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ABSTRACT. We consider a pair of C*-algebras A’ C A. The K-theory of the
mapping cone for this inclusion can be regarded as a relative K-group. We
describe a situation where two such pairs have isomorphic relative groups.
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1. INTRODUCTION

This paper is concerned with a certain excision result for K-theory of C*-algebras.

Let us begin by setting out some notation. Let A be any C*-algebra. We
let A~ be the C*-algebra obtained by adjoining a unit to A (even if A is already
unital). Let M, (A) denote the C*-algebra of n x n matrices with entries from A.
For any a in A™ (respectively, M, (A™)), let @ denote its image in C, the complex
numbers, (respectively, M, (C)), under the map moding out by A. We also regard
C and M, (C) implicitly as subalgebras of A~ and M, (A"™), respectively.

Suppose A’ is a C*-subalgebra of A. We regard A’~ C A™ as the natural
unital inclusion. Recall [6], {7], [1] that the mapping cone for the inclusion A’ C A
1s

C(A'; Ay ={f:{0,1] — A| f is continuous, f(0) =0, f(1) € A’}.

It is a C*-algebra with pointwise operations and

£l = sup {17 () | 0 <t < 1}
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for f in C(A’; A). There is a natural short exact sequence
0—Co(0,1) @ A—C(A; Ay — A -~— 0,
1 ey
where
ev(f) = f(1), feC(AA)
(g a)(t) =g(t)a, g€ Co(0,1),ac A, 0Kt

Let b : Ki(A) — Kiy1(Co(0,1) ® A) denote the usual isomorphism ([1]). After
using b to replace the terms involving K, (Cy(0, 1) ® A), the six-term exact squence
for K-groups associated with the sequence above becomes

Vs

Ki(4) Ko (C(A';4)) Ko(4')

s B

K, (4") K (C(A"; 4)) Ko(A)

where j : A’ — A denotes the inclusion map. We regard K. (C(A’;4)) as a
“relative group” for the C*-algebra inclusion A’ C A. Indeed, if A’ is actually an
ideal in A, then there is a natural isomorphism

K. (C(4"; A)) = K.(A/A").
To see this, let
J={feC(AA)|f(t) e A' forall 0 < t < 1},

which is an ideal in C(A’; A). Moreover, J = Cy(0, 1]® A’ and so K..(J) = 0, since
Co(0, 1] is contractible ([7], [1]). We also have a short exact sequence

0 — J — C(A, A") ~ Co(0, 1) ® (A/A") — 0.

Taking the six-term exact sequence for K-groups and noting K.(J) = 0 yields the
result. Thus, if A’ is an ideal, K, (C(A4’; A)) depends only on A/A’.

Our goal is to describe two pairs of inclusions A’ C A and B’ C B which are
related in a specific way that we may conclude that there is an isomorphism

K. {(C(A'; A)) = K, (C(B'; B)),
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which is natural in some sense. The roles of A and B here will not. be symmetric.
In some sense, the inclusion A’ € A will be the more tractible. We suppose that
A and B are both C*-algebras of operators acting on the Hilbert space H. We
suppose that z is a selfadjoint unitary on H and that the following conditions
are satisfied. First, B should lie in the muiltiplier algebra of A. We should have
2Az = A and, for all b in B, #bz — b lies in A. One interesting case where this
occurs is when (H, z) is a Fredholm module for B ([1]). Let A be the C*-algebra of
compact operators on H. These conditions are satisfied. Returning to the general
situation, we let A’ and B’ be those operators in A and B, respectively, which
commute with z. We require three more technical assumptions on A, B and z
(given as conditions 4, 5, 6 in Section 3). Under these hypotheses, we construct a
homomorphism
a: K, (C(B'; B)) — K. (C(4; A)

and prove that it is an isomorphism.

The main applications of this result are in various situations arising from
dynamical systems where B, B’, A and A’ can all be described as groupoid C*-
algebras. For example, B = C(X) x, Z and B’ = Ay of [4], where ¢ is a minimal
homeomorphism of a Cantor set X, can be described in this way. Here, A is the
compact operators on £2(Z) and A’ is the direct sum of compact operators on two
orthogonal subspaces. More applications can be found in [6]. (Also, see [2].)

In Section 2, we provide a description of Ko (C{A’; A)} which will be useful.

In Section 3, we state and prove the main results ( Theorems 3.1 and 3.7).

2. K-THEORY OF MAPPING CONES

Our aim in this section is to provide a natural description of Ko (C(4’; A)).

We begin, as in Section 1, with C*-algebras A’ C A. Foreachn=1,2,3,...,
we let V,,(A’; A), or simply V,,, denote the set of elements v in M, (A™) such that:

(1) v is a partial isometry;

(ii) v* v is in M, (C);

(iii) vo* is in M,(A'™).
(In some ways, it would be more natural to require v*v to be in M, (A’~); our
definition will be more convenient, however.) We regard V,, C V, .. by identifying
vand v 0, for all v in V,,. We let

V(A A) = Va(4'; A).

We will make use of the following two facts:
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1. If h is a selfadjoint element of a (*-algebra and [Jh — A?|| < § < 1/2, then
the spectrum of h is contained in (—26,28) U (1 — 26, 1 +28). The proof is an easy
application of the spectral theorem.

2. If p; and p, are projections in a C*-algebra with [jp1 — p2|] < 6 < 1/2,
then there is a unitary u in the C*-algebra such that up;u* = ps and [Jlu—1|| < #é.
For a proof, see 4.3.2, 4.6.5 of [1].

LEMMA 2.1. Suppose 0 < e < 100~} and v in M,(A™) satisfies (i) and (ii)
above and there ezists ¢ in My (A™) such that ||vv* — q|] < €. Then there ezists a
unitary u in Mp{A~) such that ||u — 1]] < 30¢ and uv is in Vo (A'; A).

Proof. First replace ¢ by (g+¢*)/2 so we may assume it is selfadjoint. Since
v is a partial isometry, vv* is a projection and so

llg® — qll < 4e.

Then, using the first fact above, g1 = X(1/2,00)(¢) s a projection and [lg1 —gf| < 8¢
hence
llgr — vo*|| < 9e.

The second fact above then gives the desired u. 8

We define a map
k: V(A" A) — Ko (C(A; A)).

Begin with v in V,,(A4’; A). Consider

[l—v*u v* ]
v =
' v 1 — vt

in Mo, (A™). 1t is easily verified that v; is a selfadjoint unitary. We define a path
of selfadjoint unitaries in M2,(A™) by

va(t) = [61 + L +e™(1 - 1}1)}_1 [7 4+ 1 +€™(1— )],

for 0 <t < 1. Notice that v, satisfies:

(i) v2(t) is unitary for all ¢,
(ii) vy is in C[0, 1] ® Man(A™),
(iii) 92(¢) = 1, for all ¢,
(IV) ’!)2(0) = 1,

(v) va(1) = 97 oy
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Together, (ii), (iii) and (iv) imply that v, may be regarded as an element of
[Co(0,1] @ M2,]™ .

Finally, we define
Do (t) = 'vz(t) €11 ’l)z(t)*,
for 0 <t < 1, where e1; denotes 1,, @ 0 in Ma,(A™). It is easy to verify that
(1) Pu(0) = e11;
(ii) pu (1) = (1n — v*v) & vv* € Mo (A™);
(iii) py(t) = €11, forall 0 < ¢t £ 1.

Thus, py is in Mo, (C(A’; A)™) and [p,] —[e11] is in Ko (C(A’; A)). We denote this
element by x(v). We summarize the properties of «.

LEMMA 2.2. (i) For v,w in V(4'; A),
k(v & w) = &(v) + s(w).

(ii) If v,w are in V,(A'; A) and ||v — w|| < 20072, then x(v) = s(w).
(iii) For v in V(A" A), wy tn Upn(A'™) and wy in U,(C), then wivws is in
Va(A'; A) and
k(wy) = k(ws) = 0

k(wivwse) = k(v).

(iv) For any projection p in My(C), x(p) = 0.
(v) If v is a partial isometry in M, (A™™), then x(v) = 0.

Proof. Parts (i) and (iv) are verified by direct computations, which we omit.

In proving (ii), one notes that the construction of p, depends continuously
on v. In fact, |[[v — w|| < 200~! implies (|py — pw|] < 1/2 (we omit the details),
which implies [p,] = [pw] and the conclusion. As a consequence of (ii), if v and w
are homotopic in V,,(A’; A) then s(v) = &(w).

In part (iii), we begin by considering v&0, wy ®w} and wp $w}. By standard
methods (see 4.2.9 of [7]), w1 ®w] and wy @ w} are both homotopic to the identity
in Usn(A’™) and Uz, (C) respectively. Thus, w;vws & 0 is homotopic to v @ 0 in
Van(A’; A), so k(v) = &(wyvws) by (ii) and (i). Finally, x(w;) = k(wz2) = 0 both
following as special cases (v = wy = 1, w; = v = 1) of (iii) and (iv). As for (v),

writing
®0 v 1- 'uv*] [p 0]
v =
1—v*v v* 0 0

the conclusion follows from (iii) and (iv). ®
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We now want to see how this map « relates to the six-term exact sequence
for K-groups appearing in Section 1.

LEMMaA 2.3. (i) For v in Vo (A'; A),
evy (k(v)) = [vv"] — [v7v].

(i) For v in U, (A™)
i.b[v] = &(v).

Proof. (1) We compute

cv. (8(v)) = [pu(D)] = [ens] = [(1 = v"2) @ 0°] = [e11] = [o0"] — [v"].

(ii) In the construction of x(v), v is a path of unitaries in M3,(A~) from
1 to 97 'v;. Let v3(t) be any path of unitaries in M3,(C) from 1 to & @ ©*. Then
v3(t)va(t) is a path from 1 to v @ v*. By the definition of b

b[v] = [vavaer1vau3] — [e11] = [vapuu3] — [e11] = [po] — [enn] = &(v),

since v3(t) is in Ma,(C). #

LEMMA 2.4. k: V(A" A) — Ko (C(A’; A)) is onto.

Proof. Let p,q be projections in M, (C(A’; A)™) with [p] = [¢] in Ko(C);
ie. [p] —[q] is in Kq (C(A’; A)). By exactness, j.ev. ([p] — [¢]) = 0 in Ko(A). This

means [p(1)] = [¢(1)] in Ko(A). So there exists positive integers k, n = 2m + k
and a partial isometry v in M,,(A"~) such that

VU = 1y @ 0, B 13

vo* = p(1) & (I — ¢(1)) & L.
Then v is in V,(A’; A) and by Lemma 2.3 (i), we have

ev, ([p] — [q]) = e (x(v)) -

Hence, «(v) — [p] + [q] is in the kernel of ev, which is the image of 7,. For some
unitary w in My(A"™), i.(w) = k(v) — [p] + [¢]. Using Lemma 2.3 (ii), we have

(v & w') = k(v) + w(w") = x(v) —iu(w) = [p] - [g].
LEMMA 2.5. Lel =~ denote the equivalence relation on V{A'; A) generated
by:
(i) v=vep, ve V(A A), p a projection in M,(C);
(ii) if v(t) is a continuous path in V,(A’; A}, then v(0) = v(1).
Then k : V(A’'; A)) m— Ko (C(A'; A)) is a well-defined bijection.
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Proof. 1t follows from Lemma 2.2 (i), (ii) and (iv) that x is well-defined.
From Lemma 2.4, we see that x is onto. It remains to show that if vy, vy are
Va(A'; A) and k(v1) = k(v2), then vy = vs.

First, note that if v, w; and wy are as in Lemma 2.2 (ii1), then
wivwe = wdwe G0 = (wy d wil(v @ 0)(we & w3).

By homotoping the first and third terms of the right hand side, we see that
W vWy R V.

Returning to v; and vy with k(v;) = &(v2), we may first asswme that by
taking direct sums with (different) scalar projections that the ranks of vjv; and
viuy are equal. We can then right multiply »; by a scalar unitary — without
changing its m-equivalence class — to obtain vjv; = vivs.

From x(v1) = k(vs), we apply evs to both sides, use Lemma 2.3 (i) and
vivy = vve to conclude that [vyv}] = [vov3] in Ko(A'™). Again we may take
direct sum with a scalar projection and reduce to the case viv] and vyv3 are
unitarily equivalent. By left mnultiplying v; by a unitary in My, (A’™), we obtain

v1v} = vv}, viv1 = vhvg, without changing the ~-equivalence class of vy or vs.

Let
t -/ —12
Rn(t) = , 0t

V1t i

be in M3, (C) and define the path in M3,(A4")
v(t) = Ru(t) [v1 @ vv1] Ru(t)™! [(vive + 1 — viv1) @ 1]

for 0 < ¢t < 1. Observe that for all ¢, v(¢) is in Va,(A"; A), v(0) = v}v2 & v1 and
v(1) = v2 P vivy. We have vivg is in V,(A’; A) and

& (vjv2) = & (v(0)) — k(v1) = £ (v(1)) — &(v1) = K(v2)} — &(v1) = 0.
Now, consider the unitary v = vive + (1 — vivy) in Mp(A~). We have
i.0[v] = £(v) = K(vive) = 0,

which implies [v] is in the image of j.. That is, v is homotopic (after direct
summing with the identity) to a unitary in M,(A’~). Let v'(f) be any path of
unitaries in M, (A~) with v/(0) = v and v/(1) € M, (A"™).
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Now define a path in M4, (A™)

v () o' ()1 — vyv]) 0 0
0 0 0 0
w(l) =
|1 — vy 0 0 0
0 v10] 0 0

It is straightforward to verify that, foral 0 € ¢t £ [,
wtYw(t) =1, 1, 0, B0,
w(thw(t) =l 0@ (1 — viv1) ® viv]

and so w(t) is a path in Vi, (A'; A). Evaluating at ¢ = 0, we see

vy l — v 0 0 V1] 1 —vyo 0 0
0 0 0 0 0 0 0 1
w(0)= =

1 — i 0 0 0 0 0 1 0
0 v} 0 0 I —vy9] V1] 0 0

v 0 0 0 vy Uy 0 1 —v3v2 0

0 1 0 0 0 1 0 0

0 0 1 — v, 0 | 1—-1v3v2 0 V32 0

0 0 0 0 0 0 0 1

The first matrix in this product is a unitary in My,(A’™), the last in M4n(C) and
50

w0) v d 1ld (1l —vyve) 0= v,
A similar calculation shows w(l) = v; and we are done. 1

Regarding the relation =, it is clear that if vy and vy are homotopic, then for
any scalar projection p, vo @ p and v; ¢ p are homotopic. Therefore, if vo & v; then
there are scalar projections pg and p; such that voé pg and v; & p; are homotopic.

A few other remarks are in order. Following exactly as in the beginning of
the proof (before «(v1) = £(v2) was used), given any v; and vy in V(A’; A) we
may direct sum scalar projections and right multiply one by a scalar unitary to
get viv; = vivy. Finally, if v(r) is a path in V,(A’; A), we may right multiply by
a path of scalar unitaries so that v(r)*v{r) = v(0)*%(0), for all r.
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For each 0 < & < 400!, we let V(A’; A) denote the set of v in M,(A~)
such that:

(i) v is a partial isometry,

(1) v*v is in M,(C),

(iid) |Jvv* — ¢|| < €, for some ¢ in M,(A™).

We let V¢(A’; A) denote the union of the V(A’; A), with the usual inclusion
of Vi m Vi,,. For any a in V¢(A’; A), let v be as in Lemma 2.1. We define
k(a) = &(v). This is independent of the choice of v by Lemma 2.2 (ii). It is also
easy o sec that Lemma 2.2 is valid if we replace V(A’; A) by V*(A’; A). We extend
the definition of = to VE(A’; A) in the obvious way.

LEMMA 2.6. Suppose A has a countable approzimate unii {e,}5° contained
in A'. Then for every v in V,(A'; A) and 0 < ¢ < 400~} v = w, for some w in
V5 (A" A) such that

w =

Wq O]
(p— wiwe)z 0

where wy 5 in My (A), p is a projection in M, (C) and 0 € wjwe < p. Moreover if

{ wy 0} , wy 0
u = ) Uy = )
(p— wiwg)s 0 (p—wiwp)z 0

are homotopic in V5, (A, A) then there is a path

U}Q(f.) 0
ol 2
(p — wo(t)"wo(?))? 0

jowning them.,
(The point here is that wy lies in M, (A) and not just My (A™).)

Proof. Notice that » & ¥*» — see the proof of Lemma 2.5 — and (¢%v) =
v™v = p is a projection in M,(C). Thus, we may assume v = p. Using e, to
denote 1, % e;n in M, (A), notice that

« 1
, Cm _(1 - Crzn)i
e, = .
(1 - em)2 €m
is a unitary in M3, (A™) so

€mU 0
vz e, (veh0) = . .
(1 —e2)7v 0

m
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We will let wo = e, v, for some sufficiently large m, which is in M, (A). It is clear
that wiwg € p. Consider

1 * L 1
(1= e2)% v~ (p— wiwo)?|| < [|(L — e2)7 (v — p)|
(L =€) p— (p— wiwo)?|.

The first term tends to zero since v — p is in M,(A4) and e, is an approximate

2

unit. As for the second, since (1 — €2,

) and p commute, their product is positive
and ; .

11— €n) 7 p = (0 = wiwe) (| < [I(1 - ) p— (p — whwo)||?
= litp - o' (1 - <) (p — v)II}

which tends to zero as m goes to infinity., Therefore, we may choose m so that

e (v 0) and
L(p— wiwo)T 0

are sufficiently close so that the latter is in Vi, (A’; A} and is =-equivalent to the
former.
For the final part, consider the C*-algebra C[0, 1J® A. We omit the details. 0

3. THE EXCISION THEOREM

Here, we state and prove our main results {Theorems 3.1-3.7). We describe the
hypotheses. We suppose that A and B are C*-algebras acting on the Hilbert space
‘H. We also suppose that z is a selfadjoint unitary operator on H. Note that we
regard M,(A) and M,(B) as acting on X & - - e H, the n-fold direct sum. We
also let z denote the operator z & - -hzon H & - - H. We let [a,8] = ab — ba
for any operators a,b on H.

We will assume conditions 1-6 hold.

l. Forallain A, bin B, abis in A; i.e. B acts as multipliers of A.
2. zAz = A.
3. Forallbin B, zbz —bisin A,
4. There is a continuous path {e, | t 2 0} in A such that:
(i)0<e; e, <1, fort <
(i1) ejeq = ey for s 2t + 2;
(iii) for all @ in A,

Jim lleca = af} =0 = Jim flae, = ol
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(iv) [er, 2] = 0, for all ¢.
We define C"-subalgebras
A'={a€ Al[e,z] =0}

B'={beB|[bz]=0}.
5. For all b in B, there exists ¥ in B’ such that
[Ib— &I} < 2[|[b, 2]|]-

(In the terminology of M.-D. Choi, almost commuting with z implies nearly com-
muting with z.)

6. There is a dense #-subalgebra 4 C A such that for a in A, there is to > 1
such that;

(1) aey = esa = a, for all £ 2 to;
and, for any such ¢y as above, there is b in B such that:
(i1) bey = erb=a, to <t S to+ 25
(iii) [, z] = [a, 2];
(iv) 111] < Il
(The choice of b will depend on ¢y as well as a.)
Note that the condition on A analogous to 5 is valid; let @’ = (@ + zaz)/2.
Many examples are found in the theory of ('*-algebras associated to dynam-
ical systems via the crossed product or groupoid (*-algebra constructions. Let us
mention one explicit example.
Fix an irrational number 8, 0 < § < 1. Let H = ¢2(Z) and lct v and v denote
the unitary operators

(u€)(n) = &(n — 1)
(v)(n) = exp(2mi0)E(n),
for £ in £2(Z), n in Z. Then u and v satisfy the relation uv = exp(27if) vu and

generate a C*-algebra, B, isomorphic to the irrational rotation C*-algebra, Aj.
We let A = K(H), the compact operators, and

7 n 2
(z)(n) = { _6(5(31) n<

[t is easy to verify 1, 2 and 3. It is also easy to see that

A=K (£{n | n<0}) @ K (£{n | n>

!

The proofs that 4, 5 and 6 hold can be found in [5]. Also the techniques of [5] show
that B’ is the C*-subalgebra of B generated by v and u(» — 1). (See Example 2.6
of {5].)
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THEOREM 3.1. Lel A, B, z salisfy 1-6 as above. Then there is an isomor-
phism

a : Ko (C(B'; B)) — Ko (C(A'; A))
which is natural in a sense {o be described.

Let us take a moment to try to justify our description of Theorem 3.1 as
an “excision” theorem. Section 2 describes the K-theory of the mapping cone
C(A’; A) as partial isometries in A with initial and final projection in A’. The
extent to which an clement a lies in A’ can be measured by zaz —a = 2[a,2]. A
similar remark applies to B’ and B. Conditions 2, 3 and 6 (iii) essentially mean
that the sets

{zaz —a|a€ A}
{zbz—bleB}

“agree”. The conclusion is then that the corresponding “relative K-groups” are
isomorphic.

We begin by describing the map . We use ¢, to also denote the element 1,®
e, in Mp(A), for any n = 1,2,3,.... We will use the description of Ko (C(B’; B))
provided by Lemma 2.5 and the discussion following it. Let » be in VE(B'; B).
For all t 2 1, we define a(v); by

ve; 0
a(v) =

(Mg

0

(v*v — esv*ver))

Since B acts as multipliers of A, ve; is in Mp{A). Also, v*v is a projection in
M,.(C) and it follows that a(v), lies in My,(A™). It is also worth noting that e

and »*v commute so that
1 1
(v*v —e;v*ve)? = v v (1 —ef)7 .
It is easy to check that

a(v); a(v); = v v @0,

which is in M>,(C) and is a projection.
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LEMMA 3.2. Forv in VE(B'; B) and 0 < € < 4007, there ist > | such that
a(v), is in V5, (A" A) foralls 2t

Proof. We claim that
lim sup |fa(v); a(v)z, 2]l < €.
— 00

To see this,

1
)] vey (1 —ef)’
a(v) a(v); = .
(1~e2}? ev* v'o(l—e?)
and we will check the commutators of the four entries with z separately. The lower
right entry actually commutes with z since e; does and v*v is in M, (C). As for
the upper right (or lower left)

lim |ve; (1 — €2 ha”,z = lim [v,z] e, (1 — &2 %=0
i t— 00

t—o0

since z[v, 2] is in M,(A) and e, is an approximate unit for A. For the upper left
entry, we have

limsup || [velv*, 2]|| = limsup ||[v, 2] e]v* + velfv*, 2] .
t—oo t—o00

Since z[v, 2] and z{v*, z] are both in A, ¢; will asymptotically commute both, so
this equals

lim sup ”e, [v, z] v* + ?1 " 2] ”
t— 00

Applying the same argument and noting [v, z]v* is in M,(A) since v* is in the
multiplier algebra of M,,(A), this equals

limsup ||([v, 2] v* + v[v*, 2]) eZ|| = limsup ||[vv*, z]e?|| < ¢
t—oo t—o0

since vv* is within € of an element of in M, (A’~). The claim is established.

To see the conclusion, let

za(v)ia(v)iz + a(v) a(v);
5 .

q:

Now, (iii) follows from the claim and it is clear that g is in M, (A'™). &
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Notice that
a(v @ wh = a(v): D a(wh

(at least after a change of basis which we will suppress). It follows from Lemma 3.2
that letting

a (k(v)) = K(a(v)s),

for any sufficiently large s defines an element in K, (C{A’; A}). To see that a is
well-defined it suffices to apply Lemma 2.5 and observe the following. If p is a
projection in M, (C) then

afp) = ei(p @ 0),
where ¢} is as in Lemma 2.6. So then « (a(p):}) = 0 by Lemma 2.2 (ii), (iii).

Also observe that if v(r), 0 < r £ 1 is a path in Vj(B’; B) then the limit in
Lemma 3.2 can be made uniform over r, and, hence, for s large o (v(r)), will be
a homotopy in VZ5(A’; A).

The proof of Theorem 3.1 will require several technical lemmas.

LEMMA 3.3. Let wg be in M, (A) and p be e projection in M,(C) such that
p 2 wiwg. Then there istg = 1 and vy in M, (B) with vjve < p such that:

(1) woes = eswg = wg, for s 2 to;
(i1) voe, = esvg = wo, fortg +2 2 5 2 to;

(iii) [vo, 2] = [wo, 2],

(iv) [v§vo, 2] = [wiwe, 2];

(v) [vovg, 2] = (wowg, 2];
(vi) [(p — vpv0)?, 2] = [(p — whwo)3, 2].

Proof. Choose any tq and b as in hypothesis 6 for a = wq. Then let
vg=0bp so vivg=pb*bp<pb|’r<p.

Conditions (i), (ii) and (iii) follow at once from hypothesis 6.
We have

[v5v0, 2] = [vg, 2} vo + vg[vo, 2] = [wg, 2] wo + vp[wo, 2]
= [wger, 2] vo + vg[erwo, 2],
for to <t < tg + 2,

= [wg, 2] eyve + vgefwy, 2]

= [wa» z] w0+w8‘[w0) Z]a
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by (i),
= [wowe, 2]
and so (iv) holds. A similar argument establishes (v). As for (vi), it follows from
(iv) that
[f(p — v5v0), 2] = [f(p — wiwo), 2]
for any polynomial f. By standard approximation arguments, the same holds for
f)y=t3

LEMMA 3.4. Let wo, p, to, vo be as in Lemma 3.3. Define w in My,(A™)
and v in Man(B™) by

Wo 0
w= N
(p — wgwo)* 0

Vo 0
v = 1 f
(p—vgvo)? 0
Then.:

) ww=v'v=pa0,
(ii) esfv, 2] = [v, 2] &5 = [v, 2] = [w, 2] for 5 > 1o,
(iii) [ww*, 2] = [vv*, 2].

The proof is an easy consequence of Lemma 3.3; we omit the details.

LEMMA 3.5. Lel wqg be in M,(A™), p a projection in M, (C) with p 2 wiwo.
Letto, vo be as in Lemma 3.3, w, v as in Lemma 3.4 and assume w is in VS, (A"} A)
for some 0 < e < 400!, Then:

(1) v is in Ve (B'; B),
(il) a(v), is in Vie(A'; A), for all s 2 1o,
(iii) & (e(v)s) = (w), forto € s € to + 2.

Proof. (i) From Lemma 3.4 (i), v*v = p@® 0 and we must check only that vo*
is close to an element of My, (B"). From Lemma 3.4 (iii)

lllve™, 2]l = llww*, 2]i| < 2¢

since w is in Vi (A’; A). Apply hypothesis 5 to find ¢ in My, (B'~) so that
llg — vv*|| < 4¢, and (i) is complete.
(ii) As before, we must compute

[ex(v)s ()5, 2l -
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Now, for s 2 to,

X
vely* vey (1 — e2)? v*p
a(v)s; a(v); = ! N t( )
v (1 —€?)? ev* v*v (1 —e?)

and commutators with z for each of the entries is done separately. The off-diagonal
entries commute with z because v*» = p and by condition (ii) of Lemma 3.4, so
(I —e¢)[v, 2] = 0. The lower right entry also commutes with z while

[veZv*, z] = [ww*, 2] for s 2 to.

This completes the proof of (i1).
(ii1) By direct computation

Ve, 0 0 0 1 0 0 0
(p—v§vo)3es 0 0 0 0 €s —(1-€)7 0
Ot(‘t)), = oy L = 1
p(l—ez)z 0 0 0 0 (1-e2)? es 0
0 0 00 0 0 0 1
Wo 0 O 0
(p- wowo)% 0 0 0
0 0 00
0 0 00

for to < s < 19+ 2, using Lemma 3.2. The first matrix above is in My, (A’~) and
so the result follows from Lemma 2.2 (iii). 8

LEMMA 3.6. Suppose v is in V,(B';B) and ||[v,z]}|) € € < 1075, Then
k(v) = 0.

Proof. By hypothesis 5, there is a v/ in M,(B’™) such that ||+/|| < 1 and
|lv =[] < 2¢. Let
v'p 0
w= .
(p — pvl*vlp)i 0
where p = v*v, so w is in Vo, (B’; B) and in M3, (B'~) and

lved 0 — w|| < 4e2.

Moreover, k(w) = 0 by Lemma 2.2 (v) and x(v) = x(w) by Lemma 2.2 (ii). 8
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Let us describe the naturality of the isomorphism described in Theorem 3.1.
Suppose (A1, By, 21, {cgl)}) and (Ag, Bg, z3, {652}}) are two systemns satisflying 1-G.

Also suppose
oc: A — Ay

7B — By
be *-homomorphisms such that
a(ab) = o(a)w(d), ac Ay, beEB
a(z1az1) = 23 0(a) zg, ac Ay
m(21621) = 29 7(b) 29, be B
o(z1bzy — b) = z3 w(b) 2o — w(b), b e By
o)y =eP  forallt.

It i1s easy to see that ¢ and 7 induce *-homomorphisms

Qe

L C(Ay; AY) — C(AY; Ad)

L C(B}; B)) — C(B); By).

=

The map « is natural in the sense that the following diagram commutes:

Ko (C(B}; Bl)) ——— Ko (C(4}; 4,))

li. la,

Ko (C(Bj; By)) ——— Ko (C(AY; A3)).

The proof of this is immediate. We omit the details.

As an application, suppose (A, B, z,e;) satisfies 1-6 and suppose X is a
compact second countable Hausdorff space. Fix some regular Borel measure p on
X with full support. Then we can regard A ® C'(X), B® C(X) and z® 1 as
operators on H ® L?(X, st). Hypotheses 1-3 are easily checked and e; ® 1 satisfies
4. We also have ,

(A C(X))' = A ® C(X)
(B® C(X)) = B @ C(X)
and 5 follows. The algebraic tensor product of A and C'(X) can be seen to satisfy 6.

Proof of Theorem 3.1. First of all, it is fairly clear that « is additive. The
surjectivity of « follows at once from Lemmas 2.6 and 3.5.
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Suppose v is in V,(B'; B) and «(x(v)) = 0 in Ko (C(A"; A)). Let p = v*v
which is a projection in M, (C). Fix ¢ = 10~7. Choose #; > 1 such that

3.1 (v, 2Jee =~ [v, 2]|| € €
”[’U,Z]— ['U,Z] et“ $E, t2t1

and such that

(3.2) alv)y € V5, (A A), 121

Since & (a(v)) = 0, we may direct sum {v):, with a scalar projection ¢ so that
the result is homotopic to a scalar projection in V¢(A4’; A). By replacing v by vég,
. . . 0 0 - .
we may assume simply that a{v);, is homotopic to ol which is homotopic
ip

to p 0. We apply Lemma 2.6 to obtain a path as described there. We may then
approximate the “wg” part of this path by a path in M, (A). We right multiply
this path by p and we obtain a path a(s), 0 € s € I, such that a is in the algebraic
tensor product of C[0,1] and M, (A),

a(s) 0
(3.3) wis) = [ . l , 0€s5< 1, e VE(A, A)
(p—a(s)"a(s))* 0

(3.4) a(l)=10

[[w(0) — (v)eall < 2¢,
hence,
(35) [1a(0) — vew, |} < 2,

”(p — a(0)a(0))F —p(1-e2)¥] < 2e.

We may apply the sequence of Lemmas 3.3, 3.4 and 3.5 to the element a in
M, (C[0,1] ® A) (algebraic tensor product) and p in M,(C) to obtain a path b(s),

0<s<1
b(s) 0]

(p—b(s)"b(s))* O
0<s<1landt; 2t; + 2 such that

N~

vi(s) = [

(3.6) [b(s), 2] = [a(s), 2],
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(3.7) b(s)er = egb(s), ta<t<ia+2,
(3.8) a(s)ec = ecals) = a(s), 131,
(3.9) [b(s)"b(5), 2] = [a(5)"a(s), ]
(3.10) [b(s)b(5)", 2] = B(s)bs)", 2

(3.11) (0= b(s)"6(5) 2] = [(p— als) a(s))7 2] |
wi(s) is in Vi< (B'; B)
a(vi(s)), isin ViE(A; 4), t 3t
Let us evaluate v; at s = 1. Making use of (3.4), (3.6) and {3.9), we see that
(3.12) [vi(l), 2] =0
and so vy(1) is in M, (B’™). Next, we claim that

(3.13) v 6(0)", 2]l < 3,

(3.14) < 3e.

[o (0 = b(0)"b@))* 2]

To see the first, we have
v 6(0)*, z]li = {l[v, 2] 5(0)" + v [(0)", =]||
< |l[v, 2] er, (0)" + v [a(0)", 2]l + €
by (3.1) and (3.6),
< ||[v, 2] er, €4, B(0)* + v e, v*, 2]|| + €
by hypothesis 4 (ii) and (3.5),
= ||[v, 2] e, a(0)* + vey, [v*, 2](| + €

y (3.7)
< N 21, v+ vel, o, 2]+ 2¢
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by (3.5) and (3.1)
= ” [vefl v, z] " + 2¢ € 3¢

because of (3.2). To see the second, there is a similar computation which we omit.

Now consider
va(5) = (v @ 0) v1(s)", 0<s<g L

This is a path of partial isometries in My, (B™). For each s, its range projection 1s
the range projection of » which is in M3, (B"). Its initial projection is the range
projection of v1(s) which is in My, (B'™), for all s. As noted in (3.12), when s = 1,
this projection is actually Murray-von Neumann equivalent to p&@ 0 in M, (B'™).
So we may find a path of unitaries u(s), 0 € s € 1 in Ma,(B'™) (actually, it may
be necessary to pass to Ma,(B'™)) such that

vi(1) u(l) =p& 0

v1(5)" u(s) has initial projection p & 0,
0€s< 1.

Now, consider the path

v3(s) = (v @ 0) vy (s)" u(s), 0

/AN
»
N

It is a path in Von(B’; B). Moreover, for s = 1,
va(l}=v 0

while for 5 = 0,

vb(0)* v (p — b(0)* b(0))?

w0=| 0

] u(0)

which commutes with z, to within 3e, by (3.13) and (3.14). By Lemma 2.2 (v)
and the homotopy invariance of «,

#(v) = & (v2(1)) = £ (13(0)) = 0.

This proves that « is injective and we are done. 1
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THEOREM 3.7. Let A, B, z salisfy 1-6 as before. Then there are isomor-
phisms

a: K; (C(B'; B)) — K; (C(4"; 4)),
which are natural, fori=0,1.

Proof. The case i = 0 is done. For the other case, let By = C(5') & B,
Ay = C’(.S’l) ®A z1=1®zand o: Ay — A, 7 : By — B be given by evaluation
at some fixed point of the circle, S*. There is a split exact sequence

0 — Co(0,1) &0 C(B’; By — C(B}; B1) = C(B;B) — 0

and a corresponding one for A and A;. Using the naturality of o on Kp and the
usual isomorphism

K1 (C(B'; B)) = Ko (Co(0,1) ® C(B'; B))
and the usual techniques, one obtains the result for K; groups as well. &
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