_{1}^{*}) \circ \mathrm{Ad}(z_{1}) \circ \chi_{p} \otimes \mathrm{id}$$

$$= \mathrm{Ad}((\mathrm{id} \otimes \psi)(z_{2}z_{1}^{*})) \circ \mathrm{Ad}(z_{1}) \circ \chi_{p} \otimes \mathrm{id}$$

$$= \mathrm{Ad}((\mathrm{id} \otimes \psi)(z_{2}z_{1}^{*})) \circ \beta_{1}(p,\chi_{p}).$$

Hence  $[\beta_1(p,\chi_p)] = [\beta_2(p,\chi_p)]$  since  $z_2z_1^*$  is a unitary element in  $M(A \otimes \mathbf{K} \otimes \mathbf{K})$ . Next for j = 1, 2 let  $\psi_j$  be an isomorphism of  $\mathbf{K} \otimes \mathbf{K}$  onto  $\mathbf{K}$  with  $\psi_{j*} = \mathrm{id}$  of  $K_0(\mathbf{K} \otimes \mathbf{K})$  onto  $K_0(\mathbf{K})$  and let z be a partial isometry in  $M(A \otimes \mathbf{K} \otimes \mathbf{K})$  with  $z^*z = p \otimes 1$ ,  $zz^* = 1 \otimes 1 \otimes 1$ . For j = 1, 2, let  $\beta_j(p,\chi_p)$  be the automorphism

of  $A \otimes \mathbf{K}$  induced by z and  $\psi_j$ . Then  $\psi_2 \circ \psi_1^{-1}$  is an automorphism of  $\mathbf{K}$ . Hence there is a unitary element  $w \in M(\mathbf{K})$  such that  $\psi_2 \circ \psi_1^{-1} = \mathrm{Ad}(w)$ . Thus

$$\beta_2(p,\chi_p) = \mathrm{id} \otimes \psi_2 \circ \mathrm{Ad}(z) \circ \chi_p \otimes \mathrm{id} = \mathrm{Ad}(\mathbf{1} \otimes w) \circ \mathrm{id} \otimes \psi_1 \circ \mathrm{Ad}(z) \circ \chi_p \otimes \mathrm{id}$$
$$= \mathrm{Ad}(\mathbf{1} \otimes w) \circ \beta_1(p,\chi_p).$$

Hence 
$$[\beta_1(p,\chi_p)] = [\beta_2(p,\chi_p)].$$

We define a map  $\mathcal{F}$  from FP/  $\sim$  to P by  $\mathcal{F}((p)) = [[\beta(p, \chi_p)]]$ . We show that it is well-defined:

LEMMA 3.2. F is well-defined.

Proof. First we will show that  $[[\beta(p,\chi_p)]]$  is independent of the choice of  $\chi_p$ . Let  $\rho_p$  be another isomorphism of A onto  $p(A\otimes \mathbf{K})p$ . Let  $\alpha$  be the automorphism of A defined by  $\alpha=\chi_p^{-1}\circ\rho_p$ . Let  $\psi$  be an isomorphism of  $\mathbf{K}\otimes\mathbf{K}$  onto  $\mathbf{K}$  with  $\psi_*=\mathrm{id}$  of  $K_0(\mathbf{K}\otimes\mathbf{K})$  onto  $K_0(\mathbf{K})$  and z a partial isometry in  $M(A\otimes\mathbf{K}\otimes\mathbf{K})$  with  $z^*z=p\otimes 1$ ,  $zz^*=1\otimes 1\otimes 1$ . Then

$$\beta(p, \rho_p) = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z) \circ \rho_p \otimes \mathrm{id} = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z) \circ (\chi_p \circ \alpha) \otimes \mathrm{id}$$
$$= \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z) \circ \chi_p \otimes \mathrm{id} \circ \alpha \otimes \mathrm{id} = \beta(p, \chi_p) \circ \alpha \otimes \mathrm{id}.$$

Thus  $[[\beta(p, \rho_p)]] = [[\beta(p, \chi_p)]].$ 

Let  $p, q \in FP$  with (p) = (q). Let  $\chi_p$  be an isomorphism of A onto  $p(A \otimes \mathbf{K})p$  and  $\chi_q$  isomorphism of A onto  $q(A \otimes \mathbf{K})q$  respectively. Since (p) = (q), by Lemma 1.2 there is a unitary element  $w \in M(A \otimes \mathbf{K})$  such that  $p = wqw^*$ . Hence Ad(w) is an isomorphism of  $q(A \otimes \mathbf{K})q$  onto  $p(A \otimes \mathbf{K})p$ . Let  $\gamma$  be the automorphism of A defined by  $\gamma = \chi_p^{-1} \circ Ad(w) \circ \chi_q$ . Then

$$\beta(p,\chi_p) = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z) \circ \chi_p \otimes \mathrm{id}$$
  
=  $\mathrm{id} \otimes \psi \circ \mathrm{Ad}(z(w \otimes 1)) \circ \chi_q \otimes \mathrm{id} \circ \gamma^{-1} \otimes \mathrm{id}.$ 

Let  $Z = z(w \otimes 1)$ . Then  $Z^*Z = q \otimes 1$ ,  $ZZ^* = 1 \otimes 1 \otimes 1$ . Thus by Lemma 2.1  $[\beta(p,\chi_p)] = [\beta(q,\chi_q)][(\gamma \otimes \mathrm{id})^{-1}]$ . Therefore  $[[\beta(p,\chi_p)]] = [[\beta(q,\chi_q)]]$ .

From now on we simply denote  $\beta(p,\chi_p)$  by  $\beta_p$  since  $[[\beta(p,\chi_p)]]$  is independent of the choice of  $\chi_p$ .

# 4. A MAP FROM P TO FP/~

In this section we will construct a map  $\mathcal{J}$  from P to FP/ $\sim$  and we will show that  $\mathcal{J}$  is bijective.

For each  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$ ,  $\beta(\mathbf{1} \otimes e_{00})$  is a full projection in  $A \otimes \mathbf{K}$  since  $\mathbf{1} \otimes e_{00}$  is full in  $A \otimes \mathbf{K}$ . We define a map  $\mathcal{J}$  from  $\mathbf{P}$  to  $\operatorname{FP}/\sim$  by  $\mathcal{J}([[\beta]]) = (\beta(\mathbf{1} \otimes e_{00}))$ . We can easily show that it is well-defined by Lemma 1.2.

Before we show that  $\mathcal{J}$  is injective, we need a lemma.

LEMMA 4.1. Let  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$ . We suppose that  $(\beta(\mathbf{1} \otimes e_{00})) = (\mathbf{1} \otimes e_{00})$ . Then there are an  $\alpha \in \operatorname{Aut}(A)$  and a unitary element  $u \in M(A \otimes \mathbf{K})$  such that  $\beta = \operatorname{Ad}(u) \circ \alpha \otimes \operatorname{id}$ .

Proof. Since  $(\beta(\mathbf{1}\otimes e_{00}))=(\mathbf{1}\otimes e_{00})$ , by Lemma 1.2 there is a unitary element  $z\in M(A\otimes \mathbf{K})$  such that  $\beta(\mathbf{1}\otimes e_{00})=z(\mathbf{1}\otimes e_{00})z^*$ . Since  $\mathbf{K}$  has cancellation, there is a unitary element  $w_j\in M(\mathbf{K})$  such that  $e_{jj}=w_je_{00}w_j^*$  for any  $j\in\mathbb{Z}$ . Then for any  $j\in\mathbb{Z}$ 

$$\beta(1 \otimes e_{jj}) = \beta((1 \otimes w_j)(1 \otimes e_{00})(1 \otimes w_j)^*) = \beta(1 \otimes w_j)\beta(1 \otimes e_{00})\beta(1 \otimes w_j)^*$$
$$= \beta(1 \otimes w_j)z(1 \otimes w_j)^*(1 \otimes e_{jj})(1 \otimes w_j)z^*\beta(1 \otimes w_j)^*.$$

Hence by Proposition 6, [6] we obtain the conclusion.

LEMMA 4.2. J is injective.

Proof. Let  $\beta_1$  and  $\beta_2$  be in  $\operatorname{Aut}(A \otimes \mathbf{K})$  with  $\mathcal{J}([[\beta_1]]) = \mathcal{J}([[\beta_2]])$ . That is,  $(\beta_1(\mathbf{1} \otimes e_{00})) = (\beta_2(\mathbf{1} \otimes e_{00}))$ . Hence  $(\beta_1^{-1} \circ \beta_2(\mathbf{1} \otimes e_{00})) = (\mathbf{1} \otimes e_{00})$ . By Lemma 4.1 there is an  $\alpha \in \operatorname{Aut}(A)$  and a unitary element  $u \in M(A \otimes \mathbf{K})$  such that  $\beta_1^{-1} \circ \beta_2 = \operatorname{Ad}(u) \circ \alpha \otimes \operatorname{id}$ . Thus  $[[\beta_1]] = [[\beta_2]]$ .

LEMMA 4.3. Let  $\psi$  be an isomorphism of  $\mathbf{K} \otimes \mathbf{K}$  onto  $\mathbf{K}$  with  $\psi_* = \mathrm{id}$  of  $K_0(\mathbf{K} \otimes \mathbf{K})$  onto  $K_0(\mathbf{K})$ . Then for any  $n \in \mathbb{N}$  there is a partial isometry  $v \in \mathbf{K}$  such that

$$v^*v = \sum_{j=-n}^n e_{jj}, \quad vv^* = \sum_{j=-n}^n \psi(e_{jj} \otimes e_{00}),$$

$$ve_{ij}v^* = \psi(e_{ij} \otimes e_{00}) \quad \text{for } i, j = -n, \dots, 0, \dots, n.$$

*Proof.* Since  $\psi(e_{00} \otimes e_{00})$  is equivalent to  $e_{00}$ , there is a partial isometry  $w \in \mathbf{K}$  such that  $w^*w = e_{00}$ ,  $ww^* = \psi(e_{00} \otimes e_{00})$ . Let  $v = \sum_{j=-n}^n \psi(e_{j0} \otimes e_{00})w_{j}$ . Then for  $i, j = -n, \ldots, 0, \ldots, n$ 

$$ve_{ij}v^* = \left(\sum_{k=-n}^n \psi(e_{k0} \otimes e_{00})we_{0k}\right)e_{ij}\left(\sum_{l=-n}^n e_{l0}w^*\psi(e_{0l} \otimes e_{00})\right)$$

$$= \psi(e_{i0} \otimes e_{00})we_{00}w^*\psi(e_{0j} \otimes e_{00})$$

$$= \psi(e_{i0} \otimes e_{00})\psi(e_{00} \otimes e_{00})\psi(e_{0j} \otimes e_{00})$$

$$= \psi(e_{ij} \otimes e_{00}).$$

Furthermore by the direct computation we see that

$$v^*v = \sum_{j=-n}^n e_{jj}, \quad vv^* = \sum_{j=-n}^n \psi(e_{jj} \otimes e_{00}).$$

LEMMA 4.4. For any  $p \in FP$ ,  $(\mathcal{J} \circ \mathcal{F})((p)) = (p)$  where  $\mathcal{F}$  is the map from  $FP/\sim to\ P$  defined in Section 3.

*Proof.* Let p be any element in FP. Then

$$(\mathcal{J} \circ \mathcal{F})((p)) = \mathcal{J}([[\beta_p]]) = (\beta_p(\mathbf{1} \otimes e_{00})),$$

where  $\beta_p$  is an automorphism of  $A \otimes \mathbf{K}$  induced by the projection p. Let  $\psi$  be an isomorphism of  $\mathbf{K} \otimes \mathbf{K}$  onto  $\mathbf{K}$  with  $\psi_* = \mathrm{id}$  of  $K_0(\mathbf{K} \otimes \mathbf{K})$  onto  $K_0(\mathbf{K})$  and z a partial isometry in  $M(A \otimes \mathbf{K} \otimes \mathbf{K})$  with  $z^*z = p \otimes 1$ ,  $zz^* = 1 \otimes 1 \otimes 1$ . Furthermore let  $\chi_p$  be an isomorphism of A onto  $p(A \otimes \mathbf{K})p$ . By the definition of  $\beta_p$ ,  $\beta_p = \mathrm{id} \otimes \psi \circ \mathrm{Ad}(z) \circ \chi_p \otimes \mathrm{id}$ . Thus

$$\beta_p(\mathbf{1}\otimes e_{00})=(\mathrm{id}\otimes\psi)(z)(\mathrm{id}\otimes\psi)(p\otimes e_{00})(\mathrm{id}\otimes\psi)(z)^*.$$

By Remark 2.1 we may assume that there is an  $n \in \mathbb{N}$  such that p is in  $M_{2n+1}(A) \subset A \otimes \mathbf{K}$ . Since  $p \in M_{2n+1}(A)$ , we can write  $p = \sum_{i,j=-n}^{n} a_{ij} \otimes e_{ij}$ , where  $a_{ij} \in A$ . Hence

$$(\mathrm{id} \otimes \psi)(p \otimes e_{00}) = \sum_{i,j=-n}^{n} a_{ij} \otimes \psi(e_{ij} \otimes e_{00}).$$

By Lemma 4.3 there is a partial isometry  $v \in \mathbf{K}$  such that

$$v^*v = \sum_{j=-n}^n e_{jj}, \quad vv^* = \sum_{j=-n}^n \psi(e_{jj} \otimes e_{00}),$$
  
 $ve_{ij}v^* = \psi(e_{ij} \otimes e_{00}) \quad \text{for } i, j = -n, \dots, 0, \dots, n.$ 

Then

$$(1 \otimes v)p(1 \otimes v)^* = \sum_{i,j=-n}^n a_{ij} \otimes v e_{ij} v^* = \sum_{i,j=-n}^n a_{ij} \otimes \psi(e_{ij} \otimes e_{00})$$
$$= (\mathrm{id} \otimes \psi)(p \otimes e_{00}).$$

Hence

$$\beta_p(\mathbf{1}\otimes e_{00})=(\mathrm{id}\otimes\psi)(z)(\mathbf{1}\otimes v)p(\mathbf{1}\otimes v)^*(\mathrm{id}\otimes\psi)(z^*).$$

**Furthermore** 

$$[p(\mathbf{1} \otimes v)^* (\mathrm{id} \otimes \psi)(z^*)][p(\mathbf{1} \otimes v)^* (\mathrm{id} \otimes \psi)(z^*)]^*$$

$$= p(\mathbf{1} \otimes v)^* (\mathrm{id} \otimes \psi)(p \otimes \mathbf{1})(\mathbf{1} \otimes v)p = p(\mathbf{1} \otimes v)^* (\mathrm{id} \otimes \psi)(p \otimes e_{00})(\mathbf{1} \otimes v)p$$

$$= p(\mathbf{1} \otimes v)^* (\mathbf{1} \otimes v)p(\mathbf{1} \otimes v)^* (\mathbf{1} \otimes v)p = p\Big(\mathbf{1} \otimes \sum_{j=-n}^n e_{jj}\Big)p\Big(\mathbf{1} \otimes \sum_{j=-n}^n e_{jj}\Big)p$$

$$= p.$$

Thus 
$$(\beta_p(1 \otimes e_{00})) = (p)$$
.

THEOREM 4.5. Let A be a unital  $C^*$ -algebra. Let  $\mathcal{F}$ ,  $\mathcal{J}$  and  $\mathbf{P}$ ,  $\mathrm{FP}/\sim$  be as above. Then  $\mathcal{J}$  is a bijection from  $\mathbf{P}$  onto  $\mathrm{FP}/\sim$ . Furthermore  $\mathcal{F}$  is the inverse map of  $\mathcal{J}$  from  $\mathrm{FP}/\sim$  onto  $\mathbf{P}$ .

*Proof.* This is immediate by Lemmas 4.2 and 4.4.

By Theorem 4.5 we can easily obtain the following corollaries.

COROLLARY 4.6. With the above notations the following conditions are equivalent:

- (i) There is a  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$  such that  $[\beta] \notin \operatorname{Out}(A)$ ;
- (ii) There is a full projection  $p \in A \otimes \mathbf{K}$  such that

$$p(A \otimes \mathbf{K})p \cong A$$
,  $(p) \neq (\mathbf{1} \otimes e_{00})$ .

COROLLARY 4.7. With the above notations we suppose that A has cancellation or that A is a purely infinite simple  $C^*$ -algebra. Then the following conditions are equivalent:

- (i) There is a  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$  such that  $\beta_* \neq \alpha_*$  on  $K_0(A)$  for any  $\alpha \in \operatorname{Aut}(A)$ ;
  - (ii) There is a full projection  $p \in A \otimes \mathbf{K}$  such that

$$p(A \otimes \mathbf{K})p \cong A$$
,  $[p] \neq [\mathbf{1} \otimes e_{00}]$  in  $K_0(A \otimes \mathbf{K})$ .

Corollary 4.8. We suppose that  $\operatorname{Out}(A)$  is a normal subgroup of  $\operatorname{Out}(A \otimes \mathbf{K})$ . Then  $\operatorname{FP}/\sim$  is a group and we have a short exact sequence

$$1 \to \operatorname{Out}(A) \to \operatorname{Out}(A \otimes \mathbf{K}) \to \operatorname{FP}/\sim \to 1.$$

REMARK 4.9. (i) With the same assumptions as in Corollary 4.8, the product of the group FP/  $\sim$  is the following: for any  $p, q \in \text{FP}$ ,  $(p)(q) = (\beta_p(q))$  where  $\beta_p$  is the automorphism of  $A \otimes \mathbf{K}$  induced by  $p \in \text{FP}$ .

(ii) We suppose that A has cancellation or that A is a purely infinite simple  $C^*$ -algebra. If range  $T_A$  is a normal subgroup of range  $T_{A\otimes \mathbf{K}}$ , we have the same thing as in Corollary 4.8 by Proposition 1.5. Furthermore since we can easily see that range  $T_{A\otimes \mathbf{K}}/\text{range}\,T_A\cong \text{Out}(A\otimes \mathbf{K})/\text{Out}(A)$  in the same way as in Proposition 4, [6], FP/ $\sim$  is isomorphic to range  $T_{A\otimes \mathbf{K}}/\text{range}\,T_A$ .

### 5. APPLICATION

In this section we apply our results to Heisenberg  $C^*$ -algebras of class 2 and class 3. Following Packer ([8], [9]) we will define Heisenberg  $C^*$ -algebras. For any  $\theta$ ,  $\eta \in \mathbb{R}$  let  $H(\theta, \eta)$  be the universal  $C^*$ -algebra generated by unitary elements u, v and w satisfying

$$uv = e^{2\pi i\theta}vu$$
,  $wv = e^{2\pi i\eta}vw$ ,  $uw = vwu$ .

If  $\tau$  is any normalized faithful trace on  $H(\theta, \eta)$ ,  $H(\theta, \eta)$  will be said to be of class 1, 2 or 3 if  $\tau_*(K_0(H(\theta, \eta))) = \mathbb{Z} + \mathbb{Z}\theta + \mathbb{Z}\eta$  is generated by 1, 2 but not 1 or 3 but not 2 elements in  $\mathbb{R}$  respectively.

We suppose that  $\theta$  and  $\eta$  are irrational numbers and 1,  $\theta$  and  $\eta$  are linearly independent. Then  $H(\theta, \eta)$  is of class 3. By Packer ([8]),  $H(\theta, \eta)$  is simple and has the unique tracial state  $\tau$ . For each  $n \in \mathbb{N}$  we extend it to the unnormalized finite trace on  $M_n(H(\theta, \eta))$ . We also denote it by  $\tau$ . By Packer ([9], Section 2) there are projections p and q in some  $M_n(H(\theta, \eta))$  such that

$$K_0(H(\theta, \eta)) = \mathbb{Z}[1] \oplus \mathbb{Z}[p] \oplus \mathbb{Z}[q], \quad \tau(p) = \theta, \quad \tau(q) = \eta.$$

In the same way as in the proof of Theorem 2, [5], for any  $\beta \in \text{Aut}(H(\theta, \eta) \otimes \mathbf{K})$   $\beta_* = \text{id}$  on  $K_0(H(\theta, \eta))$  if the numbers 1,  $\theta$ ,  $\theta^2$ ,  $\eta$ ,  $\eta^2$  and  $\theta\eta$  are linearly independent. Hence we obtain the following proposition.

PROPOSITION 5.1. Let  $\theta$  and  $\eta$  be irrational numbers. We suppose that 1,  $\theta$ ,  $\theta^2$ ,  $\eta$ ,  $\eta^2$  and  $\theta\eta$  are linearly independent. Then there is no projection f in  $H(\theta,\eta)\otimes \mathbf{K}$  such that

$$f(H(\theta, \eta) \otimes \mathbf{K})f \cong H(\theta, \eta), \quad [f] \neq [1 \otimes e_{00}] \quad \text{in } K_0(H(\theta, \eta) \otimes \mathbf{K}).$$

*Proof.* By the above discussion for any  $\beta \in \operatorname{Aut}(H(\theta, \eta) \otimes \mathbf{K})$ ,  $\beta_* = \operatorname{id}$  on  $K_0(H(\theta, \eta) \otimes \mathbf{K})$ . And by Packer ([9], Proposition 2.1)  $H(\theta, \eta)$  has cancellation. Thus by Corollary 4.7 we obtain the conclusion.

Next we suppose that  $\theta$  is irrational and that  $\eta=0$ . Then the corresponding Heisenberg  $C^*$ -algebra  $H(\theta,\eta)$  is of class 2. We denote it by  $H_{\theta}$ . By Packer ([8]),  $H_{\theta}$  is simple and has the unique tracial state  $\tau$ . For each  $n \in \mathbb{N}$  we extend it to the unnormalized finite trace on  $M_n(H_{\theta})$ . We also denote it by  $\tau$ . Let p be a projection in some  $M_n(H_{\theta})$  with  $\tau(p)=\theta$ . Let p(1,1) be the projection in  $M_2(H_{\theta})$  defined in Rieffel ([12]) or Packer ([9]) which is called to have trace 1 and twist -1. Then by Packer ([9])

$$K_0(H_\theta) = \mathbb{Z}[p] \oplus \mathbb{Z}[\mathbf{1}] \oplus \mathbb{Z}([\mathbf{1}] - [p(1,1)]).$$

Furthermore by Packer ([9], Lemma 2.9) there is a non-zero projection q in some  $M_n(H_\theta)$  with

$$[q] = a[p] + b[1] + c([1] - [p(1,1)])$$
 in  $K_0(H_\theta)$ 

if and only if  $a\theta + b > 0$ , where a, b and  $c \in \mathbb{Z}$ . Let q be such a projection. Let d be the greatest (positive) common divisor of a, b and c and write (a, b, c) = d(l, m, k) where l, m, k have no common factor. Let f be the greatest (positive) common divisor of l, m and write

$$(a, b, c) = d(fg, fh, k)$$
 where  $(g, h) = 1$ .

We note that  $g\theta + h > 0$  since  $a\theta + b = dfg\theta + dfh > 0$  and that (f, h) = 1. Hence there are  $r, s \in \mathbb{Z}$  with rf - sk = 1. Since (g, h) = 1, there are  $x, y \in \mathbb{Z}$  such that xh - yg = 1. By Packer ([9], the proof of Lemma 2.9),

$$qM_n(H_\theta)q \cong M_d\left(H\left(\frac{\eta}{f},\frac{s}{f}\right)\right)$$

where  $\eta = (x\theta + y)/(g\theta + h)$ .

THEOREM 5.2. Let  $\theta$  be an irrational number and  $H_{\theta}$  the corresponding Heisenberg  $C^*$ -algebra. Then there is a  $\beta \in \operatorname{Aut}(H_{\theta} \otimes \mathbf{K})$  such that  $\beta_* \neq \alpha_*$  on  $K_0(H_{\theta})$  for any  $\alpha \in \operatorname{Aut}(H_{\theta})$ .

Proof. We use the same notations as in the above discussion. Put a=0, b=1 and c=1. By Packer ([9], Lemma 2.9) there is a projection q in some  $M_n(H_\theta)$  such that [q]=[1]+([1]-[p(1,1]]) in  $K_0(H_\theta)$ . Then d=f=h=k=1 and g=0. Put r=1, s=0 and x=1, y=0. Then rf-sk=1 and xh-yg=1. Hence

$$qM_n(H_\theta)q \cong H(\theta,0) = H_\theta.$$

Since  $H_{\theta}$  is simple, q is full in  $M_n(H_{\theta})$  and since [q] = [1] + ([1] - [p(1, 1)]) in  $K_0(H_{\theta})$ ,  $[q] \neq [1]$  in  $K_0(H_{\theta})$ . Therefore by Corollary 4.7 we obtain the conclusion.

6. A MAP FROM Pic(A) TO FP/~

Let  $\operatorname{Pic}(A)$  be the Picard group of A which is defined in Brown, Green and Rieffel ([3]). In this section we will construct a map  $\overline{\mathcal{J}}$  from  $\operatorname{Pic}(A)$  to  $\operatorname{FP}/\sim$  by modifying the method stated in Rieffel ([11], Propostion 2.1).

Let X be an A-A-equivalence bimodule. Then we can find 2n elements  $x_1, \ldots, x_n, y_1, \ldots, y_n$  in X such that

$$\sum_{i=1}^{n} \langle x_i, y_i \rangle_A = 1.$$

Let  $E = M_n(A)$  and we consider  $X^n$  as an E - A-equivalence bimodule in the evident way. Let  $x = \{x_1, \ldots, x_n\}$  and  $y = \{y_1, \ldots, y_n\}$  in  $X^n$ . Let  $z =_E (y, y)^{1/2}x$  and  $p =_E (z, z)$ . Then by Rieffel ([11], Propostion 2.1) p is a full projection in E and  $pEp \cong A$ . We can regard p as a full projection in  $A \otimes K$ . Hence we can define an element  $(p) \in FP/\sim$ . Then the element  $(p) \in FP/\sim$  is independent of the choices of  $x, y \in X^n$ .

LEMMA 6.1. The element  $(p) \in FP/\sim$  defined in the above is independent of the choices of  $x, y \in X^n$ .

Proof. Let X be an A-A-equivalence bimodule and p the projection in E defined in the above. We will show that X is isomorphic to  $(\mathbf{1}\otimes f_{11})Ep$  as left Hilbert A-modules, where  $\{f_{ij}\}_{ij=1}^n$  is matrix units of  $M_n$ . For any  $t\in X$  we regard t as an element  $\{t,0,\ldots,0\}\in X^n$ . Let  $\rho$  be the map of X to  $(\mathbf{1}\otimes f_{11})Ep$  defined by  $\rho(t)=_E\langle t,z\rangle$  for any  $t\in X$ . By using  $\langle z,z\rangle_A=1$  and routine computation, we can see that  $\rho$  is an isomorphism of X onto  $(\mathbf{1}\otimes f_{11})Ep$ . Therefore (p) is independent of the choices of  $x,y\in X^n$ .

By the above lemma we can define a map  $\overline{\mathcal{J}}$  from Pic(A) to FP/  $\sim$  by  $\overline{\mathcal{J}}([X]) = (p)$  where p is a full projection in  $A \otimes \mathbf{K}$  defined in the above way.

For any  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$  we can construct an A-A-equivalence bimodule  $X_{\beta}$  as follows: let  $X_{\beta}$  be the vector space defined by  $X_{\beta} = (\mathbf{1} \otimes e_{00})(A \otimes \mathbf{K})\beta(\mathbf{1} \otimes e_{00})$ . We define the obvious left action of A on  $X_{\beta}$  and the obvious A-valued inner product, but we define the right action of A on  $X_{\beta}$  defined by  $x \cdot a = x\beta(a \otimes e_{00})$  for any  $a \in A$  and  $x \in X_{\beta}$  and the A-valued inner product by  $\langle x, y \rangle_A = \beta^{-1}(x^*y)$  for any  $x, y \in X_{\beta}$ . By Brown, Green and Rieffel ([3]) the map  $[\beta] \to [X_{\beta}]$  is an isomorphism of  $\operatorname{Out}(A \otimes \mathbf{K})$  onto  $\operatorname{Pic}(A)$ . We denote by  $\varphi$  the map  $[\beta] \to [X_{\beta}]$ . And we define the map  $\widetilde{\mathcal{J}}$  from  $\operatorname{Out}(A \otimes \mathbf{K})$  onto  $\operatorname{FP}/\sim$  by  $\widetilde{\mathcal{J}}([\beta]) = \mathcal{J}([\beta])$  for any  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$ .

PROPOSITION 6.2. With the above notations  $\widetilde{\mathcal{J}} = \overline{\mathcal{J}} \circ \varphi$ .

Proof. Let  $\beta \in \operatorname{Aut}(A \otimes \mathbf{K})$ . By the definition of  $\widetilde{\mathcal{J}}$ ,  $\widetilde{\mathcal{J}}([\beta]) = (\beta(1 \otimes e_{00}))$ . And by the definition of  $\overline{\mathcal{J}}$ ,  $(\overline{\mathcal{J}} \circ \varphi)([\beta]) = \overline{\mathcal{J}}([X_{\beta}]) = (p)$  where p is a full projection in  $A \otimes \mathbf{K}$  defined in the same way as in Rieffel ([11], Proposition 2.1). Then by Lemma 6.1,  $X_{\beta}$  is isomorphic to  $(1 \otimes e_{00})(A \otimes \mathbf{K})p$  as left Hilbert A-modules. Thus  $(1 \otimes e_{00})(A \otimes \mathbf{K})\beta(1 \otimes e_{00})$  is isomorphic to  $(1 \otimes e_{00})(A \otimes \mathbf{K})p$  as left Hilbert A-modules. Hence  $(p) = (\beta(1 \otimes e_{00}))$ . Therefore we obtain the conclusion.

Acknowledgements. The author wishes to thank the referee for a number of valuable suggestions for improvement of the manuscript.

### REFERENCES

- BLACKADAR, K-theory for operator algebras, Math. Sci. Res. Inst. Publ., vol. 5, Springer-Verlag, 1986.
- L.G. Brown, Stable isomorphism of hereditary subalgebras of C\*-algebras, Pacific J. Math. 71(1977), 335-348.
- L.G. Brown, P. Green, M.A. RIEFFEL, Stable isomorphism and strong Morita equivalence of C\*-algebras, Pacific J. Math. 71 (1977), 349-363.
- R.C. Busby, Double centralizers and extensions of C\*-algebras, Trans. Amer. Math. Soc. 132(1968), 79-99.
- K. KODAKA, Automorphisms of tensor products of irrational rotation C\*-algebras and the C\*-algebra of compact operators II, J. Operator Theory 30(1993), 77-84
- K. KODAKA, Picard groups of irrational rotation C\*-algebras, J. London Math. Soc., to appear.
- J.A. Mingo, K-theory and multipliers of stable C\*-algebras, Trans. Amer. Math. Soc. 299(1987), 397-411.
- J. PACKER, C\*-algebras generated by projective representations of the discrete Heisenberg group, J. Operator Theory 18(1987), 41-66.
- J. PACKER, Strong Morita equivalence for Heisenberg C\*-algebras and the positive cones of their K<sub>0</sub>-groups, Canad. J. Math. 40(1988), 833-864.
- G.K. PEDERSEN, C\*-algebras and their automorphism groups, Academic Press, 1979.
- M.A. RIEFFEL, C\*-algebras associated with irrational rotations, Pacific J. Math. 93(1981), 415-429.
- M.A. RIEFFEL, The cancellation theorem for projective modules over irrational rotation C\*-algebras, Proc. London Math. Soc. (3) 47(1983), 285-302.

KAZUNORI KODAKA
Department of Mathematical Sciences
College of Science
Ryukyu University
Nishihara-cho, Okinawa, 903-01
JAPAN

Received March 11, 1996; revised June 30, 1996 and November 17, 1996.