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ABSTRACT. We investigate a certain class of invariant subspaces of subdiag-
onal algebras which contains both two cases of (extended) weak*-Dirichlet
algebras and analytic crossed products. We show a version of the Beurling-
Lax-Halmos theorem.
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1. INTRODUCTION

Classical Beurling-Lax theorem on invariant subspaces of H? in the unit disc
(with an easy geometric proof due to Halmos) has several applications and has
been extended in many directions. The aim of the paper is to provide another
version of Beurling-Lax-Halmos theorem for general subdiagonal algebras.

Srinivasan and Wang ([12]) introduced weak*-Dirichlet algebras as an ab-
stract function theory. It is known that any simply invariant subspace 0 has the
form 9 = ¢H? for |q| = 1 a.e. Most of important theorems for weak*-Dirichlet
algebras are generalized to extended weak*-Dirichlet algebras by the first-named
author in [9] and [10]. On the other hand. Arveson ([1]) introduced the notion
of subdiagonal algebras to unify several aspects of non-selfadjoint operator al-
gebras. Subdiagonal algebras are regarded as the noncommutative analogue of
weak*-Dirichlet algebras.
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After the study of Kawamura-Tomiyama ([5}) and Loeble-Muhly ([6}) on
subdiagonal algebras determined by flows on von Neumann algebras, McAsey-
Muhly-Saito ([7], [8]) concentrated on the case of analytic crossed products to
attack the invariant subspace problem. They finally showed that if the action is
trivial on the center, then the Beurling-Lax—Halmos theorem is valid. Furthermore
they proved a strong converse: if a (strong) form of the Beurling-Lax-Halmos
theorem is valid, then it must be an analytic crossed product. Solel ([11]) compared
two invariant subspaces. But their study excludes certain commutative cases of
(extended) weak*-Dirichlet algebras.

In this paper we investigate invariant subspaces for general subdiagonal al-
gebras to include both analytic crossed products and (extended) weak*-Dirichlet
algebras. To avoid the strong converse mentioned above due to McAsey-Muhly-
Saito, we introduce an invariant subspace of U-type I, which is a generalization
of both a simply invariant subspace in a weak*-Dirichlet algebra and a pure in-
variant subspace in an analytic crossed product. We show a version of Beurling-
Lax-Halmos theorem for invariant subspaces of 2-type I. The notion of A-type 1
is not so restrictive because we also have a decomposition theorem into a part of
A-type I in Theorem 2.14.

2. DECOMPOSITION

Let B be a finite von Neumann algebra with a (faithful normal normalized) trace
7. We recall the definition of a subdiagonal algebra due to Arveson ([1]). Let 2
be.a o-weakly closed unital subalgebra of B, and let & be a faithful and normal
conditional expectation from B onto D = 2 N 2A* such that 7(®(z)) = 7(z) for
z € B. Then 2 is called a mazimal subdiagonal algebra of B with respect to ® if
the following conditions are satisfied:

(1) A + A* is o-weakly dense in B.
(2) ®(zy) = B(z)®(y) for 2,y € A.
(3) U is maximal among those subalgebras of B satisfying (1) and (2).

By a result [2] of Exel, a o-weakly closed finite subdiagonal algebra is auto-
matically maximal. So we may omit the condition (3) in our setting.
If B is abelian and B = L®(X, ), then a subdiagonal algebra 2l is an exactly
extended weak*-Dirichlet algebra introduced by the first named author in [10}.
Let 7 (resp. p) be a left (resp. right) multiplication of B on L(B,7) defined
by
n(b)n(z) = n(bz) and p(b)n(z) =n(zb) for bz € B
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where 1 : B — L%(B, ) is the canonical embedding. We sometimes omit the
symbol n and #. The closure of 2 in L%(B,7) is denoted by H? = W and
the closure of %o = {a € A | ®(a) = 0} is denoted by HZ = 5(%). A closed
subspace M of L2(B, ) is (left) U-invariant if 7(A)M C M, U-reducing if A and
A*-invariant, A-pure if M contains no non-trivial Y-reducing subspace, U-full if
the smallest -reducing subspace containing 9 is L?(B, 7).

DEFINITION 2.1. Let 90 be an 2-invariant subspace of L%(B, 7). Then M is
called simply invariant if {m(Up)M]> E M. Let § =M [7(Ug)M]2. Then M is
called of A-type I if [7(B)S]y = [#(B)M]y. Let M* = [x(B)M], © M. Then M*
is an A*-invariant subspace. If IM* is of A*-type I, then M is called of U-type 1.
And U is called of 2-type 1L if M = [x(Ap)MM]5 and MA = [7(AL)M ).

EXAMPLE 2.2. In the above situation, H? is of U-type I. Many H? are of
2-type II. For instance, if H is %-full (in particular, if D C A§%Ao), then HZ is of
A-type I1.

DEFINITION 2.3. Let W be a subspace of L2(B,r). Then W is called left-
wandering if W and «(2g)W are orthogonal. In particular a vector £ € L%(B, 1)
is left-wandering in the sense of [1] if and only if the one dimensional subspace
[€] spanned by £ is left-wandering in the above sense. If 2 is the analytic crossed
product in B = DX,Z as in [7], then W is left-wandering in our sense if and
only if W is left-wandering in the sense of [7] or [11], i.e., L} W and LW are
orthogonal when n # m, where L; is the unitary in B = Dx4Z implementing the

automorphism « as in [7] and [11]. A left-wandering subspace W is complete if
L*(B,7) = [m(B)W],.

LEMMA 2.4. Let O be an A-invariant subspace of L2(B, 7). Let S = M6E
[7(Ao)M]2 and K = MO [7(A)S)2. Then we have the following:
(1) S is a lefi-wandering subspace.
(ii) [7(B)S]2 and K are orthogonal.
(ili) The projection p of L%(B, 1) onto S is in m(D)".

Proof. (i) Since S C M, it is trivial that SLa{%Ap)S.
(ii) Since K and [w(2)S], are orthogonal and A} + 2 is o-weakly dense in
B, it is enough to show K and n(2§)S are orthogonal. For any k¥ € K, ¢ €
and s € S,
(klm(a™)s) = (m{a)kl|s) =0

since 7(a)k € m(Ao) K C w(Ao)IM.
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(iii) For d€ D, s € S, a € Uy and m € M,
(w(d)s|m(a)m) = (s|7(d*a)m) = 0.

Since M is D-invariant, § is D-invariant. @

DEFINITION 2.5. In the above setting, we shall call that S = & [7(Ue)M]2
is the wandering subspace of M.

LEMMA 2.6. Let M be an AU-invariant subspace of L*(B,7). Let S =M
[7(U)M]; be the wandering subspace of M. Then the following conditions are
equivalent:

(i) M is of A-type I (i.e., [x(B)M]y = [x(B)S)2);

(ii) 2 = [ (A)S]e.

Proof. (ii) = (i): Suppose that M = [7(A)S]2. Then
[x(B)M]; = [x(B)(A)S): = [v(B)S],

(i) = (ii): Suppose that M is U-type I and M # [7(A)S];. Then K =
Mo (7(A)S]; # 0. By Lemma 2.4, K and [#(B)S] are orthogonal. Thus {n(B)K]»
and [7(B)S]; are also orthogonal. Therefore

[m(B)I], © [(B)S]2 D [#(B)K]2 # 0.

Thus [7(B)M]; # [7(B)S]2. This is a contradiction. &

COROLLARY 2.7. Let M be an U-invariant subspace of L*(B,7). If M is
A-type 1 and non-zero, then M is simply invariant.

Proof. On the contrary, suppose that 9 is not simply invariant. Then the
wandering subspace S of M is zero. Then by Lemma 2.6, 9t = [x(A)S], = 0. This
is a contradiction. &

PROPOSITION 2.8. Let D be a finite von Neumann algebra with a trace T
and o an automorphism on D with To o = 7. Let B = DXyZ be the crossed
product with the canonically exiended trace v and A = DX, Zy be the analytic
crossed product. Let I be an A-invariant subspace of ﬁ?(B,T)_ Let Ls be the
unitary in B which implements a. Then the following conditions are equivalent:

(1) M is pure.
(i) N Ls"M = {0}.

n=0

(iii) 9 is of A-type 1.
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Proof. 1t is shown in [7] that (i) and (ii) are equivalent. Let S = M
[7(o)M] = M S LM be the wandering subspace of M. Then we have that

M= ﬂ Li"M & iﬂm"s.

n20 n=0

Therefore (| Ls"0M = {0} if and only if M = S ®L"S if and only if M =
nz20 n=0
[7(A)S]2. By Lemma 2.6, M = [#(A)S], is equivalent to that M is A-type . 1

PROPOSITION 2.9. Lel U be a weak™ Dirichlel algebra of L®(X, u) and M
an A-invariant subspace of L*( X, p). Then the following conditions are equivalent:
(1) M is simply invariant.
(ii) 9N is of U-type | and non-zero.
(iii) There exists a unimodular function ¢ € L*(X, pt) such that
M = qH?.

Proof. Tt is clear that (iii) implies (ii). Corollary 2.7 shows that (ii) implies
(1). 1t is a classical result that (i) implies (iii). 8

LEMMA 2.10. Let W be a left-wandering subspace of L*(B,r). Let Wi and
W be the subspaces of W. Suppose that W, and Wy are orthogonal and W is
D-tnvariant, then 7(B)W, and w{B)W, are orthogonal.

Proof. For d € D, 2,y € Yo, £ € Wy, £3 € Wy we have
(m(z* + d + y)&11€2) = (Ealm(2)(€)2) + (7(d)érléa) + (m(y)éa[€2) = 0.
Since 2o* + D + 2o is o-weakly dense in B,
(m(0)€1)€2) =0 for be B, & e Wy, & € Ws.
Therefore for by,b, € B
(m(b1)&a]m(b2)€2) = (m(b2"b1)é1162) = 0.

Thus 7(B)W; and #n(B)W, are orthogonal. &
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ProPosiTION 2.11. Let MM be an U-invariant subspace of L*(B,7). Let
S =M [r(Ug)M]2 and K = M e [7(A)S)2. Let py (resp. pm) be the projection
of L*(B, 1) onto [w(B)S] (resp. M). Then we have the following:

(i) p1pan = pmp1 and py € 7(B)';

(i) p1 (M) = [n(2)S]:;

(i) (1 — p))M = K;

(iv) M=pMe (L — p1)M;

(v} ;1 is an U-invariant subspace and of A-type I;

(vi) (1 = p1)M = K is an U-invariant subspace such that K = [7(Ao)K]s-

Proof. Put C = [m(B)S]26[7(%)S]2. Then we have [7(B)S]: = Ca[r(A)S],
and M = K & [7(A)S]2. Since K and C C [x(B)S]; are orthogonal by Lemma 2.4,

we have

Pipm = pmpr, PN = [7(A)S]; and (1—p)M =K.

Furthermore M = py M (1—-p; )M. It is clear that py M = [7(2A)S]; is A-invariant
and p; is in 7(B)'. Forae U

7(A)K = m(@)(1 = p1)IM = (1 — py)n(@)M C (1 — p)M = K.

Thus K is %-invariant. In particular [#(g)K]2 C K. Since M = [x(A)S)2 & K =
S&[m(Uo)M]2 and [7(A)S]z D S, we have K C [x(g)M]3. Since K = (1—p;)M,
we have (1 — p1)K = (1 — p;)ON. Therefore

K=({0-p)M=(1-pi)K C(1—p1)[m(Uo)M]>
c(1- Pl)“(%)ﬁmh = [7(Uo)(1 — p1)M]2 = [7(Uo) K]2.

Thus [7(2p)K]2 = K. Finally we shall show that p; 9 is of 2-type I. Since

1M = [7(A)S]2 = [S]2 @ [7(Ao)S]2 (- SL[x(U0)S]2)
and
[r(Ao)p1 M = [w(Ao)7(A)S]2 = [7(20)S5T]2,

we have S~ = p1IMM & [7(Up)p1 M]3 = S. Therefore [7(A)S™]2 = [7(A)S]2 = p1M.
This shows that py9 is of U-type I by Lemma 2.6. 1
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LEMMA 2.12. Let € be an U-invariant subspace of L*(B,7) and ¥ a B-
invariant subspace of L*(B,T). Let e (resp. f) be the projection of L*(B, ) onlo
& (resp. F). If ef = fe, then the following hold:

() If [n(%)}E]a = &, then [x(A)(ENF)2 =ENF.

(i) If € is of U-type 1, then ENF is also of A-type 1.

(i) ENF = FE and (ENF) O [(7(Ue))(E NF)la = F(€ © [m(Uo)€E]2)-

Proof. Since ef = fe, & = (ENF)@(ENF*) and ENF = fE. By assumption
£ is YU-invariant and F is A-reducing. Therefore we have

[7(20)€]2 = [1(Ae)(E N F)]2 @ [7(Uo)(€ N F)]o,

[FUNENFNa CENF and [r(A)ENFH CENFL

Thus we have
£ 6 [1(Uo)€]z = (ENF) & [1(Uo)(E N Fl2) & (ENFL) & [1(Uo)(€ N FH)]a)-

Hence we have

[n(A)(£ © [(Ao)€]2)]2
= [M(W((E N F) & [7(%)(E NF)]2 ® (r(W((E NFH) & [7(Uo)(€ N F)]a))-

By these consideration we have the following:
() If [7(Ae)E]2 = &, then [7(ANENF)a=ENF.
(i) Suppose that £ is 2U-type I, then by Lemma 2.6 we have

£ = [7(A)(E © [7(Uo)E))]2.

Therefore
ENF = [7(U)((ENF)o [n(Ae)(E N F)]2)]a-

This shows that £ N F is also A-type 1.
(11i) It is easily observed. #

PROPOSITION 2.13. Let U be an extended weak*-Dirichlet algebra of B =
L®(X, 1) and M an U-invariant subspace of L2(X, p). Then the following condi-
tions are equivalent:

(i) 9N is of type | in the sense of [10], i.e., for cvery nonzere projection
yE € D with xgM £ 0
xeM 2 xelr(Ao)M)..

(i) 9N is nonzero and of U-type I in the sense of this paper.
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(ili) There ezisl a unimodular function ¢ € B = L®(X,p} and a nonzero
projection xg € D such that
M= ypeH?.

Proof. (iit) = (ii): Since ¢H? is of U-type I, M = xpgH? is also of A-type
I by applying the above Lemma 2.12 for § = xpL*(X, ). Since xg € xpH?,
M= qxpH? £ 0.

(ii) = (i): Let 97 be of A-type I. Then for every non-zero projection xg € D
with xg9 # 0, xgI is of A-type I by the above Lemma 2.12. Hence xzMN is
simply invariant by Corollary 2.7. Thus

xgM 2 [7(Uo)x M2 = xe[r(Uo)M]2.

(1) = (iii): This is shown in [10]. @

The following Theorem 2.14 is a generalization of a decomposition theorem
of an invariant subspace for (extended) weak*-Dirichlet algebras studied in [9]
and [10].

THEOREM 2.14. Let B be a finite von Neumann algebra with o finile trace
1 and U a mazimal subdiagonal algebra. Let O be an U-invariant subspace of
L?(B,T) and pan the projection of L*(B, ) onto 9. Then there ezist projections
p1,p2,P3 € m(B) with py + p2 +pa = | and p;pom = pmp; for i =1,2,3 such that:

(1) M = py M @ p2M @ paM;

(i) p1M is an U-invariant subspace of A-type I;

(iii) paN is an U-invariant subspace of A-type 1I;

(iv) p3?M s an U-invariant subspace of A-type I1I;

(v) pgi)ﬁ contains no nonzero invariand ’s-nbspace U of U-type 1 of the form
g = g9 for some projection g € w(B) with pmg = gpm.

Proof. Let S = M & [7(Uo)M> and K = MO [7(A)S]s. Let p be the
projection of L?(B,7) onto [7(B)S];. Then p; € w(B), pipm = pmp1 and
219 = [7(A)S]; is an U-invariant subspace of A-type 1 by Proposition 2.11. Let

N = [n(B)M]2 © ([(B)S]2 & K).

Since K = (1 — p1)Wt, [#(A)S]z = ;1M and M = pM @ (1 — p1)M by Proposi-
tion 2.11, we have

N = ((1 - p)[r(BYM]) © K = (1 — p1)([x(B)M)> & IM).
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Then 91 is A*-invariant because [7(B)}M]; is B-invariant and [7(B)S], & K is U-
invariant by Proposition 2.11. Let T = N6 [7(%")MN]2 and L = NS [7(A*)T]>.

See Figure 1.

#{ BN
m
[7 (%)M, N
K [ (23) )2
C S pal | paM T L
\ pLD=[7(U)}S]2 / \ [7(A*)T]2

p1L*(B)=[r(B)S]2

p2L*(B)=[n(B)T]

(1 = p1)[x(B)M];

L*(B)

Figure 1.

We shall show that the subspaces L, [7(B)T]; and [x(B)S]; are orthogonal
each other. Applying Lemma 2.4 to 9N and 2A* instead of M and 2A, we have that
[7(B)T]; and L are orthogonal. Since M and [#(B)S]; are orthogonal and L C N,

L and [7(B)S]; are orthogonal. For z € S, t € T, z € B and y € B, we have

(m(z)s|m(y)t) = (w(y"z)s|t) =0

because m(y*z)s € [7(B)S]2, t € T C N, [#(B)S] and T are orthogonal. Thus

[7(B)S]2 and [x(B)T]2 are orthogonal.

Let py (resp. pm) be the projection of L%(B,7) onto [n(B)T]2 (resp. 91).
Then applying Proposition 2.11 to 91 and U* instead of 9 and 2, we have that

P2 € 77'(}3)/)

p2pn = papz, PN = [7(AN)T]p = [x(B)T) NN,
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(1 = p2)NM = L, [x(A*)T]2 is an A*-invariant subspace of W*-type I, and L is an
A*-invariant subspace such that L = [#{U3)L],. Put C = [#(B)S]2 & [7(A)S].
Let pc (resp. ) be the projection of L?(B, 1) onto C' (resp. [7(B)9M]2). Since

[7(B)YM)s = (7(B)S @ K @ N=C e [r(WS,dKeN=CodMdN

we have 7 = pc + pan + pnr. Since [7(B)T1, C [w(B)M]2, por = rps = p2. Because
[7(B)S]2 and [(B)T]; are orthogonal and C' C [7(B)S]s, C and [7(B)T]. are
orthogonal and pcps = pepe = 0. Therefore py commutes with pm = r — pe — po.
Thus

Pt = M N [7(BYT]s.
Since M = [7(A)S]2@ K and that [7(B)S)2 (D [x(A)S]2) and [7(B)T], are orthog-
onal, we have p2f C K. It is clear that po9N = M N [7(B)T)z is an U-invariant

subspace. We shall show that p,90 is of U-type II. Put My = p,MM C [7(B)T),
and M4 = [7(B)M3]) © My. We have

P2 = p2r = p2(pc + pm + pm) = p2pm + papar-
Therefore [7(B)T)2 = My & [7(A*)T}2. Thus [7(B)My], C [7(B)T)s. Then

ﬂﬁs = [W(B)mg]g oMy = [W(B)f)ﬁz]z N gﬁé‘
7(B)M3]e N ([7(B)T)2a N M3) = [x(B)Mz]2 N [7(A )T,

Thus
My = [r(B)Ma]2 O [7(A)T)2

and

[(B)M3]z = My & My C My & [w(A*) T,

Recall that [m(2*)T]; is of A*-type 1. The projection of L?(B, ) onto [7(A*)T]-
is papo. Let § = [7(B)M3]2 and f be the projection of L?(B,7) onto F. Then
(p2pn)f = f(p2pm). Applying Lemma 2.12, we have that M5 = {x(UA*)T)2 N
[7(B)M,] is A*-type 1.

Finally put p3 = I — p; — p. Then p3 € #(B) and pspm = pmps. Put
M3 = psIM = M N psL?(B, 7). Then

Mz = MO (p1I)L O (P = M [7(A)S]3 N My = K NMy.

Since My C K, we have M3 = K © M. Let px be the projection of LZ(B,7)
onto K. Then px = py + pspm. Let F = [#(B)M]> & [7(B)T]2 and f' be the
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projection of L%(B, 1) onto §. Let £ be the projection of L?(B, 1) onto L. Then
by Figure 1 we have

7(B)' 3 f =7 —py=p1+p2+pspm+ £ —p2 = p1 + papm + £,

PKfI — f’pK = papm and ﬂﬁa = KnNn /S’, Since K = [W(Q{g)f{]g by PI‘O])OSitiO]]
2.11, we have
mg = [W(Q[o)mz;;]z

by Lemma 2.12. Let M} = [n(B)Mz), © Ma. Let F = [x(B)Ma)z and ' be
the projection of L?(B,7) onto F. Recall that L = M © [#(UA*)T}z and L =
[7(AG)L]2. We have that [7(B)M3]a C M3 & L, because [1(B)M]3 = [7(B)S] &
M3 & [7(B)T)2 ¢ L. Thus

My = [7(B)Ms), © My = LN [n(B)Ma), = LNF .
Since f' € 7(B) and 4 = £f*, we have
My = [r(Ag)M5 ]
by Lemma 2.12. Thus we have shown that Mz = p3M is of A-type ILI.

Let 0 be an invariant subspace of p;9M of YU-type I of the form BV = ¢
for some projection g € m(B) with pmg = gpm. Let & be the range of g. By
Lemma 2.12, U = g = M N & and

pig= [71'(91(])”]2 = g(im (=) {W(Q[o)qu) = _(]S.
Since g9 C M and ga(Uo)M C 7(Ug)gIM C 7 Ao)M, we have ¢S5 C 5. Therefore
U = [7(U)gS]2 C [7(A)S] = p1 L.
Hence B C pyMNpMand B=0. &

EXAMPLE 2.15. Let D be a finite von Neumann algebra with a trace 7 and
o an automorphism on D with 7o o = 7. Let B = Dx,Z be the crossed product
with the canonically extended trace 7 and A = Dx,Z; be the analytic crossed
product. Let 9 be an U-invariant subspace of L2(B, ). Let Ls be the unitary in
B which implements «. Then we have that

M=) L"Me i%,,"s.
n=0 n=0

Using the notation of the above decomposition theorem, we have that p;2R =

[o/8]
Y OL"S, paM =0 and psM = (| LS.

n=0 nz0
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EXAMPLE 2.16. Let D be a type II; factor and o : 22 — Aut D an outer
action. Let B = Dx,Z? be the crossed product. Fix an irrational positive number
& and consider the positive cones

Py = {(m,n) € Z%,6m + n>0}.

Let Ay be the unitary B which implements o, for g € Z2. Let 2 be the o-weak

closure of the set of all finite sums ) z,),, where 2, € D and 2, = 0 except for
gEP,
finitely many g € Py. Let IR = HZ. Then H? is of 2-type II. Since the wandering

subspace S = 0, we have pyM = 0, poIN = HZ and p:9N = 0.

EXAMPLE 2.17. We can also construct several examples such that none of
i (i = 1,2,3) are zero in the decompaosition of the above Theorem 2.14. For ex-
ample consider the direct sum of the subdiagonal algebras and invariant subspaces
of the just above two examples. Helson-Lowdenslanger ([4]) give an 2-invariant
subspace of A-type 111 which is not A-reducing.

3. INVARIANT SUBSPACES

Loebl-Muhly ([6]) and Kawamura—Tomiyama ([5]) investigate maximal subdiag-
onal algebras determined by flows in von Neumann algebras. Later the study
on invariant subspaces is focused on analytic crossed product A = Dx,Z, and
Mecasey, Muhly and Saito ([7]) determined when a version of the Beurling-Lax-
Halmos theorem (abbreviated the BLH theorem) is valid for 2 = Dx,Z,. But
their situation excludes certain commutative cases as in [10] and [12].

The aim of the section is to unify both the cases of analytic crossed products
and (extended) weak*-Dirichlet algebras.

The following Lemma 3.1 is a generalization of Lemma 4.2.2 in Arveson ([1])

on wandering vectors and is a key lemma to prove our main theorem.

LEMMA 3.1. Fori= 1,2, let K; be a D-invariant subspace of L%(B,7) and g;
be the projection of L%(B, 1) onto K;. Assume that K; and K, are lefi-wandering.
Suppose that there exists a partial isometry w € (D) such that w*w = ¢q; and
ww* = q3. Then there ezisis a partial isomeiry v € (B satisfying the following:

(i) v*v is the projeciion onio [r(B)Ki]z and vv* is a projection onio
[W(B)I(z]z,’
(ii) vm(b)¢ = w(byw€ for allé € K, and b € B;
(lll) U([W(Q[)I(l]z) = [W(Q[)I{g]z
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Furthermore there exisls a unitary u € w(B) such that uf = v€ for § €
(7(B)K1)2-
Proof. First we shall show that

(3.1) (r(D)E1)€2) = (m(b)wéy|wéz) for be B, &,62 € K1
Since 23 + D + %o is o-weakly dense in B, it is enough to consider three cases: (D
be D, (I1) b e Ao, and (IT1) b € A3,

(1) Suppose that b € D. Since n(b)K; C K1, w € (D) and w is a partial
isometry whose support is K, we have

((b)wér|wz) = (wr(b)és|wEa) = (m(b)§1]€2).

(1) Suppose that b € %p. Since K; and K are left-wandering, K; and
m(Up)K; are orthogonal for 1 = 1,2. We have £1,{; € Ky and wé;,wés € K.
Therefore

(w(b)é11€2) = (m(b)wés[wéa).
(11I) Suppose that b € 2A3. Since K; and 7(2o) K; are orthogonal, (U)K
and K; are orthogonal for = 1,2. Therefore
(m(b)&11€2) = 0 = (w(B)wér|wé2).
Thus we have proved (3.1).
For b; € B and &; € K, (z =1,2,...,n), using (3 1), we have

|52 st Z}:mb elr(b)g) = 33 (n(E b))

zlgl

-3 S ({05 e ) = ” Z m(b: )“’f‘} ‘

i=1j=1

Therefore there exists a partial isometry v € ﬁ(LZ( ), 7} such that
vr(b) = w(b)wé for be B, €K,

and v = 0 for € [7(B)K1]3. Thus (i} and (ii) are proved.
We shall show that v € m(B)'. Take z € B. For b € B, £ € K1,

vr(z)m(b)E = vr(zb)E = m(zb)wé = w(2)r(b)wé = n(z)vr(b)E.
For b € B, n € [x(B)K1]+, we have 7(b)y € [n(B)K1]3. Therefore
vr(z)n = 0 = w(z)vy.
Thus va(z) = w(z)v for any z € B, that is, v € 7(B)’. Since wK; = K3, we have
o[r(W) K1)z = [r(WwKi]z = [7(A)Kz]a.

Furthermore, since 7(B) is also a finite von Neumann algebra, v € 7(B)’ can be
extended to a unitary u in 7(B)'. #
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The following Lemma 3.2 is an extension of Theorem 3.2 in [7].

LEMMA 3.2. Lei My and My be U-invariant subspaces of U-type I. Let S; =
M; © [r(Uo)M;]2 be the lefl-wandering subspaces of M; and p; € 7(D) be the
projections of L2(B,7) ento S; fori=1,2. If pp X p1 in w(DY, then there exisls
a partial isomelry v € w(B) such that v, = Ms.

Proof. Since py < p;, there exists a partial isometry w € 7(D)’ such that
ww* = py and w*w Epy. Put pf = w*w € 7(D) and let 5] be the range of p}.
Then
7(D)S] = 7(D)p\ St = piw(D)S1 C piSh = 57-

Since m(Ao)Sy C 7(Ag)S1, S C 51 and 7(g)Sy is orthogonal to Si, we have that
7(Ap)S] and S{ are orthogonal. Thus 5] is also D-invariant and left-wandering.
By Lemma 3.1, there exists a partial isometry v € #(B)’ such that v([z(U)}S}]2) =
{7(A)Sa]2. Furthermore the support of v is [r(B)S]]2 and the range of v is
[7(B)S2]s. Let S = 81 ©57. Then 5Y is also a D-invariant and left-wandering.
Therefore 7(B).S; and 7(B)S? are orthogonal by Lemma 2.10. Thus [7(B)S51]z =
[#(B)St]z @ [7(B)57]. Hence

o[(m(2)51)]2 = v[m(A)S]2-
Since M, and My are of A-type I,

vy = v[r(A)S1]2 = v[r(A)St]2 = [7(A)S2]2 = Ma. 0

LemMma 3.3, Let M be an A-invariant subspace and uw € w(B) a pariial
isometry such that M = uH?. Then the following are equivalent:
(i) O is full;

(i) u is a unitary.

Proof. (i) = (ii): Suppose that M is full. Then
uL?(B) = u[n(B)H?); = [w(B)uH?; = [x(B)M];, = L*(B).

Hence u is a co-isometry in 7(B)’. Since n(B)’ is finite, u is in fact a unitary.
(i1) = (1): Suppose that u is a unitary. Then

[x(B)YM]2 = [7(B)uH?]; = [ur(B)H?)s = u[r(B)H?); = uL*(B) = L*(B).

Thus 9 is full. &

We have a version of the Beurling-Lax-Halmos theorem for subdiagonal
algebras.
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THEOREM 3.4. Let B be a finile von Neumann algebra with a trace v, D
a von Neumann subalgebra of B and ® : B — D a (faithful normal) conditional
czpectation with 7o ® = 1. Let U be a mazimal subdiagonal algebras with respect
to ®. Suppose that the center Z(B) of B contains the cenler Z{D) of D. "Let M
be a A-invariant subspace of L*(B, 1) and of U-type 1. Then there exists a partial
wometry v € 7(B) such that
M= vH?

Proof. Let S = M [x(Ug)M]2 be the left-wandering subspace of M. Re-
call that L*(D) is the left-wandering subspace of H?. Let ep (resp. eg) be the
projection of L?(B) onto L%(D) (resp. S). Then ep and eg are in w(D)’. By the
comparison theorem, there exists a projection ¢ € Z(D) such that

m(g)ep X m(qles and w(l~ gles <X w(l —q)ep.

By the assumption, we have ¢ € Z(D) C Z(B). Since M and H? are of A-type I,
()M = M A (7(q)L*(B)) and #(q)H? = H? N (w(q)L?(B)) are U-invariant
subspaces of %U-type I by Lemma 2.12. And the projection of L?(B) onto the
left-wandering subspace of 7(q)9 (resp. 7(g)H?) is m(¢)es (resp. w(g)ep) by
Lemma 2.12. Since n(g)ep < m{g)es in w(D)Y, there exists a partial isometry
vy € 7(B)’ such that m(g)H? = vy7(q)M by Lemma 3.2. Similarly there exists a
partial isometry v, € w(B)’ such that 7(1 — ¢)9M = vym(1 — ¢) H?. We shall show
that vy7(g) is a co-isometry on 7(q)L%(B). In fact

v17(@)(n(@) L3(B)) D [t (g)n(B)IM, = [x(B)os n()9M
= [r(q)7(B)H?}; = n(g)L*(B).

Thus vy7(g) is a co-isometry in a finite von Neumann algebra 7(g)w(B)', so that
v17(g) Is a unitary on w(q)L%(B). Therefore (vim(g))(m(q)OM) = n(g)H? implies
that '

m(g)M = m(q)vin(q)H? = w(q)o; H?.

We also have 7(1 — ¢) = 7(1 — q)vo H>. Let
v=m(g)v] + 71 — q)vs.
Then v is a partial isometry in 7(B) and we have

M=nw(@M&7(l—)M=n(gwiH2®7(l —q)vH? = vH?. 1

REMARK 3.5. The above proof itself is a generalization of that of Halmos
((3]) and McAsey, Muhly and Saito ([7]).
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CoROLLARY 3.6. (McAsey, Muhly and Saito [7]) Let D be a finite von Neu-
mann algebra with a finite trace v and «« an aulomorphism of D with o= 7. Lel
B = Dx4Z be the crossed product and U = Dx 2, the analylic crossed produc.
Suppose that « fizes the center Z(D) of D) elementwise. Then every pure invariant

subspace M of L%(B) has the form vH? for some partial isometry v € 7(B)".

Proof. The condition that « fixes Z{D) elementwise is equivalent to that
Z(D)} C Z(B). Propaosition 2.8 shows that 9 is pure if and only if 9 is U-type L.

Therefore we can apply Theorem 3.3. 1

REMARK 3.7. The assumption that Z(D) ¢ Z(B) in Theorem 3.3 is nec-
essary. For example let B = M3(C) be the algebra of 2 by 2 matrices and D
the algebra of diagonal matrices. Then the set 2 of upper triangular matrices
is & maximal subdiagonal algebra. We note that Z(D) = D ¢ Z(B) = C. Let
M = L2(B). Then IR is of A-type 1. But there exists no partial isometry v € 7(B)"
such that I = vH?, because dim M = 4 and dimvH2 $dim H? = 3.
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