A CLASS OF OPERATORS ASSOCIATED WITH REPRODUCING KERNELS

KEHE ZHU

Communicated by Norberto Salinas

ABSTRACT. For t>0 let A_t be the operator on t^2 whose matrix under the standard basis has as its (i,j) entry $(1-|z_i|^2)^{t/2}(1-|z_j|^2)^{t/2}(1-z_i\bar{z}_j)^{-t}$. Here $\{z_n\}$ is a sequence of points in the open unit disk in the complex plane. The boundedness of the operators A_t , $1 \le t < \infty$, will be characterized in terms of the distribution of the sequence $\{z_n\}$ in the hyperbolic metric.

KEYWORDS: Reproducing kernel, separated sequences, Carleson measures.

AMS SUBJECT CLASSIFICATION: 47B37, 46E22, 30C40.

1. INTRODUCTION

Let **D** be the open unit disk in the complex plane. For t > 0 and $\{a_n\} \subset \mathbf{D}$ we consider the operator on l^2 whose matrix under the standard basis is given by

$$A_t = \left(\frac{(1 - |a_i|^2)^{\frac{t}{2}} (1 - |a_j|^2)^{\frac{t}{2}}}{(1 - a_i \overline{a}_j)^t}\right).$$

Such operators are important in function theory. For example, the operator

$$A_2 = \left(\frac{(1 - |a_i|^2)(1 - |a_j|^2)}{(1 - a_i \overline{a}_i)^2}\right)$$

appears in the proof of Carleson's characterization of interpolating sequences on the unit disk; see [1], where the boundedness of A_2 when $\{a_n\}$ satisfies

$$\prod_{k \ge 1, k \ne n} \left| \frac{a_k - a_n}{1 - a_k \overline{a}_n} \right| \ge \delta, \qquad n = 1, 2, \dots$$

20 Kehe Zhu

is proved by an ad hoc method.

Let ρ be the pseudo-hyperbolic distance on D. Thus

$$\rho(z,w) = \left| \frac{z-w}{1-\overline{z}w} \right|, \qquad z,w \in \mathbb{D}.$$

Recall that a sequence $\{a_n\} \subset \mathbf{D}$ is called separated if there exists a constant $\delta > 0$ such that $\rho(a_n, a_m) \geq \delta$ for all $n, m \geq 1$ with $n \neq m$; and the sequence $\{a_n\}$ is called uniformly separated if there exists a constant $\sigma > 0$ such that

$$\prod_{k\geqslant 1, k\neq n} \rho(a_k, a_n) \geqslant \sigma$$

for all $n \ge 1$. Carleson's characterization of interpolating sequences states that a sequence $\{a_n\}$ in **D** is interpolating for H^{∞} if and only if $\{a_n\}$ is uniformly separated; see [1], [2].

The purpose of this note is to prove the following characterization for the boundedness of A_t when $1 \le t < \infty$.

THEOREM. Let At be the infinite matrix defined earlier.

- (i) If t > 1, then A_t is bounded on l^2 if and only if $\{a_n\}$ is the union of finitely many separated sequences.
- (ii) If t = 1, then A_t is bounded on l^2 if and only if $\{a_n\}$ is the union of finitely many uniformly separated sequences.

We do not have a good answer to the problem of the boundedness of A_t in the case 0 < t < 1.

2. PROOF OF THE THEOREM

The first part of the proof is quite general; it applies to any reproducing Hilbert space. The second part will then depend on the specific Hilbert spaces. In what follows the letter C will denote a positive constant whose value may change from one occurance to another.

Let H be a reproducing Hilbert space of functions on a domain Ω . We denote by K, or K(z, w), the reproducing kernel of H. For a sequence $\{a_n\}$ in Ω we consider the operator on l^2 whose matrix under the standard basis is

$$A(H) = \left(\frac{K(a_i, a_j)}{\sqrt{K(a_i, a_i)K(a_j, a_j)}}\right).$$

Kernel Operators 21

For any finite sequence $\{c_1, \ldots, c_n\}$ of complex numbers we have

$$\sum_{i,j=1}^{n} \frac{K(a_{i}, a_{j})}{\sqrt{K(a_{i}, a_{i})K(a_{j}, a_{j})}} c_{i} \overline{c_{j}} = \left\| \sum_{k=1}^{n} c_{k} \frac{K_{a_{k}}}{\sqrt{K(a_{k}, a_{k})}} \right\|^{2},$$

where $K_{a_k}(z) = K(z, a_k)$ and $||\cdot||$ is the norm in H. Therefore, the infinite matrix A(H) defines a bounded operator on l^2 if and only if there exists a constant C > 0 (independent of n) such that

$$\sup \left\{ \left\| \sum_{k=1}^{n} c_k \frac{K_{a_k}}{\sqrt{K(a_k, a_k)}} \right\| : \sum_{k=1}^{n} |c_k|^2 \le 1 \right\} \le C$$

for all $n \ge 1$. Using the usual duality of Hilbert spaces, we see that the above inequality is equivalent to

$$\sup \left\{ \left| \left\langle f, \sum_{k=1}^n c_k \frac{K_{a_k}}{\sqrt{K(a_k, a_k)}} \right\rangle \right| : \sum_{k=1}^n |c_k|^2 \leqslant 1, ||f|| \leqslant 1 \right\} \leqslant C, \quad n \geqslant 1.$$

By the reproducing property of the kernel functions, the above inequality is equivalent to

$$\sup \left\{ \left| \sum_{k=1}^{n} \frac{c_k f(a_k)}{\sqrt{K(a_k, a_k)}} \right| : ||f|| \leqslant 1, \sum_{k=1}^{n} |c_k|^2 \leqslant 1 \right\} \leqslant C, \quad n \geqslant 1.$$

Using the duality of the usual l^2 spaces we conclude that the boundedness of A(H) on l^2 is equivalent to

$$\sup \left\{ \sum_{k=1}^{n} \frac{|f(a_k)|^2}{K(a_k, a_k)} : ||f|| \leqslant 1 \right\} \leqslant C^2,$$

or

$$\sum_{k=1}^{n} \frac{|f(a_k)|^2}{K(a_k, a_k)} \le C^2 ||f||^2$$

for all n and f. This is clearly equivalent to

$$\sum_{k=1}^{\infty} \frac{|f(a_k)|^2}{K(a_k, a_k)} \le C^2 ||f||^2$$

for all $f \in H$. This finishes the general part of the proof.

We now specialize to the operators A_t .

22 Kehe Zhu

If t = 1, then it is clear that $A_1 = A(H^2)$, where H^2 is the Hardy space on the unit disk \mathbb{D} , whose reproducing kernel is given by

$$K(z,w) = \frac{1}{1 - z\overline{w}}.$$

By the first part of this proof, A_1 is bounded on l^2 if and only if

$$\sum_{k=1}^{\infty} (1 - |a_k|^2) |f(a_k)|^2 \leqslant C ||f||_{H^2}^2$$

for some constant C > 0 and all $f \in H^2$. It is well known that this holds if and only if the sequence $\{a_n\}$ is a finite union of uniformly separated sequences; see [3] for example.

When $1 < t < \infty$, it is easy to check that $A_t = A(H_t)$, where H_t is the weighted Bergman space consisting of analytic functions f in the unit disk D with

$$||f||^2 = (t-1) \int_{\mathbf{R}} |f(z)|^2 (1-|z|^2)^{t-2} dA(z) < \infty.$$

The reproducing kernel of H_t is

$$K(z,w) = \frac{1}{(1-z\overline{w})^t}.$$

See [6] for further information on weighted Bergman spaces. By the first part of the proof, the matrix A_t , $1 < t < \infty$, defines a bounded operator on l^2 if and only if

$$\sum_{k=1}^{\infty} (1 - |a_k|^2)^t |f(a_k)|^2 \leqslant C \int_{\mathbf{n}} |f(z)|^2 (1 - |z|^2)^{t-2} \, \mathrm{d}A(z)$$

for all $f \in H_t$. Let μ_t be the atomic measure on D defined by

$$\mu_t(E) = \sum \{(1 - |a_k|^2)^t : a_k \in E\}, E \subset \mathbf{D}.$$

For $a \in \mathbf{D}$ and 0 < r < 1 let E(a, r) be the pseudo-hyperbolic disk centered at a with radius r, namely,

$$E(a,r) = \{z \in \mathbb{D} : \rho(z,a) < r\}.$$

Then combining the above with a well-known result from the theory of Carleson measures for Bergman spaces (see [5] for example) we conclude that A_t is bounded on l^2 if and only if there exists a constant C > 0 (depending on r only) such that

$$\mu_t\left(E(a,r)\right) \leqslant C(1-|a|^2)^t,$$

Kernel Operators 23

or

$$\sum \left\{ (1 - |a_k|^2)^t : a_k \in E(a, r) \right\} \leqslant C(1 - |a|^2)^t$$

for all $a \in \mathbb{D}$. Now for any fixed 0 < r < 1 it is easy to find a constant C > 0 such that

$$1 - |z|^2 \le C(1 - |a|^2) \le C^2(1 - |z|^2)$$

for all z and a in **D** with $\rho(z,a) < r$. In particular, for every $a \in \mathbf{D}$ we have

$$1 - |a_k|^2 \le C(1 - |a|^2) \le C^2(1 - |a_k|^2), \quad a_k \in E(a, r).$$

Thus the operator A_t , $1 < t < \infty$, is bounded on l^2 if and only if there exists a constant C > 0 (depending on r and t) such that

$$\sum \left\{ (1 - |a_k|^2)^2 : a_k \in E(a, r) \right\} \leqslant C(1 - |a|^2)^2$$

for all $a \in D$, which in turn is equivalent to

$$\sum_{k=1}^{\infty} (1 - |a_k|^2)^2 |f(a_k)|^2 \leqslant C \int_{\mathbf{D}} |f(z)|^2 \, \mathrm{d}A(z)$$

for all f in the regular Bergman space. It is well-known (see [7] for example) that the above holds if and only if the sequence is the union of finitely many separated sequences. This completes the proof of the theorem. \blacksquare

3. FURTHER REMARKS

As was mentioned earlier, we do not know when A_t is bounded on l^2 in the case 0 < t < 1. To answer this question, we need to know when the atomic measure μ_t is a Carleson measure on certain Dirichlet type spaces. Such measures are characterized in [4] in terms of certain capacities on the unit circle. We feel that in the case of the atomic measures μ_t one should be able to determine more concretely when μ_t is a Carleson measure on these Dirichlet type spaces.

Since our proof of the main theorem only depends on duality and Carleson measures, one sees that A_t , $1 \le t < \infty$, is bounded on l^2 if and only if A_t is bounded on l^p for some (or all) p with 1 . We omit the details.

Finally, note that for $1 < t < \infty$, the boundedness of A_t on l^2 is independent of t, and depends only on the sequence $\{a_n\}$.

Research supported by the National Science Foundation

REFERENCES

- 1. P. Duren, Theory of HP Spaces, Academic Press, New York 1970.
- 2. J. GARNETT, Bounded Analytic Functions, Academic Press, New York 1981.
- G. McDonald, C. Sundberg, Toeplitz operators on the disk, Indiana Univ. Math. J. 28(1979), 595-611.
- 4. D. STEGENGA, Multipliers of the Dirichlet space, Illinois J. Math. 24(1980), 113-139.
- K. Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20(1988), 329-357.
- 6. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.
- 7. K. Zhu, Evaluation operators on the Bergman space, Math. Proc. Cambridge Philos. Soc. 117(1995), 513-523.

KEHE ZHU
Department of Mathematics
State University of New York
Albany, NY 12222
USA

E-mail: kzhu@math.albany.edu

Received November 19, 1995; revised November 21, 1996.