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ABSTRACT. In this paper we show that the stable rank of the C*-algebras
of simply-connected connected solvable Lie groups of type I is estimated by
the complex dimension of the fixed point subspaces of the real dual spaces
of their Lie algebras under the coadjoint actions. This result generalizes the
estimation in the case of simply-connected connected nilpotent Lie groups.
As corollaries, we show that the product formula of the stable rank holds for
the C*-algebras of connected solvable Lie groups of type I, and estimate the
real rank in the case of simply-connected connected solvable Lie groups of
type L.
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1. INTRODUCTION

M.A. Rieffel ([8]) introduced the notion of stable rank of C*-algebras, i.e. non
commutative complex dimension, and raised the problem of describing the stable
rank of the C*-algebras of Lie groups in terms of their geometry. First of all,
A.J-L. Sheu ([9]) succeeded in the computation of the stable rank of the C*-
algebras of certain simply-connected connected nilpotent Lie groups. By different
methods, we showed that the stable rank of the C*-algebras of simply-connected
connected nilpotent Lie groups is equal to the complex dimension of the fixed point
subspace of the real dual spaces of their Lie algebras under the coadjoint actions
((11]). This formula is not valid in the case of exponential Lie groups in general,
for example az + b-groups.
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In this paper we first analyze the spectra of simply-connected connected
solvable Lie groups of type I. This is crucial to the computation of the stable
rank of their C*-algebras. Next we show that the stable rank of these algebras
is estimated by the complex dimension of the fixed point subspaces of the real
dual spaces of their Lie algebras under the coadjoint actions. As corollaries, we
show that the product formula of the stable rank holds for the C*-algebras of
connected solvable Lie groups of type [, and compute the real rank in the case of
simply-connected connected solvable Lie groups of type [ using the estimation of
the stable rank.

2. SPECTRUM OF SOLVABLE LIE GROUFS OF TYPE |

In this section we show that every irreducible representation of simply-connected
connected solvable Lie groups of type I is either 1 or co dimensional. This property
1s crucial to the estimation of the stable rank of the C*-algebras of those groups.
Also we show that l-dimensional representations of such groups correspond nat-
urally to the fixed points of the real dual spaces of their Lie algebras under the
coadjoint actions.

Let (7 be a connected Lie group. We denote hy & the spectrum of G, 1.e.
the set of all continuous irreducible unitary representations of ¢z up to unitary
equivalence equipped with hull-kernel topology. Let 6‘1, oo be the set of all 1, co-
dimensional irreducible representations of G respectively. We call G the character
space of (7, which is a topological group with the pointwise multiplication. Let
C*(G) be the C*-algebra of 7, which is generated by the image of the universal
unitary representation of (7. We identify & with the spectrum C*(G)* of C*(G).
Then we show in what follows that & = GLUGe if Gis a simply-connected
connected solvable Lie group of type I.

Let & be the Lie algebra of G and &* the real dual space of &. We denote
by Ad the adjoint action of (7 on & and by Ad" the coadjoint action of G on
&* defined by Ad*(g)p(X) = p(Ad(g~')(X)) for g in &, X in & and ¢ in &*.
We denote by (8*)¢ the fixed point subspace of &* under Ad*. Note that (&*)%
is isomorphic to a Euclidean space as a topological (vector) group. Then the
following lernma holds:

LEMMA 2.1. Let (¢ be a simply-connecied connecled Lie group. Then Gh is
isomorphic to (&*)° as a topological group.

Proof. Let x be an element of ("1;1, i.e. a Lie homomorphism from (7 to I-
torus T. Then its differential dx defined by dx(X) = $x(expiX)|i=o for any X
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in & is a Lie homomorphism from & to iR. Then the following diagram commutes

(cf. [4]):

Then

A€ (o) (55 ) () = (El) Ad(exp(=¥))X)

21

i (355) (X0 tA(ExR(=Y DX o=

:F ( )(exl)( Y)exp X exp(Y))li=o

) )

for every X,Y in &. Hence dy/2niis in (8*)“. Let @ be the mapping from Gh
) ((5*)G defined by ®(x) = dx/27i. 1t is clear that ® is well defined.

Let x3,x2 be in (3. Then by defimition, d(x; - x2) = dx1 + dx2. Thus
P(x1 - x2) = P0x1) + Px2). ~

Suppose that ®(x1) = P(x2) for x1,x2 in ;. Then dy; = dyz. By the
connectedness of (7, every element g of (7 has the form exp X1 - - - exp X,, for some
X1,...,Xn in &. By the above commutative diagram, we have y; = y2.

Let ¢ be an element of (*)¢. Then 27i¢p is a Lie homomorphism from & to
iR. By the simply-conncctedness of (7, there exists an element y in G such that
dx = 2mip. Thus ®(x) =

Next let {x,} be a sequence of (7, converging to y in (1. By the above
diagram, we have that x,(exptX) = e¥n{X) | y(exptX) = *X) for any X
in & and small ¢. Thus {Log(e!®~(*))} converges to Log(e*¥X(X)} where Log is
the principal branch of log. Hence {dx,{X)} converges to dx(X). Thus {dx»}
converges to dy.

(Lonversely, let {pn} be a sequence of (B*)° converging to ¢ in (&*)¢. Let
Xxn and x be in (11 such that dx, = 2#ip,, and dy = 2rip respectively. Then {x,}
converges to x by the continuity of exponential map. 8

REMARK 2.2. There exist some non simply-connected connected solvable
Lie groups of type 1, for which the above lemma is false. In fact, let GG be the
n-dimensional torus T™. Then (&*)¢ = R". On the other hand, (7 = Z".

LEMMA 2.3. Let G be a connecled Lie group. Then Gy s wsomorphic o
G/|G,GD" as a topological group where [(7, (7] is the commutator subgroup of G
Y
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Proof. We consider the mapping @ from (G/[(, G])* to (4 defined by ®(x) =
x o ¢ for x in (i1 where g is the quotient mapping from  to /[, (G]. Since
G/[G,G] is abelian, (G/[G, G)" = (G/[¢, G])". It is clear that € is an injective
homormorphism. For 5 in ¢, let 7 be a well-defined element of (G/[G, G by
(gl G]) = n(y) for g[(+, ] in G/[C, (). Hence = foq. By definition, it is
clear that ¢ is homeomorphic. 1

REMARK 2.4. Since G/[(, (] is a connected commutative Lie group, it is
isomorphic to R¥ x T"~* for some & 2> 0 where n = dim(¢//[¢,G]). Thus, by
Lemina 2.1,

G = (GG G = RE x Z7—*

as a topological group. If (7 is a simply-connected connected Lie group, then it
follows from Lemmas 2.1 and 2.3 that

~

(8")¢ = Gy = (G/[G, )" =R®
as a topological group.

Next we recall briefly the representation theory of simply-connected con-
nected solvable Lie groups of type I by Auslander and Kostant ([1]):

Let ¢ be the complexification of & and &g its dual space. Let ¢ be an
element of &*. We denote by (5, (resp. [p]) the stabilizer (resp. the orbit) of ¢
with respect to the coadjoint action of (¢ and by &, its Lie algebra, which equals
the radical of ¢, i.e. {X € &|p([X,Y]) = 0 for every Y € &}. We extend ¢ to
an element of B¢ by (X + 1Y) = o(X) +ip(Y) for X +1Y in &¢. Let H be a
polarization for ¢, which satisfies the following conditions:

(i) $ is a Lie subalgebra of &¢;

(ii) $ contains B, and is stable under Ad((7,);

(iii) (9, 9]) = {0};

(iv) dime(8¢c/H) = Sdimg[e];

(v) H + 5 is a Lie subalgebra of ¢,
where 9 is the conjugate space of § in B¢.

Put NG =D and (H+H)NG = £. Then D¢ = HNH and E¢ = H+H. Let
D, and Ej be the connected Lie subgroups of GG corresponding to Lie algebras D
and & respectively. Put D = G, Dy and £ = (G,E5. Then it holds that £ = DE,.
We have that Ad"(D)ep is open in the affine subspace ¢ + £+ of &* where £% is
the annihilator of £.

We define an alternating bilinear form By, on £/ by

By(X,Y) = o(lY, X))
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for  in * and X,Y in £/D. Then it is a non-singular alternative form on £/D.
(£/D)c is identified with £¢/D¢. Then (£/D)c = $/Dc @ $/Dc where @ is the
direct surn. Let J be a linear mapping of (£/D)c defined by J = ~il on /D¢
and J = il on $/D¢c. Then J maps £/D onto itself, and J2 = ~J on £/D. Let
Sy be the bilinear form on £/ defined by

Then it is a non-singular symmetric bilinear form on £/®. We say that a polar-
ization § for ¢ is positive if S, is positive definite.

Let N be the maximal nilpotent ideal of &, Since it is stable under Ad(G),
so is 91* under Ad”((7). A polarization $ for ¢ is called strongly admissible if
HNNe is a polarization for | in N*, which is stable under Gy m where ¢|MN is
the restriction of ¢ to M.

We say that a polarization $ for ¢ satisfies Pukanszky condition if Ad*(E)e
is closed in &*. If this condition is satisfied, then Ad*(D)¢ = p+E£L. Any strongly
admissible positive polarization satisfies Pukanszky condition.

Every element ¢ in &* is integral, 1.e. there exists a character 7, of G,
whose differential dr, is equal to the restriction of 27ip to &,. More precisely, it
is defined by n,(exp X) = e?me(X) for X in .. If a polarization § for ¢ satisfics
Pukanszky condition, then 7, extends uniquely to a character x, of D.

Let L2(E/D,x,) be the Hilbert space of all complex valued pp-measurable
functions f on E satisfying

Xo(d)" f(e) = fled)
for d in D and e in E, where up is the Haar measure on E, and
[ 15@F sy p(@) < o0
E/D

where pg/p is the quotient measure of gg on E/D and € = eD in E/D. The
inner product of L2(E/D, x,) is defined by

ilfa) = / L EFF dpsp(E)
ED

for fi, fo in L?(E/D, x,). Then the induced representation ind D1EXy of Xp tO E
on L2(E/D, x,) is defined by

(ind p1exe)h)f(e) = f(h™le)
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fore,hin E.

Let £ be a strongly admissible positive polarization for ¢. We denote by
L*(E/D, xy,5) the closed subspace of L2(E/D, x,,) consisting of all smooth func-
tions f on E with the property that

f- 2 = mip(Z)f

forevery Z in H where Z = X +iY for X, Y m &, f- Z=f X +if Y and

f-X(e)= %f(e exp(—tX))|e=o

for ¢ in E. In fact, differentiating both sides of the following equation:

x,p(exth)“lf(c) = feexptX)

at t = 0 for X in D, we have that f- X = 27ip(X)f. We denote by ind p1g(xy,$)
the subrepresentation of ind pygx, corresponding to L2(E/D, x,, H).

Let L*(G/E)® L*(£/D, xy,H) be the Hilbert space of all L*(E/D, x,, H)-
valued pg-measurable functions on ¢ satisfying the similar conditions as above
with respect to ind pre(xy, H). We denote by ind gre(ind pre(xy, 9)) the induced
representation of ind pye(Xe, H) to G on LAG/E)® LY E/D,xy,H). Let

ind p16(Xe, H) = ind gre(ind (X, 5))-

Then we know that every element 7 in Gis equivalent to an induced representation
ind pre(Xxyp, ) of G.

Note that E/D has a complex structure so that it is holomorphic to C* for
some n > 0. Let A(E/D) be the set of all holomorphic functions on E/D and
A(E) the pull back of A(E/D) to E. We denote by z¥* ... 2zE~ the functions of
A(E/D) for (ky,..., k) in Z7} with respect to a system of complex coordinates
(21,-..,2n), where Zy = {k € Z|k > 0}. Let (z¥* ... 2E~)™ be the pull back of
zf‘ ---zk» to E. Then there exists a nowhere vanishing smooth function f on E
such that {(z81--- 252y~ f} for {(k1,...,ka)} in Z7 are in L2(E/D, x,,$). Then

(8 2By~ F(E ) ) =0, for (ki ka) # (L. 1) €0

We now show the following lemma:
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LEMMA 2.5. Let (7 be a simply-connected connecied solvable Lie group of
type 1. Then G = Gy U Goo.

Proof. We use the above observation. Let 7 be an element of G‘, which is
equivalent to some indpjaX,. If D = &, then HNH = &c. Hence H = &g, It
implies that ©([&, &]) = 0. Thus ¢ is in (&*)Y. Therefore 7 = x,,.

Next suppose that ® # &. If dim(E/D) > 0, then L}(E/D, x,, ) is infinite
dimensional. If dim(£/D) = 0, then Eq = {1}, namely £ = D. Since Dy contains
(Gy)o which is the connected component of (%, containing the unit, D/Dy =
Gy Do/ Dy is diffeomorphic to G, /(Do NGy) = Gu/(Gy)o. Thus dim D = dim Dy,
which implies dim((7/E) > 0. Hence, indpjgx, s infinite dimensional.

Moreover, the following lemma holds:
LEMMA 2.6. Lel G be a connected Lic group. Then Gy is closed in G.

Proof. Let 7 be in the closure of (3;. Let r ¢ be the state of C*((7) defined

by @re(a) = (m(e)é|€) for a in C*(G) and £ in the representation space H, of 7

with {|€]] = 1 where (- |-) means the inner product of H,. By Theorem 3.4.10 in

[3], we have that for any a,b in C*(G), there exist {x;} in G; and {a;} in C such

that o ¢(ab — ba) = f: a;xi(ab — ba) = 0. Since £ is arbitrary, 7(ab) = n(ba).
i=1

From the irreducibility of 7, it belongs to @1. Therefore 6‘1 is closed in Gi.
REMARK 2.7. The similar result also holds for arbitrary C*-algebras.
Combining Lemmas 2.5 and 2.6, we have the following:

LEMMA 2.8. Let G be a simply-connecied connected solvable Lie group of
type I and C*(() its C*-algebra. Let T be the closed ideal of C*(G) corresponding
to (:'m and Co((:’]) the C*-algebra of all continuous functions on 6’1 vanishing at

infinity. Then the following ezaci sequence is oblained:

0— 73— CG) = Co(Gr) — 0.

REMARK 2.9. The similar result also holds for connected solvable Lie groups

where J corresponds to G \ @1.
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3. MAIN THEOREMS

In-this section we prove that the stable rank of the (*-algebras of simply-connected
connected solvable Lie groups of type 1 is estimated by the complex dimension
of the fixed point subspaces of the real dual spaces of their Lie algebras under
the coadjoint actions. Before doing this, we prove some useful propositions for
computation of the stable rank. As corollaries, we show that the product formula
of stable rank holds for the (“*-algebras of connected solvable Lie groups of type
I, and estimate the real rank in the case of simply-connected connected solvable
Lie groups of type 1. First of all, we recall the definitions of stable rank and real
rank respectively.

Let 2 be a unital C™-algebra. We denote by sr(?) the stable rank of U. Then

sr(A) € n if every element (a;)_, of the n- dlrect sum A" of A can be approximated

by the element (b;)7_, of A" such that z 07 b; 1s invertible in 2. 1If there exists
=1
no such n, then we let sr(A) = oo. If ‘Zl is non unital, then the stable rank of 2

is defined by sr(‘Zl) where 20 means the unilization of 2. We use later the basic
results of stable rank in [8].
Let Usa be the set of all self-adjoint elements of A. We denote by rr(2) the

real rank of 2. Then rr(A) € n means that every element (a;), of AZF! can be
approximated by elements (b;), such that Z b# is-invertible in 2. If there exists

i=0
no such n, then we let rr(2A) = co. If A is non unital, then the real rank of A is

defined by re(2) (cf. [2]).
The next result is related in a certain sense with the formula such that
sr{A 0 K) < 2 for arbitrary C*-algebra U where K is the C*-algébra of all compact

operators on a countably infinite dimensional Hilbert space.

PROPOSITION 3.1. Let-U be a separable (*-algebra of type | such that every

element ofé( is infinile dimensional. Then sr(2) < 2

Proof. Let {Z,}52, be a composition series of 2 with Zy = 0 such that

{Zn/ZTn-1}52, are of continuous trace. Consider the following exact sequences:
0— In/In—l - (Zn/In—l)~ —-C—=0
for every n. By Nistor’s result ([6], Lemina 2),

Sl‘((In/In-l)N) <2 VSI’(C) =
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where V means maximuin. Hence sr(Z,,/Z,,—1) < 2 for every n. Next consider the

following exact sequences:
6 — Ty /Ti) — T /Tjmy — TnfT — 0
for 1 € k€ n—1. Again by Nistor’s result,
st(Zn/Zi—1) € 2Vsr(Zn/Zy)

(98]
for 1 € & €< n— 1. It follows that sr(Z, ) € 2 for every n. By the density of |J Z,
n=1]
in A, we conclude that sr(%) < 2. 1
As a first step of the computation of the stable rank of the (*-algebras of

simply-connected connected solvable Lie groups of type I, we have the following;:

LEMMA 3.2. Let (¢ be a stnply-connecied connecied solvable Lie group of
fype 1, (7y ils character space and (*((7) ils (™ -algebra. Then

(k2 if dim&y = 1;
sr{C"{(7))

= climq;((_’;';) if dim G122
where dime (+) = [dim(-)/2] + 1 and [-] is the Gauss symbol.
Proof. Put A = C*((). Let {3:}1%2L, be a cowposition series of 2 with Jp =

0} such that {J:/Ju-115%, are of continuous trace. We consider the following
Te=1

exact sequences:

0—3NT — T — Co(Gh NFN(TNT)N)) =0

for every k, where J is the closed ideal of U as in Lemumna 2.8. Then {In T, }r_,

is the finite composition series of I N Jr. Put D, = TN T, for 1 € 5 € & with
Dy = {0}. Next we cousider the following exact sequences:

0— Ds/gs—l - jk/gs—-l I jL'/E)s —0

for 1 € 5 € k. Note that {D,/D,_}*_, are of continuous trace, and every element
of (D,/D,_1)" is infinite dimensional. Then applying Nistor’s result ([6], Lemma
2),
st{JL /D) € 2Vsr(3;/D,)
for 1 € s < k. By repetition, sr(J;) € 2V sr(()},((?'l N (5; \ (TN 3)"))). Hence,
~ o
we obtain st(J;) < 2V dime((/) for every &. By the density of {J Jr in U or by

k=1
Theorein 5.1 in [8], we conclude sr(2) < 2V dimg (). 1



76 TAKAHIRO SUDO AND HIROSHI TAKAI

We now show that Lemma 3.2 extends to the case of connected solvable Lie
groups of type 1.

ProrosiTION 3.3. Let G be a connected solvable Lie group of type |, Gy its
character space and C*((F) its C*-algebra. Then

<2 ifdimé'l =0 orl;

sr(C*((G)) { N
dlmc G] ifdim G1 22

Proof. Let (7 be a connected Lie group of type I and ( its universal covering
group. We denote by g the quotient map from G to G and by T the kernel of g.
Then we define the map @ from (f to (G)" by ®(r)(g) = n(gT) for x in G and g
in G. It follows from Lemma 3.2 in [10], that G = Gy U Gy, Therefore Lemma
3.2 holds for connected solvable Lie groups of type I. 1

REMARK 3.4. This result suggests that the stable rank of C*(G) is controlled
by the character space G of G. By Remark 2.2, G is not replaced by (*)¢ in
general. T. Nomura informed us about Dixmier’s example of a non type I simply-
connected solvable Lie group which is locally isomorphic to a connected solvable
Lie group of type I. But the first author generalized Lemma 2.5 to general simply-
connected solvable Lie groups using the Pukanzsky’s results ([7]).

We give an application of Proposition 3.3 to show the product formula of
stable rank in the case of the (C*-algebras of connected solvable Lie groups of
type I as follows:

CoROLLARY 3.5. Let G, H be two connected solvable Lie groups of iype |,
and C*((), C*(H) their C*-algebras respectively. Then

s(C*(G) ® C*(H)) < st(C*(GQ)) + sr(C* (H)).

Proof. First of all, note that C*(G) @ C*(H) is isomorphic to C*(G x H).
We also have (G x H)} = Gy x Hy and st(C*(G)) + st(C*(H)) > 2

If dim(G' x H)? = 0 or 1, then, by Proposition 3.3, st{C*(G x H)) < 2. Thus
the product formula holds in the case of the group C*-algebras under consideration
here.

Next we consider the case dim(7 x H)} > 2. If dim Gy =1and dim H, = 1,
then dime(G x H)} = 2. Thus by Proposmon 3.3, st(C*(G x H)) = 2. Hence
the product formula holds in this case. If dim (:1 =2m > 2 and dimH; = 0 or 1,
then

2m+ 1
2

dime (G x H)} < [ ] tl=m+1= [2’"] +1=dime G,
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By Proposition 3.3, the product formula holds in this case. 1f dim (:'1 =2m+123

and dimﬁl =0 or 1, then

2m + 2

v

2m+ 1
2

dimc((_"xH)fs[ ]+l:m+2:[ ]+1+l=dimc(§1+l.
By Proposition 3.3, the product formula holds in this case. In the case dimn @1 =0
or | and dim ﬁl 2 2, the product formula holds similarly.

Finally we consider the case dim(’;'; = 2 and climl?l 2 2. Note that
dime (G x H)} € dimg G + dime Hy. By Proposition 3.3, the product formula
holds in this case.

REMARK 3.6. The above product formula gives a partial answer to a gues-
tion raised by M.A. Rieflel ([8]), whether for any two (*-algebras 2 and B,

sr(U 0 B) < sr(A) + sr(B).

We proceed to refine Lemma 3.2. Next leinma is useful in computation of
the stable rank. To prove it we use the basic results of K-theory and a generalized
index theory (refer to [12]).

LEMMA 3.7. Let (7 be a simply-connected connected solvable Lie group and
C*(G) its C*-algebra. Then st(C*((7)) = 1 if and only if G = R.

Proof. If G = R, then by Fourier transform, C*(G) = (G(R). Hence
sr(C*(G)) = 1.

Conversely, let dun(¢ = m + 1 2 2. Then (7 is considered as a semi-direct
product N x B where N is a simply-connected connected solvable Lie subgroup of
G and dim N = m. By Lemma 2.8, the following exact sequence is obtained:

0—In — CHN) — Co(Ny) — 0

whete Jn is the ideal corresponding to the open subset N \ Ny of N. Moreover,
since N; is R-invariant closed, the following exact sequence is obtained:

0—InXR = C*(N)xR— Cyo(N) xR — 0.

Note that N, is homeomorphic to a Euclidean space R", for n = dim(ﬁl) > 1.
Denote by R} the set of all ¢ in R™ such that R, = R where R, means the
stabilizer of ¢ under the coadjoint action of R. Since R} is R-invariant, we have

the following exact sequence:

0 — Co(R™ \R?) xR — Co(R™) xR — Co(R? x R) — 0.
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If R? # {0}, then sr(Co(R? x R)) > 2. It implies that sr(C™(G)) = 2.

Next consider the case R} = {0}. Then we have the following six-term exact

sequence:
Ko(Co(R" \ {0})) ¥ R) — Ko((Co(R™) nR)) — Ko(Co(R))
dl |
KiCoR)  — Ki(ColR™)xR)) — Ki(Co(R™\{0})%R).

Using Connes’ Thom isomorphism, if n is even, say n = 2m 2 2, then

K1+2m(C) =0 ifi= 0;

((C) 2m ~ K1y ! 2myy o
Ki((Co(R™™) x R)) = Kir1 (Co(R™)) {K2+2m(c)zz o

Ifnisodd, say n =2m+1 > 1, then K;((Co(R*™™*)xR)) =Zifi=0,0ifi = L.

Again, using Connes’ Thom isomorphism,
Ki(Co(R™\{0}) % R} = Ky41(Co(R™\{0})) = Kiyn (Co($" 7" xR)) = Ki(C(S" 7).

Note that
Ki(C(S™™")) 2 Ki(Co(R* ™) & €)
Kn((.?{](nn—l)) @ f= Kn_l(C) pZ ifi=0
T Ki(Go(R™1)) = K, (C) ifi=1.
Hence, if n = 2m > 2, then K;(Co(R™ \ {0})xR) 2 Zifi=0or 1. Ifn =
Im+ 13> 1, then Ki(Co(RZ™1\ {0})xR)=Z#Zifi=0,0ifi=1. Thus,ifn

is even, the above six-term exact sequence is equal to the following diagram:

and if n is odd, then
¥ — I — O

dl l

Z — 0 — 0
Note that the index map § from K; (Co(R)) (= K((C({51))) to Ko(Co(R*\{0}) x R)

is non zero in both cases.
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Putting J = (Co(R™ \ {0}) ¥ R) ® K, we have the following exact sequences:
0 — T — (GRHxR)M)aK - CEHeK — 0
1| al gl
0 — J — M(7) 2 M@/ — 0

where M (J) is the multiplier algebra of 3. Then the following six-term exact

sequence is obtained:

Ko(Co(R™ \ {0))xR) — Ko(M(T) —  Ko(M(3)/9)
dl |
Ky (M(3)/3) — Ki(M@3) — Ki(Co(R\ {0})xR).

From the fact that K;(M (A ® K)® B) = 0 for ¢ = 0,1 where % and B
are (*-algebras and B is unital ([12], Theorem 10.2), we have K;(M(J)) = 0 for
1 =0, 1. Thus,

Ki(Co(R™ \ {0}) X R) = Ki41 (M(3)/3), fori=0,1(mod?2).

If n is even, then the above six-term exact sequence is equal to the following
diagram: ‘
Z — 0 — 1

g |

Z — 0 — 17

and if n is odd, then
ZHpZ — 0 — 0

i !

ZhZ — 0 «— 0.

Let D be an clement of (Co(R™) x R)™ such that ¢(D) = id where id(z) = 2z
for z in S', which is identified with a diagonal matrix in M {(Co(R") x R)™)
having the diaganal entries (D,0,...). Then the class [¢(D)] in K;(C(S")) is a
generator. By a generalized index theory, the index of p(D) is defined by

index(1(D)) = n([a((D))))  in Ko(Co(R™ \ {0}) % R)

where [g(;(D))] is in K{(M(3)/7). We take a unitary w in My((Co(R™) x R)™)
such that (D) & o(D)* = o(w). Then 7{a(D)) & r(c(D)*) = 7(a(w)). It-follows
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that ¢(u(D)) & q((D))* = g(p(w)) and p(w) is a unitary in M, (M (J)). By the
definition of the index map,

8o (D)) = [wprw*] = [p1] # 0
where py is a rank 1 projection in (Co(R™ \ {0}) » R)™ ¢ K, which is identified

with a diagonal matrix in Me ((Co(R™ \ {0}) ¥ R)™) having the diagonal entries
(1,0,...). On the other hand,

W(laG(D))]) = nwpsp(w)] = (o] = [wprw™] = [pi].

If sr(C*(G)) = 1, then st(Co(R™) x R) = L. Hence, sr((Co(R*) xR)~ 0 K) = L. It
follows that the invertible elements of M (J) are dense in p((Co(R™) ¥ R)™ o K).
By the property of the generalized index, we deduce that index{ge(0)) = 0 which
is a contradiction. Therefore sr(C*((F)) 2 2. 1

REMARK 3.8. Let (7 be as in Lemma 3.7. If dim G = 2, then se(C*(()) = 2.
In fact, it is known that (' is isomorphic to R? or the real az + b-group which is
treated in Example 4.1 later. If (7 is the real az + b-group, then se(C*(()) = 2 (cf.
the remark before 4.14 in [8]). However, the converse of the implication is false in
general. For example, R? is a counterexample.

Cornbining Lerruna 2.1, 3.2 and 3.7, we obtain the following main result.

THEOREM 3.9. Let (7 be a simply-connected connected solvable Lie group of
type 1, C*(() its C*-algebra and (B*)€ the fized point subspace under its coadjoint
aclion. Then

st{C*((7)) = (dimg (B%)° Vv 2) A dim .

Proof. By Lemma 3.7, we know that sr(C*((7)) = 1 if and only if dim GG = 1.
By Lemma 2.1, we replace ¢y in Lemma 3.2 with (&*)¢. By Lemma 3.2 and 3.7,
if dim G > 2 and din(®*)¢ = 1, then

sr(C(G)) = 2 = (dime(8*)° V2) Adim G,
By Lemma 3.7, if dim(/ > 2 and din(®&*)¢ > 2, then
st(C* () = dime (6)¢ = (dime(8")° V2)AdimG. 1

REMARK 3.10. This result extends our estimation in the case that 7 is a
simply-connected connected nilpotent Lie group. It also suggests that the stable
rank of C*((7) is controlled by the geometrical structure of (7. If (7 is abelian,
then C*((7) = Co((¥). Thus se(C*(G)) = dimg (. By Lemuma 2.3, the formula in
Theorem 3.9 is replaced by

st(C* () = (dime(G/[GL, GDN V 2) Adim .

Therefore, Theorem 3.9 extends naturally the abehian case.

Next, we apply Theorem 3.9 to compute the real rank as follows:
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CoROLLARY 3.11. Let G be a simply-connected connecled solvable Lie group
of type 1, C*(G) its C*-algebra and (B*) the fived point subspace under its coad-

jownl action. Then

r(C*(G)) =1 if dimG =1,

¢ dim(&*) 4 1 if dim(B*)C is even; .
dim(6*)” < i (C*(G)) € if dimG 2 2.
dim(&*)° V3  if dim(&*)C is odd;

Proof. We first use the following inequality:
rr(Co((QS*)G)) £ rr(C*(G)) € 2s1(C*(G)) — 1.

See [2] for the second inequality. If dim G = 1, then rt(C*(G)) = dim(&*)¢ = 1.
Suppose that dim GG > 2. If dim(&*)¢ = 2m (m > 1), then it follows from
Theorem 3.9 that

2s1(C* () = 1 = 2(dimg (™) v2) — 1
=2(([2m/2]+ HV2)-1=2m+1}V3I=2m+ 1.

Therefore we have that
dim(6*)¢ < rr(C*(()) € dim(68*) + 1.
If dim(®*)¢ = 2m + I(m > 0), then it again follows from Theorem 3.9 that

2s1(C*(G)) — 1 = 2((dime (&) v 2) — 1
=2(([2m+ 1)/2l+ Hv2) ~1=02m+ 1) V3

Therefore we conclude that

dim(6*)¢ < rr(C*(@)) € dim(8*)° v3. 1



82 TaKAHIRO SUDO AND HiRoOsHI TAKALI

4. EXAMPLES

In this section we give several examples which support Theorem 3.9.

EXAMPLE 4.1. Let (i be the extended real az + b-group, i.e. the semi-direct
product R™ x R defined by all (n + 1) x (i + 1) matrices of the following form:

et 0 a1

gz(agt) ‘11)’ olt) = Cao

0 el an

for each {,a;,...,a, in R. Put g = (¢{,a1,...,a,). If n = 1, then G is the real
az + b-group. The Lie algebra & of G is defined by all (n+ 1) x (n + 1) matrices
of the following form:

1 Q0 g}

tl, =«
X = In= s -
(s 5) r=|
0 1 T

for each ¢,z;,..., 2, in R. The real dual space &* of & is defined by all (n+ 1) x
(n + 1) matrices of the following form:

i, 0 ( )
= v={(my - m,
14 m o) " "

for each {,my,...,my, in R. We let ¢ = (I,m;,...,my). The duality is defined
by ¢(X) = tr(X¢) for X in & and ¢ in &* where tr is the natural trace of
M, 41(R). By using the formula Ad{exp X) = exp(ad(X)) where ad(X)(Y) =
(X, Y] = XY - YX for X,Y € &, the coadjoint action of G is given by

Ad*(exp X)p = (I — (nt)~ Zx,m,,e miy,...,e " my).

Thus (*)Y consists of all matrices of the form (1,0, ...,0). Hence dimg(8*)¢ = 1.
By Theorem 3.9, we conclude that sr{C*(()) = 2.
On the other hand, let g = (¢,a;,...,a,),h = (s,b;,...,8,) be in (7. Then

ghg™th™! = (0,(1 —e®)ar — (1 —e"Yby,---,(1 = e’ }an — (1 —e*)by).

It follows that [G, (7] contains all matrices of the form (0, a1, ..., a,). Thus we see
G/[G, G = R. Hence (G/[G,G))* =R.
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Next we consider the structure of C*(G). The following exact sequence is
obtained:
0— Co(R*\ {0}) xR — C*(G) — Cp(R) — 0.

Then Co(R™\{0}) xR 2 C(5"~1)®K where S"~! is the (n—1)-dimensional sphere

and S° = {—1,+1}. If n > 3, then sr(C*(G)) = 2. In the case of n = 1 or 2, we

have sr(C*(G)) is either 1 or 2. By Theorem 3.9, we conclude that st(C*(G)) = 2.
From the above observation,

dime(8" & *)°%¢ =2, (G x G/[G x G,G x G))" =R

Applying Theorem 3.9, we obtain sr(C*(G x G)) = 2.

ExAMPLE 4.2. Let (G be the split oscillator group, i.e. the semi-direct prod-
uct H xR defined by all 3 x 3 matrices of the following form:

1 a b
g=(0 et c)
0 0 1

for t,a,b, cin R where H is the 3-dimensional Heisenberg group. Put g = (¢, a, b, ¢).
Then  is a simply-connected connected exponential solvable Lie group. The Lie
algebra & of (7 is defined by all 3 x 3 matrices of the following form:

0 2 ¥
X = Otz)
0 0 0

for t,z,y,z in R. The real dual space &* of & is defined by all 3 x 3 matrices of

0 0 0
(p:(l u 0)
m n 0

for u,i,m,n in R. We let ¢ = (u,!,m,n). The duality is the same as in Exam-

the following form:

ple 4.1. Then the coadjoint action of G is given by
Ad*(exp X)p = (¢, 'l +t71(e' — zm,m,e"'n+t" (e™" — 1)zm)
where u' = t~1(e! — 1)zl — t~(e~* — 1)zn — 2zym + u. Thus (B*)C consists of

all matrices of the form (u,0,0,0). Hence dim¢(®*)¢ = 1. By Theorem 3.9, we
conclude that sr(C*(G)) = 2.
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On the other hand, let g = (¢,a1,0,0),/h = (s,a3,0,0) be in G. Then
ghg™'h™! = (0,e7}(1 — e *)ay 4+ e~*(e™" = 1)as, 0,0).
Let ¢ = (t,0,0,¢1),h = (5,0,0,¢2) be in (. Then
ghg™ h=' = (0,0,0,(1 - e*)e; + (e = 1)e3).

It follows that [G, G] contains all matrices of the form (0, a,0,¢). Let g = (0, a4,
bi,e1), h = (0,az,b2,¢2) be in G. Then
ghg™'h™1 = (0,0, ayc3 = azey, 0).

Note that (0,a,b,¢) = (0,a,0,¢)(0,0,5,0). Since [G,G] is a subgroup of G, it
contains all matrices of the form (0,a,b,c). It follows that [,G] = H. Thus
G/[G,G] = R. Hence (G/[G,G)" = R.

From the above observation,

dime(8* d 8*)6%% =2, (G x G/[Gx G, G x G)* =R2,

Applying Theorem 3.9, we obtain sr(C* (G x (7)) = 2.

EXAMPLE 4.3. Let (7 be the semi-direct product R? % R defined by all 3 x 3
matrices of the following form:

_falt) a _ {cost —sint _fa
g_( 0 l)’ ﬂ‘(t)m(sint cost)’ a_(az)

for each t,a;,a; in R. Put g = (,a1,a2). Then G is the only non exponential
simply-connected connected solvable Lie group with dimension < 3, up to isomor-
phisms (cf. [5]). Actually, the Lie algebra & of G is defined by all 3 x 3 matrices

of the following form:
0 -t =
X = (t 0 F 4] .
0 0 o

The real dual space 8" of & is defined by all 3 x 3 matrices of the following form:

0 m 0
p= -m 0 0) .
i 6 0
Put ¢ = (m,11,13). The duality is the same as in Example 4.1. Then the coadjoint

action of G is given by

Ad"™(exp X)p = (m', Iy cos(—t) + Iy sin(~t)}, =1y sin(—t) + {5 cos(—t))
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where m/ = m + (2t) " }(sin(~t)(z2ly — 21l2) + (1 — cos(—t))(z1l; + z2l3)). Note
that Gy, = R2x Z for ¢ = (0,1;,12) with non zero l1,ls. Tt is known that if 7 is
an exponential Lie group, then G, is connected for every ¢ in &* (cf. [5]). Thus
(7 is non exponential. Then (&*) consists of all matrices of the form (m,0,0).
Hence dimg(8*)¢ = 1. By Theorem 3.9, we conclude that sr(C*(G)) = 2.

On the other hand, let ¢ = (¢, a1, as), h = (5,b1,b2) be in G. Then

gt = (MO G eheie@ =1y (1 0),

Thus [(7, G] consists of all matrices of the form (0, ay, as). Hence G/[G,G] = R.
Thus (G/[C, G])* =R.

From the above observation,
dime(S* & B*)6*¢ =2, (G x G/[¢ x G, G »x G = R
Applying Theorem 3.9, we obtain sr(C*(G x G)) = 2.
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