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UNITARY DILATIONS AND NUMERICAL RANGES
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ABSTRACT. We prove that any algebraic contraction T on a (separable)
Hilbert space can be dilated to an operator of the form T1 @ T) @ - - -, where
Ty is a cyclic contraction on a finite-dimensional space with the same mini-
mal polynomial as T and rank (1 — 7771} € 1. As applications, we use this
to determine the “most economical” unitary dilations of finite-dimensional
contractions and also the spatial matricial ranges of the unilateral shift.

Generalizing an example of Durszt, we give a necessary and sufficient
condition on a normal contraction T such that its numerical range equals the
intersection of the numerical ranges of unitary dilatons of 7.
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0. INTRODUCTION

Let A and B be bounded linear operators on the complex Hilbert spaces H and
K, respectively. A is said to be dilated to B (or B is a dilation of A) if B is

unitarily equivalent to a 2 x 2 operator matrix of the form . This 1s
* *

equivalent to requiring the existence of an isometry V from H to K such that
A =V"BV.If T is a contraction (||T|| € 1) on H, then a classical result of Halmos
([7], Problem 222 (a)) says that T can always be dilated to a unitary operator: T'
appears in the upper-left corner of the unitary 2 x 2 operator matrix

T (1—TT*)z
(1—T*T)% —T*
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on H@® H. Further developments of this idea lead to a profound theory — the
Sz.-Nagy-Foiag dilation theory as codified in the monograph ([18]).

A contraction T is of class Cy if T is completely nonunitary and there is a
nonzero function f in H® such that f(7") = 0. For every such T, there exists a
unique (up to a constant factor of modulus 1) nonconstant inner function ¢, called
the minimal function of T, such that p(T') = 0 and every other function f in H®
with f(T') = 0 is a multiple of ¢ (cf. [18], p. 123). One important example of such
operators is the compression of the shift S(i) on H(y). Here ¢ is any nonconstant
inner function and S(y) denotes the operator

S(e)f = P(zf(2))

for f in H(p) = H2© pH?, where P denotes the orthogonal projection onto H(p)
and zf(z) denotes the function z — zf(z) in H2. This operator was initially
-investigated in [17] and later in the broader context of the Sz.-Nagy—Foiag theory
([18]). Note that the minimal function of S(p) is . Another example of Cy
contractions is any contraction on a finite-dimensional space with all eigenvalues
in the open unit disc. Indeed, if 7" is such an operator with minimal polynomial p

n
and p(z) = [[ (2 = A;), then T is of class Cy with minimal function
j=1

olz) = [] 222

joi 1- X2

An operator T is algebraic if p(T') = 0 for some polynomial p; T is quadratic
if p can be taken to be of degree 2.

One of the main results of this paper concerns the dilation of algebraic con-
tractions. In Section 1 below, we prove that any algebraic contraction with minimal
polynomial p can be dilated to an operator of the form T1 ®T1 @ - - -, where Ty is a
cyclic contraction on a finite-dimensional space with the same minimal polynomial
p and rank (1 — 7T771) < 1 (Theorem 1.4). The proof involves (finite-dimensional
versions of) results of Sarason, Arveson and Stinespring concerning completely
isometric and completely positive maps between operator algebras. It is plausible
that the more general assertion that any Cp contraction with minimal function ¢
can be dilated to S(¢) @ S(p) & - - - should be true. However, at the present stage,
we are not able to affirm this.

As applications, we derive in Section 2 two interesting results concerning, re-
spectively, the unitary dilations of finite-dimensional contractions and the spatial
matricial ranges of the unilateral shift. For the former, we show that any contrac-
tion on an n-dimensional space can be dilated to a unitary operator with spectrum
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consisting of no more than n + 1 points and, moreover, the number n + 1 cannot
be further reduced in general (Theorem 2.2). This result has some implications
on the shape of the numerical ranges of finite-dimensional contractions. Using our
main result, we can also determine the spatial matricial ranges of the unilateral
shift: for every n 3> 1, the nth spatial matricial range of the unilateral shift of any
multiplicity consists of those n-dimensional contractions whose eigenvalues are all
in the open unit disc (Theorem 2.7). Very few classes of operators have their
matricial ranges completely determined. Our result adds to the short list of the
known ones (cf. [3], Section 9).

In Section 3, we consider another problem, which originates from an old ques-
tion of Halmos ([6]). He asked over thirty years ago whether the numerical range
of a contraction equals the intersection of the numerical ranges of all its unitary
dilations. This turns out not to be the case. Durszt ([2]) gave an example of a
normal contraction without this property. Qur contribution in this respect (The-
orem 3.2) is a strengthening of this example yielding a complete characterization
of those normal contractions for which such a relation on the numerical ranges
holds. The modified question with “numerical range(s)” replaced throughout by
“closure(s) of numerical range(s)” remains open.

Throughout this paper we consider only operators on separable Hilbert spaces.
For such a space H, let B(H) denote the C*-algebra of all operators on H. For an
operator T,0(T) denotes its spectrum. Let C be the space of complex numbers
and D={z€C:|z| < 1}.

1. DILATION OF ALGEBRAIC CONTRACTIONS

A linear map ® from a Banach algebra A to another Banach algebra B is completely
contractive (resp. completely isometric) if the map ®, from M,(A) to Mn(B)
defined by

‘I’n([aij]?,jzl) = [‘I’(aij)]?,jﬂ
is contractive (resp. isometric) for every n > 1, where M,(A) (resp. M,(B))
denotes the Banach algebra of n x n matrices with entries from A (resp. B)
endowed with the usual algebraic operations and the matrix norm

Hla:;]l] = sup { (Z “ Za,-ja:j ”2) ’ :z; € A (resp. B) with Zﬂzﬂlz < 1}
i i

for [a;;] € Mn(A) (resp. Mn(B)). For C*-algebras A and B,® is completely
postitive if every ®,, is positive. Our reference for general properties of such maps

is [15].
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We start with the following proposition concerning the Sz.-Nagy—Foiag func-
tional calculus of Cy contractions. For any operator T, let Alg 7" denote the weakly
closed algebra generated by 7' and 1.

ProrosiTION 1.1. For any Co contraction T' with minimal function ¢ , the
map & : H® [ H™® — AlgT defined by

&(f) = 1(T),

where f is the coset in H® [pH® determined by f € H®, 15 a compleiely conirac-
live isomorphism from H® [oH™ into AlgT. If T = S(p), then ® is a completely
isometric isomorphism from H [oH™ onto Alg S(p).

Proof. Assume that the Cy contraction T acts on the space H. We need
to show that for every n > 1 and [;;'j]?,ju in Mp,(H®/pH™), the inequality
NLfi; (DI < ||[£_,]“ holds. To achieve this, we have only to prove ||[f;;(T)]]| <
(£l for any [fi;]7 ;21 in Ma(H®). Let U on K(2 H) be the minimal unitary
power dilation of T'. It is easily seen that [£;;(U)]};-; on K&-- @K is a dilation of
[fiy(T)NE ;=1 on H®- @ H. Hence ||[f;;(T))| < [|[£i; (U)]|]- To complete the proof,
we use the spectral theorem for normal operators to obtain sequences of operators
{D.(..';")}ﬁ___1 on K which are such that with respect to some fixed orthonormal

basis of K every D™ can be represented as a diagonal matrix and, for every

ij
i and j, Dgn) converges to f;;(U) in norm. In particular, each [Dg-")];‘,j=1 is a

direct sum of n x n scalar-entry matrices. Let [a;;] be one of such summand

4]
f5=1
matrices. Since each a;; may be assumed to belong té the essential range of fi;, it
is easily seen that ||[a;]|| < ||[fi;]]]. Hence we have II[DS;’")]H < |)[fi;]l| for every m.
Letting m approach infinity, we obtain [|[f;; (U)]|| < [|[fi;]]]. Our assertion follows
immediately.

For T' = S(yp), the assertion is a special case of [17], Theorem 3 (by letting

V1 and V; there have dimensions n and 1, respectively). &
COROLLARY 1.2. For any Cy contraction T with minimal function ¢, the
map ¥ : Alg S(¢) — AlgT defined by

¥(f(5(e))) = £(T)

for f € H®, is a completely contractive isomorphism from Alg S(p) into AlgT.

Proof. Since ¥ = ®; o &}, where &, : H®/pH® — AlgT and &, :
H® [oH*® — Alg S(¢p) are the maps given by ®1(f) = f(T") and ®3(f) = f(S(¢)),
respectively, the assertion is an easy consequence of Proposition 1.1. 1
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The next proposition gives a concrete dilation form for completely positive
maps between certain operator algebras. Although this exact form does not seem
to have appeared in the literature, its basic idea should be well-known among
experts.

PrOPOSITION 1.3. Let H and K be Hilbert spaces with H finite-dimensional
and K separable. If Q@ : B(H) — B(K) is a unital completely positive map, then
there exists an isometry V from K to H&® H @ - - - such that

QA) =V (ADAD -V

for any operator A in B(H). Moreover, if K is also finite-dimensional, then V
can be taken to map from K to a direct sum of finitely many H’s.

Proof. By Stinespring’s dilation theorem ([15], Theorem 4.1), there exist a
(separable) Hilbert space L, a unital -homomorphism # from B(H) to B(L) and
an isometry Vj from K to L such that

Q(4) = V' r(A)W

for any A in B(H). For the *-homomorphism =, there is an isometry V; from L
onto H & - - - & H, where the number of summands equals dim L, such that

T(A) = VS (Ad- -0 AV,
for Ain B(H) (cf. [9], Corollary 10.4.14). Therefore,
QA) = (VW) (AD - & A)(VaW)

for A in B(H). This proves our first assertion.

If K is finite-dimensional, then, following the proof of Stinespring’s theorem,
L can also be taken to be finite-dimensional and hence a direct sum of finitely
many H’s would suffice. 1

Note that the converse of the preceding proposition is obviously true, namely,
for any isometry V from K to HGH @ - - -, the map ¥ : B(H) — B(K) defined by

Y(A) =V (AGAD- YV

for A in B(H) is completely positive.
We are now ready for the main result of this section.
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THEOREM 1.4. IfT is an algebraic coniraction on H, then there are a finile-
dimensional space K, a cyclic contraction Ty on K with the same minimal poly-
nomial as T and rank (1 —T7Ty) € 1. and an isomelry V from H to KO K & ---
such that

¢T)=V'( @) de(h) & )V

for any polynomial q. In particular, T dilales to Ty @ T1 @ - - -. Moreover, of H is
finite-dimensional, then a finile direct sum of K'’s suffices.

Proof. Let T =U @® A on L & M be the decomposition of T into its unitary
part U and completely nonunitary part A. Since the spectrum of U consists of
a finite number of (distinct) eigenvalues, say, ai,...,am, in 9D, U dilates to
U ® Uy @ - -, where U, is the cyclic unitary operator

& 0

0 O

on C™, and hence there is an isometry V; from L to C" @ C™ @ - - - such that
«U) =V (gU) @qlr) @)W

for any polynomial q.
n
On the other hand, if the minimal polynomial of A is p and p(2) = [] (z—A;)
7=1

with A; in D, then the map ¥ from Alg A; to Alg A given by ¥(g(A:)) = g(A) for
polynomial ¢, where A; = S(¢) and ¢ is the inner function

_ Sz
"o(z)‘nl—-,\jz’

i=1

is completely contractive by Corollary 1.2. Arveson’s extension theorem ([13],
Corollary 6.6) implies that ¥ can be extended to a completely positive map Q
from B(H(p)) to B(M). An application of Proposition 1.3 yields an isometry V;
from M to H(yp) ® H(p) ® - - - such that

q(A) = Vi (g(A) @ g(A) & -- V2
for polynomial g¢.

Finally, T} = U; ® A on K = C™ &® H(p) and V = V| @ V3 satisfy all our
required properties. 1
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In the preceding theorem, if T is a nilpotent contraction with 7™ = 0, then

the cyclic contraction T} is unitarily equivalent to the n x n nilpotent Jordan block

0 1

on C". Hence this yields the following corollary, which can also be deduced from
[1], Theorem 1.3.1.

COROLLARY 1.5. Let T be a nilpotent contraction on H withT" =0 (n > 1).
Then there exists an isometry V from H to C"@®C" @ - - - such that T = V*(J} &
JE@ . )V for any k2 1. In particular, T can be dilated 1o J, ® Jo @ - - .

2. NUMERICAL RANGE

In this section, we consider implications of the results in Section 1 on numerical
ranges and the more general spatial matricial ranges of certain contractions.

The numerical range of an operator 7" on H is the subset
W(T) = {{Tz,z) : z € H and ||z|| =1}
of C, where (- ,-) denotes the inner product in H; the numerical radius of T is
w(T) = sup{|z| : z € W(T)}.

The notion of numerical range is related to that of dilation by its very definition:
a complex number z belongs to W(T') if and only if the 1 x 1 matrix [2] dilates to
T. 1t follows that if A dilates to B, then W(A) is contained in W(B). For general
properties of the numerical range, consult [7], Chapter 22. One easy consequence
of Corollary 1.5 is the following.

PROPOSITION 2.1. If T is a nilpotent operator with T™ = 0, then W(T) is
contained in the closed disc {z : |z| < ||T|] - cos ;1——1}

Proof. Tt is well-known that W(J,) = {z : |2| < cos 737} (cf. [5], Proposi-
tion 1). Hence the assertion follows from Corollary 1.5. 8
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This proposition was also proved in [5], Theorem 1 using more down-to-earth
arguments.

Let T be a contraction on an n-dimensional space. We may ask what the
“most economical” unitary dilation of 7" should be. There are different ways to
interpret this. One interpretation requires that the dimension of the space on
which the unitary dilation acts be a minimum. In this sense, the problem has
been solved completely in [19]: the minimal dimension is n+rank (1 —7*7'). Here
we consider another criterion by requiring that the cardinality of the spectrum of
the unitary dilation be a minimum. In the Halmos dilation, this cardinality is 2n.
‘We show next that this number can be reduced to the optimal n + 1.

THEOREM 2.2, Every coniraction on an n-dimensional space can be dilaled
to a unitary operator (on some finile-dimensional space) with specirum consisting
of no more than n+ 1 points. Moreover, the number n+ 1 is optimal in the sense
that there is an n-dimensional contraction, namely J,, of which every unilary
dilation has at least n + 1 poinis in ils spectrum.

Proof. By Theorem 1.4, every n-dimensional contraction T can be dilated
to a finite direct sum 7y @ - - - @ T} of some cyclic contraction T} on a space K of
dimension no bigger than n with rank (1 — 777}) < 1. Each T} can be dilated to
a unitary operator U/; on a space of dimension no bigger than 1+ dim K (cf. [19],
Theorem 2). Hence T dilates to Uy @ --- @ U, the latter having at most n + 1
points in its spectrum. This proves the first assertion.

For the second, assume that .J,, has a unitary dilation U with no more than
n points in its spectrum. Then W(J,) is contained in W(U). But the former
is the closed disc {2 : |z| € cos A5} (cf. [5], Proposition 1) and the latter is a
closed polygonal region with no more than n vertices on the unit circle (cf. [7],
Problem 216). If r; denotes the distance from the origin to the jth side of the

polygon, then 3" r; < n-cos X (cf. [10]). This implies that cos ;37 < minr; <
; J

j
cos I, which is absurd. Thus every unitary dilation of J, has at least n+1 points
in its spectrum. 0

The next two corollaries say something about the numerical range of an
n-dimensional contraction.

COROLLARY 2.3. Every contraction on an n-dimensional space has ils nu-
merical range conlained in an (n -+ 1)-gon inscribed in the unit circle. Moreover,
the number n+1 is optimal in the sense that there ts an n-dimensional contraction,
namely J,, whose numerical range is not conlained in any n-gon inscribed in the
unit circle.
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We remark that by Proposition 2.1 any nilpotent contraction T with 7" = 0
has its numerical range contained in every regular (n + 1)-gon inscribed in the unit

circle.

COROLLARY 2.4. If T is an operator on an n-dimensional space whose nu-

merical range is a disc centered al the origin, then w(T) < ||T|| - cos T

Proof. We may assume that ||7|] = 1. Since W(T') is contained in an (rn+1)-

gon inscribed in the unit circle by Corollary 2.3, we have ) r; € (n+1)-cos 77

i
as before, where r; is the distance from the origin to the jth side of the polygon.

1t follows that w(T) < n‘;_in rj § cos iy as asserted. W

In Theorem 2.2, the number n+1 can be further reduced if the n-dimensional

contraction is normal. This is achieved via the Halmos dilation and the next result.

PROPOSITION 2.5. For any operator T on H, the following conditions are
equivalent:
(i) W(T) is contained inside a triangle Aabc;
(i) T = aTy + bTy + cT5 for some positive operators T1,Tz and T3 with
N+T2+T3=1;
(iii) T can be dilated to a normal operator N with o(N) = {a,b,c}.

Proof. The equivalence of (i) and (ii) was established in [13] in proving a re-
sult of Mirman ([12]) that if W(T) is contained in Aabe, then ||7(| < max{|a|, [8], [}
Since (iii) => (i) is trivial, we need only check (ii) = (iii). Assume that T' =
oTy+bT3+ T as above. Let N = al@bl@clon H®H® H and V = [TFTF TS 1",
It is easily that V is an isometry and 7' = V* NV. This shows that T dilates to N. 1

PROPOSITION 2.6. Any normal contraction on an n-dimensional space
(n > 2) can be dilated to a unitary operaior (on some finite-dimensional space)

with no more than n points in its spectrum.

Proof. Assume that n is odd and T is an n-dimensional normal contraction
with eigenvalues )y, ..., A, (counting multiplicity). Enclose A, A2 and Az in a
triangle Aabc with vertices a,b and ¢ on the unit circle. Proposition 2.5 implies

that the 3 x 3 matrix
A 0 0
0 X O
0 0 As
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can be dilated to the unitary operator alz @ bl3 @ cl3, where I3 denotes the 3 x 3
identity matrix. For each pair of the remaining eigenvalues A; and A;44, let 6 be
a real number satisfying Im (Aje™%) = Im (Aj41e7%). Then

(5 s)
0 A

can be dilated to the unitary operator

Aj (1 - [\[7)% Aj+1 (1= A2
Sl N)T e N

The eigenvalues of this latter operator are the two intersections of the unit circle
with the straight line connecting A; and A; ;. Taking the direct sum of the above
unitary operators, we obtain a unitary dilation of 7" with no more than n points
in its spectrum. If n is even, the second part of the above arguments yields the
required unitary dilation. 1

Two remarks are in order:

(1) if T is any Hermitian contraction (even on an infinite-dimensional space),
then 7' can be dilated to a unitary operator, namely,

T (1-T%3
[(1 -T%): T ]
with 2 poifits (£1) in its spectrum;

(2) if T is any operator with w(T’) < }, then w(T') is contained in any regular
triangle inscribed in the unit circle and hence, by Proposition 2.5, T' can be dilated
to a unitary operator with 3 points in its spectrum.

We now move to ancther application of Theorem 1.4: the determination

of the spatial matricial ranges of the unilateral shift. Let S denote the simple
unilateral shift on £2:

S(zo, z1, 22, -} = (0,20, %1, 22, )
for (zo,%1,%2,-+-)in£2. Fork =1,2,...,00,let Sx = S @ - - - ® S be the unilateral
N e’

shift of multiplicity £. For an operator T on H and an intgger n,1<ngdimH,
the nth spatial matricial range W (T') is the set of those n x n matrices which
can be dilated to T. Note that W] (T') coincides with the (classical) numerical
range W(T). A nice survey of matricial ranges and related topics is [3]. It is
known that the closure of W?(S) consists of all n-dimensional contractions (cf.
[3], Example 9.3 (b)) and that W}(S) = W(S) = D. We now proceed to determine
W2 (S) for all n.
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THEOREM 2.7. Forn 2 1 and 1 < k < oo, W}(Sk) consists of those n-
dimensional coniractions whose eigenvalues are all in D.

Proof. Let T be an n-dimensional contraction which can be dilated to Si.
Since Sy is completely nonunitary, the same is true for T. Hence the eigenvalues
of T' can only be in D.

Conversely, since every n-dimensional contraction with eigenvalues in D di-
lates to a direct sum of finitely many copies of some S(¢) by Theorem 1.4, we need
only to prove that the latter can be dilated to S. For this purpose, let 4 = S(yp)
and K = ker(1 — A*A4). Then K is a subspace of H(p) with codimension 1. Let
{f1, f2, ..., fo} be an orthonormal basis of H(p) such that {fi, f2,-++} forms a
basis for K, and let A have the matrix representation [g1g2 - - - go] with respect to
this basis, where each g; represents a column vector. Since K = {f € H(yp) :
1Af1l = 1151}, we have [jgj{l = 1 for all j > 1 and [lgoll < 1. Let a = (1 - [jgol1?)}
and let S; be the infinite matrix

g1 g2 - 9o
0 0 --- a 0

1 0
1 0

where the unspecified entries are all zero. Since

<gJ1gk) = <AfJ:Afk> = (A*A.f])fk) = (f]sfk) =0
for any j 2 1,k 2 0 and j # k, a simple computation shows that S; can be

considered as the operator

A
(1- A*A)%

—_—
- O

on H(p)®R®R®- - -, where R = ran(1 — A* A)%. This is exactly the construction
for the minimal isometric power dilation of S(p) (cf. [18], Section 1.5), which is
known to be unitarily equivalent to S. On the other hand, by permuting rows and
columns, S; is also easily seen to be unitarily equivalent to

S(e) 0 0
[ 0 S ej|,
ad 0 0
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where a’ = [0 0---a] and e = [1 0 0--]*. We can now again apply the above
process to the unilateral shift S in the middle of the above matrix to infer that S;
is unitarily equivalent to

S(e) 0 0
S(e) 0 0

0 [ 0 N e] *
a' 0 0

* 0 0

Repeating this procedure finitely many times, we obtain that any finite direct sum
S(p) @ --- @ S(p) can be dilated to S. This completes the proof. §

Let U be the simple bilateral shift:

-1, ,331,“‘):(*",13_2,,-".'0,131,"')

for (-, 21, ,ml, ---) in £%, where the component on the position zero is
marked by a square. For k = 1,2,...,c0,let Uy = U@ --- @ U be the bilateral
e, e

k
shift of multiplicity k. It is well-known that W}(U) = W(U) = D (this also follows
from Lemma 3.3 below). The next corollary determines W (U) for all n.

CoROLLARY 2.8. Forn 2 1 and 1 € k € oo, WP(U) consists of those
n-dimensional contraclions whose eigenvalues are all in D.

Proof. Since S dilates to Ui, we obviously have W' (Sy) € W?(Uz). On
the other hand, if 7" is an n-dimensional contraction in W (U.) which has an
eigenvalue, say A, in dD, then X is a reducing eigenvalue for 7" and hence the same
for Ug. This contradicts the fact that Uy has no eigenvalue. Thus all eigenvalues
of T" are in D. This completes the proof. 1

A subset A of B(H)i 1s C*-convex if for any finitely many T3, .. T in A and
A1,...,An in B(H) with E A} Aj = 1, the C*-convex combination Z AiT; Ay is

in A. For general propertles of C*-convexity, consult [11].

CoOROLLARY 2.9. W](Sx) and W!(Ui) are C*-conver for any n 2> 1 and
1<k <€ .

This follows from Theorem 2.7, Corollary 2.8, Lemma 2.10 below and the
fact that o(T) C D if and only if W(T") C D for any finite-dimensional contraction
T (cf. [7], Solution 212).
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LEMMA 2.10. IfT is a C*-convez combination of T1,...,T,, then
@) TN € max{||T5[| : § = 1,2,...,n} and
(i1) W(T) is contained in the convez hull of W(T1) U --- U W(T,).

Proof. (i) can be proved as in [11}, Example 3 and (ii) is proved in [8],
Lemma 2.3. 1

3. UNITARY DILATION

In this section, we explore the relation between the numerical range of a contraction
and those of its unitary dilations. The original problem asked by Halmos in [6] is
whether

(*) the numerical range of a contraction 7' is equal to the intersection of the
numerical ranges of unitary dilations of 7.

The problem has very interesting geometrical manifestations.

If the space H on which T acts is finite-dimensinoal, then there are some
cases under which (%) has an affirmative answer. For example, if dim H = 1, then
since the 1 x 1 matrix [A] (|]A| € 1) can be dilated to the unitary matrix

A (1 - |A|2)3
eis(l _ |)‘|2)-;- —eif}
for any real 8, (x) is true. Geometrically, this means that the point A is the
intersection of all the chords of the unit circle which pass through A. The operator
version of this argument yields the validity of (x) for any finite-dimensional normal

contractions. This was carried out in [6]. When dim H = 2, again () is true by
the next proposition.

ProPosITION 3.1. If T is a contraction on a 2-dimensional space, then
W(T) = (W) : U is a unitary dilation of T'} holds.

Proof. We may assume that W(T') is a (nondegenerate) elliptical disc. By
[4], Corollary, there is a triangle inscribed in the circle {z : |z| = ||T||} and cir-
cumscribed about dW(T'). Poncelet’s closure theorem of 1822 ([16]) implies that
in this case for any point p on the circle there is such a triangle with p as one of
its vertices. Since ||T'|| € 1, this implies that, for any chord [a, §] of the unit circle
which is tangent to the boundary of W(T'), there is a triangle Aabc which has this
chord as its one side, is inscribed in the unit circle and contains W(T'). By Propo-
sition 2.5, T' can be dilated to a unitary operator whose numerical range is the
closed triangular region enclosed by Aabc. This implies that W(T) = ({W({U) : U
is a unitary dilation of T}. #
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Another instance for which (*) holds is when 7' is the n x n nilpotent Jordan
block J,, since in this case W(J,) = {2 : |z] € cos +y7} 18 the intersection of all the
polygonal regions enclosed by the regular (n + 1)-gons inscribed in the unit circle

and the latter are the numerical ranges of the (n + 1) x (n 4 1) unitary dilations

. |
A 0
(IAl = 1) of Jy. (The case n = 2 was already pointed out in [6].) It is in general
not known whether (x) is true for all contractions on a finite-dimensinoal space.
However, on infinite-dimensional spaces (*) is false even for normal contractions.
An example was constructed in [2]. Our next result, which characterizes all normal
contractions for which () holds, is a strengthening of this example.
For any two points A; and A in the plane, let (A1, A2) (resp. [A1, A2]) denote
the open (resp. closed) line segment {tA\; + (1 —¢)Xz : 0 < t < 1} (resp. {tA; +
(I-t)A:0< AK1Y).

THEOREM 3.2. Let T be a normal contraction. Then W(T) = N\{W(U): U
is a unitary dilation of T} holds if and only if whenever W(T) contains a point A
in its boundary OW(T) it also coniains every open line segment (A, X) in OW(T).

For the proof, we need the following lemma, which was proved in {1], Theo-
rem 1.

LEMMA 3.3. Let T be a normal operator with spectral measure Ep(-). Then
W(T) = M{a: a is a convez Borel subset of C with Ep(a) = 1}.

When proving Theorem 3.2, it is instructive to keep in mind the following
two examples.

EXAMPLE 3.4. Let Ky be the rectangle
R + d L <1 < 1 Ugz:Imz= il d 1 L Rez < !
z:Rez= 2an g SImz< g z:lmz=27 an 5 < <3¢

and p; be the linear Lebesgue measure on K;. If 7} is the operator of multiplica-
tion by the variable z on L?(py), then o(7}) = K and

1 1,1
< ' <5 5 £l
Rez, Imz 2}\{:}:2:}:21}

B =

W(Ty) = {z:-—

by Lemma 3.3.
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ExaMPLE 3.5. Let K3 be the closed rectangular region

{z : ——;— L Rez, Imz < %}
and po be the planar Lebesgue measure on Ko. If T' = T3 @ T3, where T3 is the
operator of multiplication by the variable z on L%(y2) and T3 is the 1 x 1 matrix
[2 + 3i], then o(T) = K3 and

1 1 1.1,
W(T) = {z.—§<Rez, Imz<§}u{§+§1}'

Note that the condition of Theorem 3.2 is satisfied for Ty but not for T, and
hence the assertion on the numerical ranges holds for the former but not for the
latter. We are now ready for the

Proof of Theorem 3.2. The necessity is proved following an analogous argu-
ment as in [2]. Let A € W(T") be a boundary point of W(T'), and (A, ) an open
line segment in W (T'). For an arbitrary unitary dilation U of T', we check that
(X, X') is contained in W(U). To achieve this, we extend (A, A’) on both directions
until it intersects the unit circle at two points, say, A; and A; (so that A; is closer
to A and Ay to A’). If Xy is an eigenvalue of U, then it is in W(U). Since A is
also in W(U), the closed line segment [A, Az] is contained in W(U). Hence in this
case (A, X') C W(U) as asserted. Therefore, in the following we assume that A, is
not an eigenvalue of /. Let L be the closed half plane determined by A; and A
which contains W(T). Let T denote the open arc 3D \ L and « denote the region
(DN L)\ [ A2). We claim that T No(U) # 0. Indeed, if otherwise, then «, being
a convex Borel set with Ey{«) = 1, must contain W(U) by Lemma 3.3. Thus o
contains W{(T') and hence A. This is a contradication. Hence there is some point
Ag in o(U) which is on the arc I'. In particular, Ay is in W((—I_) We infer from
the convexity of W(U) that (A, X') is contained in W(T7). Since U is an arbitrary
unitary dilation of T, it follows from our assumption that (A, \') is contained in
- W(D).

To prove the sufficiency of our condition, we need only check that [{W(U) :
U is a unitary dilation of T'} is contained in W{T'). Since the former set is contained
in W(T) by (a similar proof as) [6], Theorem 2, it suffices to check that for any
A in W (T) \ W(T), there exists a unitary dilation U of T such that A is not in
W(U). Let A be such a point, and let 7=V & 7" , where V is unitary and 7" is
completely nonunitary. We consider two cases separately:

(1) Assume that X is an extreme point of W(T). Let L be a closed half
plane with the properties that L contains W(7") and L N 3W(T) = {A}. Let
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{An} be the sequence of points with unit length and rational arguments which
are in the interior of L. Using these A,’s as vertices, we form closed triangular
regions {A;} such that their interiors are mutually disjoint and their union satisfies
o(T")Nint L € U;A; € (DNint L) N {},}. By the spectral theorem for normal

operators, we may decompose T as a direct sum T' =V & ( E@T,) with each 7
i
satisfying ¢(7;) € A; (since A cannot be an eigenvalue of 7" and 7" is completely

nonunitary, we have Ep({A}) = 0 and E7/(6D) = 0). Since W(T;) C Aj, by

Proposition 2.5 each T; can be dilated to a unitary operator U; with W(U;) = A;.

Hence T' can be dilated to the unitary operator I/ = V@ (Z$Uj) with W(U) =
J

convex hull of W(V)U (U;4;). In particular, A is not in W{(U). This proves our
assertion.

(2) Assume that A is a nonextreme point of W{7'). Let [A1, Az] be the longest
closed line segment in W (T") which contains A. Since A is not in W(T'), our
assumption implies that (A, A;] is disjoint from W(T"). Hence Lemma 3.3 implies
that there exists some convex Borel set o with Ep(e) = 1 such that $(A +
Az) is not in a. Since o N [A1, Ay] is convex, it can only be contained in one of
A1, %(/\1 +2X2)) and (%(/\1 +A2), A2]. Therefore, the one which is outside aN[Ay, Ag]
has Er measure zero. Applying this argument successively to midpoints of the
remaining segments, we infer that Ep([A1, A2]) = 0. Now, as in (1), let L be the
closed half plane determined by A; and A, which contains W(T'), and let {\,}
be the sequence of points with unit length and rational arguments which are in
the interior of L. We form closed triangular regions {A;} with these A;’s as
vertices such that their interiors are mutually disjoint and their union satisfies
o(T)YnintL C U;A; € (DNint L) U {A,}. As before, we may decompose T'
as Ve (EG’TI}), where V is unitary and each 7; satisfies o(7j) C A;. Since
W(T;) C JAj, by Proposition 2.5 each T; can be dilated to a unitary operator
U; with W(U;) = Aj. Hence T has a unitary dilation U = V @ (Zer) with
W(U) = convex hull of W(V) U(U;A;). In particular, we have A ¢JW(U). This
completes the proof. &

We conclude this paper with one more result. Note that the more general
question as to whether W(T) = ({W(U) : U is a unitary dilation of T'} holds for

every contraction T is also open. As elaborations of previous arguments, we have

the following partial result.
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PROPOSITION 3.6. If T is a quadratic coniraction or T satisfies w(T) € %,
then W(T) = {W{W(U) : U is a unitary dilation of T'} holds.

Proof. If T is quadratic, then T has a canonical representation

Ay A]

M@ Al
111 B 2263[0 X

on Hy & Hy @ (K & K), where A > 0 acts on K, and W(T') equals the numerical
range of the 2 x 2 matrix
[/\1 IIAII]
0 XA

(cf. [20], Theorems 1.1 and 2.1). A proof analogous to that for Proposition 3.1
yields our assertion.

On the other hand, if w(T') < 3, then T must be a contraction and W(T') is,
for any chord [a, 8] of the unit circle which is on one side of W(T'), contained in a
triangle Aabc inscribed in the unit circle. We infer from Proposition 2.5 that our
assertion holds. 1
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Note added in proof. By the Sz.-Nagy-Foias theory of contractions, it can be easily
shown that a much stronger result than our Theorem 1.4 is true: every Cp contraction T
with minimal function ¢ can be extended to the operator S{p) @ .- & S(yp), where the

number of summands is rank(1 — T'T)l?. This was proved in [14], Lemma 4.
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