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Let G be alocally compact two step nilpotent group, and let A be a unitary charac-
ter on the closure [G, G}~ of the commutator subgroup of G. This character defines
a quotient C*(G), of the group C*-algebra of ¢ which is the C™*-completion of the
algebra L'(G), consisting of all measurable functions f : G — C such that f(zz) =

Mz)'f(z)forze G, 2€[G,6)"and [ |f(z)|dZ < oo where dz denotes the
g/(6.61-
Haar measure on the quotient group. The involution and the product in the latter

algebra are given by f*(z) = f(z™!')~ and (fxg)(z) = [ flzy)g(y!)dy.
glg.cl-

The representations of C*(&)y correspond to the unitary group representations
of G which restrict to A on [G,G]~. The whole group C*-algebra C*(G) may be
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viewed as the algebra of sections of a C*-bundle over the Pontrjagin dual of [, G]~,
whose fibers are isomorphic to the C*(G),; compare [13].

This article contains a single theorem, in which the structure of C*(G), is
completely determined if a mild extra condition is satisfied. The extra condition
is explained next. The character A defines a skew-symmetric bicharacter on G by
(z,y) — Mzyz~ly™!) = A([x, y]). This bicharacter factors through G/G» where
G/ ker A is by definition the center of G/ker A, and yields on the abelian group
G = G/G» the structure of a quasi-symplectic space in the terminology of [12],
Le., a non-degenerate skew-symmetric bicharacter v : G x G — T. With each
such quasi-symplectic space there was associated in [12] an invariant Inv(G) which
actually is an equivalence class of discrete abelian groups: Choose a “large compact
subgroup” K of G in the sense of (1.4) in [12], i.e., all compact subgroups in G/K
are finite, such that K is contained in K* := {z € G| y(x,k) = 1 for all k € K}.
Such K’s always exist. The connected component ((7/K)q of the identity is of the
form U/ K, the group U being open in (7 and contained in K+, While the discrete
group K+ /U depends on the choice of K, different K’s yield equivalent groups
for a certain equivalence relation. The equivalence class through K+/U is the
invariant Inv(G) = Inv(G, 7). Here we shall assume that the invariant associated
with G/G contains Z" for a certain n. In this case the whole equivalence class is
easy to describe: it consists of all groups of the form Z™ x E with a finite abelian
group E. The assumption implies ([12], (2.4)), that the primitive quotients of
C*(G)a are stably isomorphic to n-dimensional noncommutative tori.

From these first introductory sentences the reader may already guess that we
shall make use of the approach and the results of [12]. Indeed, this article may be
viewed as an appendix to [12], where the theorem below was already conjectured.

To gain some more flexibility we shall formulate the theorem for characters
A defined on central subgroups containing the commutator subgroup. The group
G, and the bicharacter on G/G, can be defined as above.

THEOREM 1. Let G be a locally compact two step nilpotent group, let £ be a
closed cenlral subgroup containing [G,J], and lel X be a unitary character on L.
Assume further that Inv(G/G)) contains Z%. Then C* (@) is stably isomorphic
to the (C*-) tensor product of Coo((Or/L)"), an n-dimensional noncommutative
torus and the algebra of compact operators on a Hilbert space. If G/Gy is not
discrete then C*(G), is even tsomorphic to such a tensor product.

REMARK 2. In the “type I case” a similar result was obtained in [8].

Proof of Theorem 1. First we observe that it suffices to show that C*(G)a
is (stably) isomorphic to a tensor product of an n-dimensional noncommutative
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torus, the algebra of compact operators and an commutative algebra, because the
primitive ideal space of C*(§), is homeomorphic to (Gx/L)", compare [2], [3] and
(2.2) of [12]; the second article ([3]) contains further information on the topology of
the whole space Priv (C*(G)) as well as a discussion of a large variety of examples
of two step nilpotent groups.

Our first task will be to reduce to the case of a discrete quotient G/G,. This
is done in two steps.

Step 1. Reduction to the case that G/L is essentially compact-free, i.e., all
compact subgroups of G/L are finite.

To this end, choose a large compact subgroup KC/L of the locally compact
abelian group G/£ in the sense of (1.4) in [12], and assume further that K+ := {z €
G | A([z,y]) = 1 for all y € K} contains K. It is not hard to see that such a K exists
(if M/L is any large compact subgroup of G/L then M A M is of finite index in
M, compare the above discussion of the invariant Inv(G)). The algebra C*(G)x
is isomorphic to the twisted covariance algebra C*(G,K,C*(K)x, T, 7) where the
action T is given by

(Tea)(k) = o (k) = a(z~"ka),

and the twist 7 is given by

(r(B)a)(?) = a(k™"1)

for k,l € K,z € G and a € L}(K)x C C*(G)a. This twisted covariance algebra
is, compare Section 3 of [12], the C*-completion of the algebra of all measurable
functions f : G — C*(K), satisfying f(zk) = 7(k)~'f(z) for z € G, k € K and

[ (If(=)l| dZ < oc. The involution and the multiplication in the latter algebra are
G/K

defined by f*(z) = f(z=)*® and (fxg){z) = [ Fflzy)¥™ g(y~ ') dy. The isomor-
GIK

phism between C*(G)» and C*(G,K,C*(K)a, T, 7) is implemented by assigning to
a continuous function f : G — C with f(zl) = M{)~! f(z) for z € G, I € £, whose
support projects to a compact subset of G/L, the function f: G x K — C given
by f(:c, k) = f(zk), which in an obvious sense may be viewed as an element of
C*(G,K,C*(K),T, 7).

For the following computations compare also (2.3) in [12]. As K+ D K the
algebra C*(K), is commutative. More explicitly, choose an extension v € KA of
X € L and define @ : (K/LY — C for a € L'(K)» by

a(a) = /a(k)v(k)a(k)dk.

x/c
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This map yields an isomorphism from C*(K) onto Coo (K /L£)"); we use the nota-
tion Coo for the “continuous” functions vanishing at infinity even though (K /L)
is a discrete group. In the transformed picture the twist T and the action T are
given by
(r(k)a)(a) = v(k)a(k)a(e),
a*(a) = a(n(z)a),

where 7 : G — (K/L)" is defined by n(z)(k) = A([k,z]); note that 5 factors
through G/K+.

In order to decompose C*(G, K, Coo{(K/L)"), T, 7) we choose representatives
for the cosets of the subgroup im# of (K/£)": Let («j)jes be an indexed family
of elements in (X/L)* such that for each A € (K/L£)" there exist unique elements
7 €J and @ € im#n with # = «je. Moreover, choose for each j € J an extension
pi € (G/LY" of ;.

To each continuous function f : § — Coo((K/L)") satisfying f(zk) =
T(k)~'f(z) for x € G, k € K, whose support projects to a compact subset of
G/K, we associate a family (f;);es of functions f; : G — Coo (G/K*), namely

fi(z, ) = pj(=) fz, a50(y)),

where y € /K1 denotes the coset of y € €.
Define a twist 7° on K with values in the unitary group of the multiplier
algebra of Coo(G/KL) by

(r°(k)a)() = v(k)n(y)(k)e(y),

and define an action 7° of G on Coo{G/K1) by

(TZa)() = a(™"9).

Then we may form the twisted covariance algebra C*(G, K, Coo(G/KL), T°,7°).
It is easy to see that the functions f; are members of this twisted covariance al-
gebra. Moreover, one has (f*); = fiyand if g 1 § — Coo((K/L)") is another
function like f then (f*g); = f; xg; for all j € J. After these observations
it is easy to check that the assigment f ~ (fj);es yields an isomorphism from
C* (G, K, Coa(K /L)), T, 7) = C*(G)x onto Coo(J, C*(G,K,Co(G/KL), T°, 7°)) =
Coo(J) R C*(G,K,Ca(G/KL), T, 7°).

By the results of [9] the latter tensor factor (note that as G/K*+ is discrete
there exists a “measurable” cross section G /K+ — G mapping compact (= finite)
sets into relatively compact subsets) is isomorphic to the tensor product of the
algebra R(1y(G/K 1)) of compact operators on Ir(G/K+) and the twisted covariance
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algebra C*(K+,K,C, ') with trivial action, where the twist 7/ is given by 7/(k) =
v(k). We conclude that C*(G), is isomorphic to Coo(J)RR(1(G/KL))RC* (K1), .

This means that we may substitute G by X+ and £ by K. In other words,
from now on we may assume that G/L is essentially compact free, hence the
connected component (G/L)g is open in G/L, and it is a vector group.

Step 2. Reduction to the case that G/G, is discrete.

To this end, let .S be the maximal torus in the connected component Gy of the
quasi-symplectic space ¢ = G/G» endowed with the form ¥(z,y) = A([z,y]). By
(1.8) of [12], there exist subgroups R and F of G such that G is the y-orthogonal
direct product of R and SF, the product SF is also direct, and ¥ defines an
isomorphism from S onto F, and from F onto 5 as well. Note that abelian groups
are also written multiplicatively.

As R is evidently essentially compact free, by (1.16) of [12], there exists a
quasi-polarization @ in B which is isomorphic to R® x Z* for some a,b € N. Quasi-
polarization means, compare (1.1) of {12], that @ C Q*, that Q*/Q is discrete,
and that y|R induces an isomorphism from R/Q* onto Q*. Then P := FQ is a
quasi-polarization in ((7,v). The group P is isomorphic to R x Z¢, ¢ = b+ dim 5,
in particular it is a projective locally compact abelian group.

Let P be the preimage of P under the natural map G — G/Gy = G. The
exact sequence

1= Gy/L~—=P/L—P/G)y—1

splits, hence there exists a closed subgroup A of G with £ C N C P such that the
obvious homomorphism N /L — P/G, is an isomorphism.

As above, using A instead of K, we identify C*(G), with the twisted covari-
ance algebra C*(G, N, C*(N),, T, 7). Again C*(N), is commutative, its spectrum
is homeomorphic to (N/L)* = (P/G\)" = P = R® x T°. Since P is a quasi-
polarization this spectrum can also be identified with G/PL, and the G-action,
derived from T, is just translation. Moreover, it is not hard to show that the
natural map G — G/PL = R® x T¢ allows a measurable cross section {with values
in the connected component Gp) mapping compact subsets of G/P* into relatively
compact subsets of Gy.

Hence the results of [9] can be applied. Choose an extension v € N of
A € L". The algebra C*(G,N,C*(N)x, T, 7) is isomorphic to the tensor product
of the algebra of compact operators on L2(G/P*) and the algebra C* (P4, N, C, )
with trivial action and twist 7/ = v, i.e., the latter algebra is C*(P4),.

Therefore, we may replace G by ¢’ = P+, L by £' = A and A by X = v.
Then G}, is just P, hence ¢'/G), is discrete. This finishes Step 2 and solves our
first task.
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So far we have not used our assumption on Inv(G/G,). Although it is evident
from the considerations in Section 1 of {12], for formal reasons we should remark
that the two reduction steps did not change this invariant.

Before continuing with the proof we make two further remarks.

REMARK 3. The above arguments also show that in the proof of (2.3) in
[12], one could avoid the use of Kehlet’s results on cross sections in a nonseparable
context. The reason is the explicit information on the structure of the groups in

question.

REMARK 4. Qur above two reductions show that the original algebra C*(G),
decomposes into a tensor product, one factor being the algebra of compact oper-
ators on an infinite-dimensional Hilbert space (and hence it remains unchanged
when being tensored with the algebra of compact operators on a separable Hilbert
space), except for the case that K1 is of finite index in G and P+ is of finite
index in k1. Since P is a quasi-polarization, i.e., P+ /P is discrete and G/P* is
canonically isomorphic to (P/G,)", this case happens only when P/G, is finite
and, consequently, G/G) is discrete. This observation shows that the last sentence
of the theorem follows from the preceding statement on stable isomorphy.

If G/G is discrete, which we may assume from now on, our assumption on
Inv(G/G,) means that G/G, is isomorphic to a product of Z"* and a finite group.
The main difficulty lies in this finite group. If 1t happens to be trivial the proof is
quickly finished: then the exact sequence

L= G/L—G/L—G/Gy—1

splits. Choose a closed subgroup M of G such that G/L is the direct product of
Gr/L and M/L. The group M/L is isomorphic to G/Gy, and this isomorphism
is compatible with the bicharacters on those two groups, which are derived from
(z,9) — A([z,y]). From the fact that G, centralizes G modulo ker A one easily
concludes that C*(G), is isomorphic to C*(Ga)x ® C*(M),. The algebra C*(Gx)a
is isomorphic to Coo ((G2/L)"), and C*(M), is an n-dimensional noncommutative
torus.

Our final (and most space consuming) task will be to reduce to the case of
a free quotient G/G,, i.e., to dispose of the potential torsion part of G/G. This
will be done in finitely many steps, in each reducing the order of the torsion part.
The case n = 0 is easier, the reader is invited to look first at Remark 5 below and
the comments following it.
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Later we shall need for technical reasons that

there exists an open subgroup W with £ C W C G\

(*)

such that G/W is a finitely generated free (abelian) group.

This property is not automatically fulfilled, hence we show how we can re-
duce to such a situation. Choose a finitely generated free abelian group F and a
surjective homomorphism & : F — G/G,. Denote by p : G — G/G» the natural
map, and define ¢’ to be the subgroup of the direct product § x F* consisting of all
pairs (z, f) with p(z) = £(f). There are obvious homomorphisms ¢ : G' — G and
¥ :G' — F, which are easily seen to be onto. The group £’ := {(z,¢) |z € L} is
contained in G’. Define the unitary character A’ on £’ =% £ in the most obvious way.
Put W' := ker ¢ = {{,¢) | € G,}, which is contained in G}, as G}, = G x ker«.
By construction the quotient G'/W' is a free abelian group. The homomorphism
¢ induces an isomorphism from G'/GY, onto G/Ga, and a surjection from C*(G')x/
onto C*(G)x. Therefore, if we know that C*(G')ss has the structure as claimed in
the theorem we know it for C*(G)x as well. The group G’ possesses the wanted
additional property. Now we omit the apostrophe and assume that G has such a
subgroup W.

To reduce the size of the torsion part of G/Gs we shall write C*(G)x as a
quotient of another ¢*-algebra. To this end, we choose a non-trivial finite cyclic
subgroup P /Gy of G/Gy. Put as usual P = {zx € G | A([z,y]) = 1 for all y € P}.
The groups G/P* and P/G are dual to each other, in particular G/PL is cyclic of
the same order as P/Gy. Our goal is to show that C*(G), is stably isomorphic to a
quotient of a tensor product of a commutative algebra with the algebra C*(PH)x.
And clearly the original algebra C*(G), inherits the decisive properties from the
newly constructed algebra. The kernel (P+), of the bicharacter on PL s just
P, and the quotient P+ /P has a smaller torsion subgroup than G/G,. Note also
that a group W as in (*) is contained in P+, and that P+ /W is free; hence the
additional property (*) remains valid when replacing & by Pt

Choose infinite cyclic groups A and B and homomorphisms €, : A — G and
€9 : B — P such that the composite maps A — G — G/P+ and B — P — P/G)
are onto; denote by M C A and N C B the kernels of these composite maps. The
groups A/M and B/N are cyclic of the same order, say 5. On A X B we define a
bicharacter ¢ by

ola,b;a’,b) = Mea(b), e1(a’)].
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Then we can form the twisted convolution algebra {'(4 x B, ¢) of summable func-

tions on A x B where the multiplication and the involution are given by

(f*o)(e) D olmy,y ") few)g(y

YyEAX B

and f*(z) = f(z=1)o(z, ).

The C*-completion of I'{A x B, ¢) is denoted by D = C*(A x B, s). Since ¢
factors through (A/M)x(B/N) this algebrais indeed a “rational rotation algebra”.
The group P* acts on {1(A x B, o) by

(T2 £)(a,6) = 77 (a,b) = A([z, &2 (@)]) f(a, b)

for z € PL. Clearly, this action extends to D, where it is also denoted by 7.
Hence we may form the twisted covariance algebra C*(P+, £, P, T, A) where the
twist A at a point [ € £ is just multiplication by A{{).

Next we claim that C*(G), is a quotient of this twisted covariance algebra.
The latter algebra may be considered as the completion of the algebra of measur-
able functions f : PL x A x B — C with f(2!,¢,8) = A(O)~'f(z,a,b) for i € £
which are integrable modulo £. For such an f define Rf : ¢ — C as follows. If
z € G is written as ¢ = 2’ (z") with 2’ € P+ and 2" € A, then

(RA)(=) = (RN (") = Y 3 fle'er(eea(d) eata”)ea (k)" 2"k, b).

veBEkeM

Because of the transformation property of f this sum coincides with

D05 M=), e (2 ea () e (k) 2"k, b).

beB keM

First one observes that this definition is independent of the chosen decomposition
of z, which is pretty easy. Secondly by a straightforward but lengthy computation
one can show that R is a #-morphism with values in L}(G),. Actually, R maps

onto L'(G)x and the norm of Rf is bounded by 3 3 [ |f(x,q,b)|da; for
4EA BEB pljc
this estimate one better uses the second expression for {Rf)(x).

Further details on these computations are omitted; we conclude that C*(G),
is a quotient of C*(P+, L, D, T, A).

Our next step will be to give a more suitable description of D (together
with the action of P+ on D). The following considerations are influenced by the
investigations in [4], but our treatment will be selfcontained and differ at some
points.
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As we remarked above the cocycle ¢ “lives” on A/M x B/N. The kernel of

the associated skew-symmetric bicharacter
(a,b;a',6) = o(a,b;a’, )o(a’, b5 0,8) 7" = A[e2(0), 2(¢)A([e2(¥), 1 (a)]) ™

is just M x N: If for a given pair (a, b) this expression is 1 for all (@', ') then in
particular A[ez(b),e1(a)] = 1 for all ¥’. Because of £5( B)Gx = P the element &) (a)
has to be in P+, which means that a is in M. Similarly if A([e2(b),£1(A4)]) =1
then it follows from &, (A)PL = G and A([e2(b), P1]) = 1 that A([e2(b),G]) = 1,
whence ¢3(b) € Gy or b € N.

This observation shows that up to equivalence there is a unique irreducible o-
representation of A x B which is trivial on M x N. We shall write down a particular
realization 7 of such a representation. The space is l(A) where A = A/M;
accordingly for # € A we denote by z € A the corresponding coset. And 7 is
given by

(n(a, b)h)(#) = Mle2(8), &1 (a ™ 2)])(a™")

for (a,b) € A x B and h € l(A). Tt is easy to check that 7(z)7(y) = 7(zy)o(z,y)
is satisfied for all z,y € A x B.

Taking tensor products of = with unitary characters of A x B one gets all
irreducible o-representations of A x B up to equivalence: If p is any irreducible
o-representation of A x B then p|M x N has to be a scalar multiple of the identity,
say p(z) = y¥(2)Id for 2 € M x N with some ¥ € (M x N)*. For any extension
5 € (A x B)" of v the tensor product 7~! & p is trivial on M x N and hence
equivalent to m. Therefore, p is equivalent to ¥ & .

Clearly, not all 7®6, é € Ax E, are inequivalent. Actually, the representation
T & 6 is equivalent to 7 ® 6’ if and only if the restrictions §|M x N and §'|M x N
coincide. We shall write down explicit intertwining operators for # and 7 ® 6,
§ € (A/MY x (B/N)*. For & € (A/M)" define the unitary operator Ug on
lo(A) by (Ueh)(z) = £(2)h(2). For g € (B/N)" choose a point a, € A such that
n(b) = Ale1(ay),2(b)] holds for all b € B. It is easy to check that such an a,
exists. Actually, the coset a, € A is uniquely determined by 7, and 5 — @, is an
isomorphism from (B/M)" on A. Then define the unitary operator V;, on Iz(A)
by (V,h)(2) = h(a;'z). One quickly verifies that the equations

6(”’)”(‘13 b) = UEW(G‘: b)Ug

and
n(b)r(a,b) = V,w(a, B}V
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hold for all @ € A, b € B. Moreover the maps (A/M)" 3 £ — Ug and (B/N)* 3
1 + V, are homomorphisms into the unitary group of {(A), and the equation
UeVy = &(ay)VyUe holds.

With each f € (A x B, o) we associate a continuous function fon Ax B

with values in the algebra .ﬁ(lg(fi)) of linear operators IZ(A) by

flan )= 373" fla,)a(@)B(b)m(a, b) = ((«, B) @ 7)(f)-

acAbeB

FEach map f — f(a, ) is an involutive representation of I'(A x B, o) which extends
to D = C*(A x B,¢). The whole map f — f extends to a C*-morphism from
D into C(A x B, &(la(A)), the latter algebra being endowed with the pointwise
operations. The morphism D — C(ﬁ X E,ﬁ(!z(A)) is injective because the set
{(e,p)®7|a€A e B} contains a representative of each point in D. Clearly,
this morphism is not surjective, the image is contained in the subalgebra £ of
C(A x B, A(I2(A)) consisting of all functions ¢ with

plat, B) = UeVyler, B)V, U

fora€ A €€ (A/IM, Be B, ne (B/N)*. Indeed, the image of D coincides
with £. This is a particularly easy special case of a C*-Stone~Welerstrass-situation,
see 11.1.6 or 11.1.4 from [5].

Hence in our object of study, namely the algebra C*(P+, £, D, T, A), we may
replace D by the isomorphic copy €. But we also have to know the action of P+
in the transformed picture £. This transformed action, again denoted by T, is
given by

(Teo)(@, B) = p(ang, B)

fora € A,B€ B,p €&, z€PL where a, € A is defined by az(e} = Az, £1(a)]).

Next we extend the representation (A/M)" 3 £ — U to a continuous unitary
representation Uof Ain IQ(A), for instance also by multiplication operators. Then
for ¢ € £ define ¢’ : A x B — &(l2(A)) by

e, B) = Uk, B)Ua.

The image &' := {¢’ | ¢ € £} consists of all continuous functions ¢’ which are
constant on (A/M)"-cosets (i.e., they are functions on M x B), and which satisfy
the equation

¢ (o, By) = UV, Uad' (0, ATV, U
= afan) ULV, Ua' (a0, )TV, Uacr(ay) ™
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for « € A, B € B and 55 € (B/N)*. The factor a(a,) causes that a
aay) UV, Uy is constant on (A/M)*-cosets (due to the commutation relation
between Ug and V;).

Now we choose an isomorphism j: T — B. If, as above, s denotes the order
of the cyclic group B/N (= order of A/M) then 7 := j(e27i1) is a generator of
(B/N). For short let Vo = V;, and ag = a,,. With each ¢ € £ associate the
function ¢ : A x [0, l—] — .ﬁ(lg(/l)) by

(,0”(01,7‘) — (Pl(a,j(emrir)) - ﬁ;w(a’j(e2wir))ﬁa.

The (isomorphic) image F := {¢" | ¢ € £} of £ consists of all continuous functions
¥ on A x 0, 1] which satisfy

6 (03] = alan) T2V, 0)73% Taa(ao)”

for all o € A, and which are constant on (A/M )"-cosets with respect to the first
variable.
The action T, € P+, in the transformed picture F is given by

(To)(et,7) = Uq, Y(az, r)US .

Now we consider the tensor product C*(PL, £, F, T, A) ®&(5)) where &($) denotes
the algebra of compact operators on a chosen separable Hilbert space $. This
tensor product can be identified with the twisted covariance algebra C*(P+, L, F®
£A(H),T, ) where the action T and the twist X are defined in the obvious way. The
tensor product F®£(H) can be identified with the algebra of continuous functions
v M x [0, — A(l2(A) ® 9) satisfying

7 (7, %) = C(7)¥(7,0)C(7)’

where we put C(y) = a(ag)U:VoU, @ 1dg if @ € A is any extension of ¥ € M.
In this picture, the action of z € P+ is given by

(Te)(7,7) = Unth(vea | M, 1)U,

where we put
Ul = Uq, % Idg.

The unitary group of the separable Hilbert space lg(fi) ® 5 endowed with
the strong operator topology is contractible, see Lemma 3, p. 251, {7]. Hence
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there exists a continuous map H from M x [0, 1] into this unitary group such that
H(xy, %) = C(7)H(v,0) for all y € M. One could for instance choose H(7,0) to
be the identity, but this does not matter.

We just remark that a result in {11] says that unitary groups on separable
Hilbert spaces are even contractible in the norm topology.

For ¢ € F ® (%) viewed as above as a function on M x [0, 1} with values
in &(1;(A) ® $), we define ¢ : M x [0,1] — &(l5(A) ® $) by

$(7,7) = H(v, ) %(y, ?)H(y,7).

The (isomorphic) image F of F ® A(H) consists of all continuous functions
% on M x [0, 1] with values in £(I3(A) ® $) such that ¥(y, L= ¥(1,0), ie., F
is the tensor product of the algebra of complex-valued continuous functions on a
two-torus with H(l2(A) ® 9).

The action T in the transformed picture 7 is given by

(Te)(v,7) = H(y,7) UL H (oo | M, r)is(vora | M, 7) H (yas | M, P UL H(y,7).

We conclude that C*(P*, £, D, T, \) ® A(H) is isomorphic to C*(PL, L, F,
T,)). The algebra F is simpler than D (or P ® £(5)), but the action has be-
come more complicated. To repair this evil, we finally choose a continuous curve
¢:[0,3] = (G/W)", W as in (), such that ¢(0) = 1 and ((})(z) = a.(a) =
A([z,€1(ag)]). Clearly, the homomorphism z + a4(ao) factors through G — G /Gy
and hence through ¢ — G/W. As G/W is free, the group (G/W)" is con-
nected. Then for appropriate functions f : P+ x M x [0,1] = &(l(A) @ 9)
in C*(P*,L,F,T,)) we define f' : P+ x M x [0,1] — A(l2(4) ® #) by

Az, 7,7) = () (@) H (v | M, #Y UL H(y, ) f (2,7, 7).
The function fU also satisfies
_ Al r) = M) (=, y,7)

and

f! (m, %) = f{(z,7,0)

forzePlt leL, ye M. The latter equation follows from a straightforward
computation using the properties of ¢, U., H,U, and C(y).
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But if g : P+ x M x [0, i — A(I;(A) ® %) is another such function then

(F * 9) (w7, 7) = / Pley, 7@, 7,7) dy.
pijc

We conclude that the assigment f ~» fb leads to an isomorphism from C* (’PL L, JF:V'
T, A) onto (*(PL), ® F, where F is a tensor product of C'(T?) with A(l2(A) ®5).

Consequently, C*(G)\®£($) is isomorphic to the tensor product of A(l2(A)®
$) with a quotient of C*(P+), ® C'(T?). As we remarked earlier the torsion group
of PL/(PL), is smaller than the torsion group of G/Gx. Repeating the argument
finitely often we find that C*(G), ® R($) is isomorphic to the tensor product of
A(H) with a quotient of C*(Q)x & A, where A is a commutative algebra and Q is
a two step nilpotent group containing £ such that Q/Qy is isomorphic to Z". As
we have seen earlier, in this case C*(Q). is the tensor product of a commutative
algebra A’ with an n-dimensional noncommutative torus 7. Hence C*(G)x ® (%)
is isomorphic to the tensor product of £(£) with a quotient of 7 ® A® A’. But
each quotient of 7 ® A® A’ is again the tensor product of 7 with a commutative
algebra. 1

REMARK 5. Let still G, £, X be as in Theorem 1. The final part of the proof
simplifies considerably if C*(G) is of type I which means n = 0; for further
conditions cquivaleni to n = 0 see (1.23), (2.6) in [12], compare also [1].

Outline of the proof in the type I case. As above one reduces to G/Gy being
discrete. But then n = 0 implies that G/G, is finite. By (1.18) in [12] one knows
very precisely the structure of the canonical bicharacter on G/Gy. There exist a
direct decomposition G/Gy = AB and an isomorphism j : A — B with the follow-
ing property. If p : G — G/G» denotes the natural map, p(z) = p* (2)p® () with
pA(z) € A and pP(z) € B, then [z, 9]) = j(p* (2))(p® (¥))i (0" (1))(0® (2))~" for
z,y€QG

Decompose A into a direct product of cyclic groups, A = Ay ----- A,. The
isomorphism j : A — B gives a corresponding decomposition of B whence a
decomposition B = By - ---- B, and isomorphisms ji : Ay — Bk, <k
Denote by pi. : G/Gx — Ax and gz : G/G» — By the projections corresponding to
the constructed direct decomposition of G/Gs. Then one has

Miz, o)) = [ drpep(z)(gep(y)) Grpeo(v)) (aep(x)) ™

k=1

forz,yeqg
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For 1 < & < r choose infinite cyclic groups Cp, Dy and surjective homo-
morphisms € : Cx — Ay, nx : Dy — Bj,. In an obvious way these homomor-
phisms define a surjection & from F := €y x --- x Cp x Dy x -+- x D, onto G/Gy.
As in the proof of Theorem 1 let G’ < G x F be the pullback of p and &, let
©:G"— G and 9 : §' — F be the restrictions of the projections, let W := ker v,
let £ := {(z,e) | 2 € £}, and let X' € (£)" be the character corresponding to
A € L. The algebra C*(G), is a quotient of C*(G')xr, and we shall investigate
the latter.

Since G'/W' 2 F is free, the sequence

l—>W'/£/—>G’/,C'—>_(/"/W'—>1

splits, hence there exists an open subgroup A’ of G’ such that W NN’ = ('
and G’ = W/N'. From the fact that W' centralizes G’ modulo ker A’ one readily
concludes that C*(G’), is isomorphic to the tensor product of the commutative
algebra C*(W')ar with C*(N")x. The homomorphism # induces a surjection
from N’ onto F with kernel £’'. Choose any cross section ¢ : F — N’ to this
surjection with ¢(e) = e. This cross section yields an isomorphism from C*{N")n
onto the twisted convolution algebra C*(F,m) for some cocycle m on F. The
explicit form of m does not matter, we only note that the antisymmetrization
(z,y) = m(z,y)m(y,«)~! of m, which determines (see [10]) the cohomology class
of m, is given by
m(z, Y)m(y,2)"" = X([=), 1)),

For z,y € G' one has
N[z, y]) = Mle(z), o())

= 1 irpepe(@)(aepe ()i prpe(w)(arpp(z)) ™
k=1

= [T sepersp(@)(anmsb())ikprrib(v) (qerb(e)) .
k=1
Therefore, the antisymmetrization of m is given by

m(z, y)m(y,2)™" = [] sepes(e)gen(v))pen(y)(are(z)) ™!
k=1

forz,y € F'. Define cocycles oy on Cy x Dy, by oy (cx, di; ¢, db) = drer(cr)(me(d})),
and define con F = Cy x -+ x Cp x Dy x ---x Dy by

.
v At i ! 7N o A ]
ocr, .. ey dr, .y dycy, e, dy, L, dL) = Hak(ck,dk,ck,dk).
k=1
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Then the antisymmetrizations of m and o coincide, hence m and ¢ are cohomolo-
gous, and the twisted convolution algebras C*(F,m) and C*(F,#) are isomorphic.
It follows that C*(N'),: is isomorphic to C*(F, ), which is isomorphic to

.
& C*(Cy x Di,or). But the C*(Cy x Dg,01) are rational rotation algebras,
k=1

which are stably isomorphic to commutative algebras, either by [4] or by the

considerations in the proof of Theorem 1. Therefore, C*(G’),- is stably isomorphic
to a commutative algebra, which implies that the same is true for C*(G)x. 1

From Theorem | we shall draw two consequences. The first one is included
to justify the title of the article and also because the algebras C*(G), appear
frequently in this form.

COROLLARY 6. Let H be a locally compact abelian group, and let m be a
measurable cocycle on H. The antisymmetrization (z,y) — m(z,y)m(y,z)"! of
m induces the structure of a quasi-symplectic space on H/Zy, in the lerminology
of [12), where Z,, = {x € H | m(z,y) = m{y,z), Yy € H}. Suppose that the
invariant Inv(H/Zy,) of this space contains Z for a certain n. Then the twisted
convolulion C*-algebra C*(H,m) is stably isomorphic to the tensor product of
Co((Zm)"), an n-dimensional noncommutative torus and the algebra of compact
operators on a Hilberl space.

Proof. This corollary follows immediately from Theorem 1 by observing that
2*(H,m) is isomorphic to C*(G)x where G is the central group extension

corresponding to m, and A(z) = zforze L:=T. 1

For the next (and final) corollary let (¢ be a simply connected Lie group
with commutator subgroup N, and let X be a G-quasi-orbit in Priv C*(N) =
Observe that N is locally isomorphic to an algebraic group, and hence it is a type I
group, see (6]. From the results in [14] it follows that X is a locally closed subset
of N, compare also the discussion in front of (3.9) from [12]. For subsets 2 of N

we denote by k() = () ker o the kernel of % in C*(N), and by A the closure of
e

Ain N.

COROLLARY 7. Let G, N and X be a above. Then cither X is a closed point,
X = {p}, p is finile-dimenstonal and extendible to G, and C*(G)/C*(G) * k(X) 1s
isomorphic to the tensor product of a commutative algebra and a mairiz algebra
in dimp dimensions, or there exisis an infeger n = 0 such that the subquotient

C*(G) * k(X \ X)/CHG) * k(%) of C*(G) is isomorphic to the tensor product of
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an n-dimensional noncommutalive torus, a commutative algebra, and the algebra
of compact operators on an infinile-dimensional separable Hilbert space.

Proof. This corollary follows from (3.12) in [12] and Theorem 1. The calcu-
lation of the above integer n is the main issue in [12]. ¥
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