AN EXCISION THEOREM FOR THE K-THEORY OF C^* -ALGEBRAS

IAN F. PUTNAM

Communicated by Norberto Salinas

ABSTRACT. We consider a pair of C^* -algebras $A' \subseteq A$. The K-theory of the mapping cone for this inclusion can be regarded as a relative K-group. We describe a situation where two such pairs have isomorphic relative groups.

KEYWORDS: C^* -algebra, K-theory.

AMS SUBJECT CLASSIFICATION: Primary 46L80; Secondary 46L85, 19K99.

1. INTRODUCTION

This paper is concerned with a certain excision result for K-theory of C^* -algebras.

Let us begin by setting out some notation. Let A be any C^* -algebra. We let A^\sim be the C^* -algebra obtained by adjoining a unit to A (even if A is already unital). Let $M_n(A)$ denote the C^* -algebra of $n \times n$ matrices with entries from A. For any a in A^\sim (respectively, $M_n(A^\sim)$), let \dot{a} denote its image in \mathbb{C} , the complex numbers, (respectively, $M_n(\mathbb{C})$), under the map moding out by A. We also regard \mathbb{C} and $M_n(\mathbb{C})$ implicitly as subalgebras of A^\sim and $M_n(A^\sim)$, respectively.

Suppose A' is a C^* -subalgebra of A. We regard $A'^{\sim} \subseteq A^{\sim}$ as the natural unital inclusion. Recall [6], [7], [1] that the mapping cone for the inclusion $A' \subseteq A$ is

$$C(A';A) = \{f : [0,1] \longrightarrow A \mid f \text{ is continuous, } f(0) = 0, f(1) \in A'\}.$$

It is a C^* -algebra with pointwise operations and

$$||f||=\sup\big\{||f(t)||\ \big|\ 0\leqslant t\leqslant 1\big\}$$

for f in C(A'; A). There is a natural short exact sequence

$$0 \longrightarrow C_0(0,1) \otimes A \xrightarrow{i} C(A';A) \xrightarrow{cv} A' \longrightarrow 0,$$

where

$$ev(f) = f(1), \quad f \in C(A'; A)$$

$$i(g \otimes a)(t) = g(t)a, \quad g \in C_0(0, 1), \ a \in A, \ 0 \leqslant t \leqslant 1.$$

Let $b: K_i(A) \to K_{i+1}(C_0(0,1) \otimes A)$ denote the usual isomorphism ([1]). After using b to replace the terms involving $K_*(C_0(0,1) \otimes A)$, the six-term exact squence for K-groups associated with the sequence above becomes

where $j:A'\to A$ denotes the inclusion map. We regard $K_*(C(A';A))$ as a "relative group" for the C^* -algebra inclusion $A'\subseteq A$. Indeed, if A' is actually an ideal in A, then there is a natural isomorphism

$$K_*(C(A';A)) \cong K_*(A/A').$$

To see this, let

$$J = \left\{ f \in C(A'; A) \mid f(t) \in A' \text{ for all } 0 \leqslant t \leqslant 1 \right\},\,$$

which is an ideal in C(A'; A). Moreover, $J \cong C_0(0, 1] \otimes A'$ and so $K_*(J) = 0$, since $C_0(0, 1]$ is contractible ([7], [1]). We also have a short exact sequence

$$0 \to J \to C(A,A') \to C_0(0,1) \otimes (A/A') \to 0.$$

Taking the six-term exact sequence for K-groups and noting $K_*(J) = 0$ yields the result. Thus, if A' is an ideal, $K_*(C(A'; A))$ depends only on A/A'.

Our goal is to describe two pairs of inclusions $A' \subseteq A$ and $B' \subseteq B$ which are related in a specific way that we may conclude that there is an isomorphism

$$K_*\left(C(A';A)\right) \cong K_*\left(C(B';B)\right)$$
,

which is natural in some sense. The roles of A and B here will not be symmetric. In some sense, the inclusion $A' \subseteq A$ will be the more tractible. We suppose that A and B are both C^* -algebras of operators acting on the Hilbert space \mathcal{H} . We suppose that z is a selfadjoint unitary on \mathcal{H} and that the following conditions are satisfied. First, B should lie in the multiplier algebra of A. We should have zAz = A and, for all b in B, zbz - b lies in A. One interesting case where this occurs is when (\mathcal{H}, z) is a Fredholm module for B ([1]). Let A be the C^* -algebra of compact operators on \mathcal{H} . These conditions are satisfied. Returning to the general situation, we let A' and B' be those operators in A and B, respectively, which commute with z. We require three more technical assumptions on A, B and z (given as conditions 4, 5, 6 in Section 3). Under these hypotheses, we construct a homomorphism

$$\alpha: \mathrm{K}_* \left(C(B'; B) \right) \longrightarrow \mathrm{K}_* \left(C(A'; A) \right)$$

and prove that it is an isomorphism.

The main applications of this result are in various situations arising from dynamical systems where B, B', A and A' can all be described as groupoid C^* -algebras. For example, $B = C(X) \times_{\varphi} \mathbb{Z}$ and $B' = A_Y$ of [4], where φ is a minimal homeomorphism of a Cantor set X, can be described in this way. Here, A is the compact operators on $\ell^2(\mathbb{Z})$ and A' is the direct sum of compact operators on two orthogonal subspaces. More applications can be found in [5]. (Also, see [2].)

In Section 2, we provide a description of $K_0(C(A';A))$ which will be useful. In Section 3, we state and prove the main results (Theorems 3.1 and 3.7).

2. K-THEORY OF MAPPING CONES

Our aim in this section is to provide a natural description of $K_0(C(A';A))$.

We begin, as in Section 1, with C^* -algebras $A' \subseteq A$. For each n = 1, 2, 3, ..., we let $V_n(A'; A)$, or simply V_n , denote the set of elements v in $M_n(A^{\sim})$ such that:

- (i) v is a partial isometry;
- (ii) v^*v is in $M_n(\mathbb{C})$;
- (iii) vv^* is in $M_n(A'^{\sim})$.

(In some ways, it would be more natural to require v^*v to be in $M_n(A'^{\sim})$; our definition will be more convenient, however.) We regard $V_n \subseteq V_{n+1}$ by identifying v and $v \oplus 0$, for all v in V_n . We let

$$V(A';A) = \bigcup_{n} V_n(A';A).$$

We will make use of the following two facts:

1. If h is a selfadjoint element of a C^* -algebra and $||h-h^2|| < \delta < 1/2$, then the spectrum of h is contained in $(-2\delta, 2\delta) \cup (1-2\delta, 1+2\delta)$. The proof is an easy application of the spectral theorem.

- 2. If p_1 and p_2 are projections in a C^* -algebra with $||p_1 p_2|| < \delta < 1/2$, then there is a unitary u in the C^* -algebra such that $up_1u^* = p_2$ and $||u-1|| < \pi\delta$. For a proof, see 4.3.2, 4.6.5 of [1].
- LEMMA 2.1. Suppose $0 < \varepsilon < 100^{-1}$ and v in $M_n(A^{\sim})$ satisfies (i) and (ii) above and there exists q in $M_n(A'^{\sim})$ such that $||vv^* q|| < \varepsilon$. Then there exists a unitary u in $M_n(A^{\sim})$ such that $||u 1|| < 30\varepsilon$ and uv is in $V_n(A'; A)$.

Proof. First replace q by $(q+q^*)/2$ so we may assume it is selfadjoint. Since v is a partial isometry, vv^* is a projection and so

$$||q^2 - q|| < 4\varepsilon.$$

Then, using the first fact above, $q_1 = \chi_{(1/2,\infty)}(q)$ is a projection and $||q_1 - q|| < 8\varepsilon$ hence

$$||q_1 - vv^*|| < 9\varepsilon.$$

The second fact above then gives the desired u.

We define a map

$$\kappa: V(A'; A) \longrightarrow \mathrm{K}_0\left(C(A'; A)\right)$$
.

Begin with v in $V_n(A'; A)$. Consider

$$v_1 = \left[egin{array}{ccc} 1-v^*v & & v^* \ v & & 1-vv^* \end{array}
ight]$$

in $M_{2n}(A^{\sim})$. It is easily verified that v_1 is a selfadjoint unitary. We define a path of selfadjoint unitaries in $M_{2n}(A^{\sim})$ by

$$v_2(t) = \left[\dot{v}_1 + 1 + e^{i\pi t}(1 - \dot{v}_1)\right]^{-1} \left[v_1 + 1 + e^{i\pi t}(1 - v_1)\right],$$

for $0 \le t \le 1$. Notice that v_2 satisfies:

- (i) $v_2(t)$ is unitary for all t,
- (ii) v_2 is in $C[0,1] \otimes M_{2n}(A^{\sim})$,
- (iii) $\dot{v}_2(t) = 1$, for all t,
- (iv) $v_2(0) = 1$,
- (v) $v_2(1) = \dot{v}_1^{-1} v_1$.

Together, (ii), (iii) and (iv) imply that v_2 may be regarded as an element of

$$[C_0(0,1]\otimes M_{2n}]^{\sim}$$
.

Finally, we define

$$p_v(t) = v_2(t) e_{11} v_2(t)^*$$

for $0 \le t \le 1$, where e_{11} denotes $1_n \oplus 0$ in $M_{2n}(A^{\sim})$. It is easy to verify that

- (i) $p_v(0) = e_{11}$;
- (ii) $p_v(1) = (1_n v^*v) \oplus vv^* \in M_{2n}(A'^{\sim});$
- (iii) $\dot{p}_{v}(t) = e_{11}$, for all $0 \le t \le 1$.

Thus, p_v is in $M_{2n}(C(A';A)^{\sim})$ and $[p_v]-[e_{11}]$ is in $K_0(C(A';A))$. We denote this element by $\kappa(v)$. We summarize the properties of κ .

LEMMA 2.2. (i) For v, w in V(A'; A),

$$\kappa(v \oplus w) = \kappa(v) + \kappa(w).$$

- (ii) If v, w are in $V_n(A'; A)$ and $||v w|| < 200^{-1}$, then $\kappa(v) = \kappa(w)$.
- (iii) For v in $V_n(A'; A)$, w_1 in $U_n(A'^{\sim})$ and w_2 in $U_n(\mathbb{C})$, then w_1vw_2 is in $V_n(A'; A)$ and

$$\kappa(w_1) = \kappa(w_2) = 0$$

$$\kappa(w_1vw_2)=\kappa(v).$$

- (iv) For any projection p in $M_n(\mathbb{C})$, $\kappa(p) = 0$.
- (v) If v is a partial isometry in $M_n(A^{\prime \sim})$, then $\kappa(v) = 0$.

Proof. Parts (i) and (iv) are verified by direct computations, which we omit. In proving (ii), one notes that the construction of p_v depends continuously on v. In fact, $||v-w|| < 200^{-1}$ implies $||p_v-p_w|| < 1/2$ (we omit the details), which implies $[p_v] = [p_w]$ and the conclusion. As a consequence of (ii), if v and w are homotopic in $V_n(A'; A)$ then $\kappa(v) = \kappa(w)$.

In part (iii), we begin by considering $v \oplus 0$, $w_1 \oplus w_1^*$ and $w_2 \oplus w_2^*$. By standard methods (see 4.2.9 of [7]), $w_1 \oplus w_1^*$ and $w_2 \oplus w_2^*$ are both homotopic to the identity in $U_{2n}(A'^{\sim})$ and $U_{2n}(\mathbb{C})$ respectively. Thus, $w_1vw_2 \oplus 0$ is homotopic to $v \oplus 0$ in $V_{2n}(A';A)$, so $\kappa(v) = \kappa(w_1vw_2)$ by (ii) and (i). Finally, $\kappa(w_1) = \kappa(w_2) = 0$ both following as special cases $(v = w_2 = 1, w_1 = v = 1)$ of (iii) and (iv). As for (v), writing

$$v \oplus 0 = \begin{bmatrix} v & 1 - vv^* \\ 1 - v^*v & v^* \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & 0 \end{bmatrix}$$

the conclusion follows from (iii) and (iv).

We now want to see how this map κ relates to the six-term exact sequence for K-groups appearing in Section 1.

LEMMA 2.3. (i) For v in $V_n(A'; A)$,

$$ev_*(\kappa(v)) = [vv^*] - [v^*v].$$

(ii) For v in $U_n(A^{\sim})$

$$i_*b[v] = \kappa(v).$$

Proof. (i) We compute

$$ev_*(\kappa(v)) = [p_v(1)] - [e_{11}] = [(1_n - v^*v) \oplus vv^*] - [e_{11}] = [vv^*] - [v^*v].$$

(ii) In the construction of $\kappa(v)$, v_2 is a path of unitaries in $M_{2n}(A^{\sim})$ from 1 to $\dot{v}_1^{-1}v_1$. Let $v_3(t)$ be any path of unitaries in $M_{2n}(\mathbb{C})$ from 1 to $\dot{v} \oplus \dot{v}^*$. Then $v_3(t)v_2(t)$ is a path from 1 to $v \oplus v^*$. By the definition of b

$$b[v] = [v_3v_2e_{11}v_2v_3^*] - [e_{11}] = [v_3p_vv_3^*] - [e_{11}] = [p_v] - [e_{11}] = \kappa(v),$$

since $v_3(t)$ is in $M_{2n}(\mathbb{C})$.

LEMMA 2.4.
$$\kappa: V(A'; A) \to K_0(C(A'; A))$$
 is onto.

Proof. Let p,q be projections in $M_m(C(A';A)^{\sim})$ with $[\dot{p}]=[\dot{q}]$ in $K_0(\mathbb{C})$; i.e. [p]-[q] is in $K_0(C(A';A))$. By exactness, $j_*ev_*([p]-[q])=0$ in $K_0(A)$. This means [p(1)]=[q(1)] in $K_0(A)$. So there exists positive integers k, n=2m+k and a partial isometry v in $M_n(A^{\sim})$ such that

$$v^*v = 1_m \oplus 0_m \oplus 1_k$$

$$vv^* = p(1) \oplus (1_m - q(1)) \oplus 1_k.$$

Then v is in $V_n(A'; A)$ and by Lemma 2.3 (i), we have

$$ev_*([p]-[q]) = ev_*(\kappa(v))$$
.

Hence, $\kappa(v) - [p] + [q]$ is in the kernel of ev_* which is the image of i_* . For some unitary w in $M_{\ell}(A^{\prime \sim})$, $i_*(w) = \kappa(v) - [p] + [q]$. Using Lemma 2.3 (ii), we have

$$\kappa(v \oplus w^*) = \kappa(v) + \kappa(w^*) = \kappa(v) - i_*(w) = [p] - [q]. \quad \blacksquare$$

LEMMA 2.5. Let \approx denote the equivalence relation on V(A';A) generated by:

- (i) $v \approx v \oplus p$, $v \in V(A'; A)$, p a projection in $M_n(\mathbb{C})$;
- (ii) if v(t) is a continuous path in $V_n(A';A)$, then $v(0) \approx v(1)$. Then $\kappa: V(A';A)/\approx \longrightarrow K_0(C(A';A))$ is a well-defined bijection.

Proof. It follows from Lemma 2.2 (i), (ii) and (iv) that κ is well-defined. From Lemma 2.4, we see that κ is onto. It remains to show that if v_1, v_2 are in $V_n(A'; A)$ and $\kappa(v_1) = \kappa(v_2)$, then $v_1 \approx v_2$.

First, note that if v, w_1 and w_2 are as in Lemma 2.2 (iii), then

$$w_1vw_2=w_1\check{v}w_2\oplus 0=(w_1\oplus w_1^*)(v\oplus 0)(w_2\oplus w_2^*).$$

By homotoping the first and third terms of the right hand side, we see that $w_1vw_2 \approx v$.

Returning to v_1 and v_2 with $\kappa(v_1) = \kappa(v_2)$, we may first assume that by taking direct sums with (different) scalar projections that the ranks of $v_1^*v_1$ and $v_2^*v_2$ are equal. We can then right multiply v_1 by a scalar unitary — without changing its \approx -equivalence class — to obtain $v_1^*v_1 = v_2^*v_2$.

From $\kappa(v_1) = \kappa(v_2)$, we apply ev_* to both sides, use Lemma 2.3 (i) and $v_1^*v_1 = v_2^*v_2$ to conclude that $[v_1v_1^*] = [v_2v_2^*]$ in $K_0(A'^{\sim})$. Again we may take direct sum with a scalar projection and reduce to the case $v_1v_1^*$ and $v_2v_2^*$ are unitarily equivalent. By left multiplying v_1 by a unitary in $M_n(A'^{\sim})$, we obtain $v_1v_1^* = v_2v_2^*$, $v_1^*v_1 = v_2^*v_2$, without changing the \approx -equivalence class of v_1 or v_2 .

Let

$$R_n(t) = \begin{bmatrix} t & -\sqrt{1-t^2} \\ \sqrt{1-t^2} & t \end{bmatrix}, \quad 0 \leqslant t \leqslant 1$$

be in $M_{2n}(\mathbb{C})$ and define the path in $M_{2n}(A^{\sim})$

$$v(t) = R_n(t) [v_1 \oplus v_1^* v_1] R_n(t)^{-1} [(v_1^* v_2 + 1 - v_1^* v_1) \oplus 1]$$

for $0 \le t \le 1$. Observe that for all t, v(t) is in $V_{2n}(A';A)$, $v(0) = v_1^*v_2 \oplus v_1$ and $v(1) = v_2 \oplus v_1^*v_1$. We have $v_1^*v_2$ is in $V_n(A';A)$ and

$$\kappa(v_1^*v_2) = \kappa(v(0)) - \kappa(v_1) = \kappa(v(1)) - \kappa(v_1) = \kappa(v_2) - \kappa(v_1) = 0.$$

Now, consider the unitary $v = v_1^* v_2 + (1 - v_1^* v_1)$ in $M_n(A^{\sim})$. We have

$$i_*b[v] = \kappa(v) = \kappa(v_1^*v_2) = 0,$$

which implies [v] is in the image of j_* . That is, v is homotopic (after direct summing with the identity) to a unitary in $M_n(A'^{\sim})$. Let v'(t) be any path of unitaries in $M_n(A^{\sim})$ with v'(0) = v and $v'(1) \in M_n(A'^{\sim})$.

Now define a path in $M_{4n}(A^{\sim})$

$$w(t) = \begin{bmatrix} v'(t)v_1 & v'(t)(1-v_1v_1^*) & 0 & 0\\ 0 & 0 & 0 & 0\\ 1-v_1^*v_1 & 0 & 0 & 0\\ 0 & v_1v_1^* & 0 & 0 \end{bmatrix}.$$

It is straightforward to verify that, for all $0 \le t \le 1$,

$$w(t)^* w(t) = 1_n \oplus 1_n \oplus 0_n \oplus 0_n$$
$$w(t)w(t)^* = 1_n \oplus 0 \oplus (1 - v_1^* v_1) \oplus v_1 v_1^*$$

and so w(t) is a path in $V_{4n}(A';A)$. Evaluating at t=0, we see

$$w(0) = \begin{bmatrix} v_2 & 1 - v_1 v_1^* & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 - v_1^* v_1 & 0 & 0 & 0 \\ 0 & v_1 v_1^* & 0 & 0 \end{bmatrix} = \begin{bmatrix} v_1 v_1^* & 1 - v_1 v_1^* & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 - v_1 v_1^* & v_1 v_1^* & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_2^* v_2 & 0 & 1 - v_2^* v_2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 - v_2^* v_2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_2^* v_2 & 0 & 1 - v_2^* v_2 & 0 \\ 1 - v_2^* v_2 & 0 & v_2^* v_2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_2^* v_2 & 0 & 1 - v_2^* v_2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_2^* v_2 & 0 & 1 - v_2^* v_2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

The first matrix in this product is a unitary in $M_{4n}(A'^{\sim})$, the last in $M_{4n}(\mathbb{C})$ and so

$$w(0) \approx v_2 \oplus 1 \oplus (1 - v_2^* v_2) \oplus 0 \approx v_2.$$

A similar calculation shows $w(1) \approx v_1$ and we are done.

Regarding the relation \approx , it is clear that if v_0 and v_1 are homotopic, then for any scalar projection p, $v_0 \oplus p$ and $v_1 \oplus p$ are homotopic. Therefore, if $v_0 \approx v_1$ then there are scalar projections p_0 and p_1 such that $v_0 \oplus p_0$ and $v_1 \oplus p_1$ are homotopic.

A few other remarks are in order. Following exactly as in the beginning of the proof (before $\kappa(v_1) = \kappa(v_2)$ was used), given any v_1 and v_2 in V(A';A) we may direct sum scalar projections and right multiply one by a scalar unitary to get $v_1^*v_1 = v_2^*v_2$. Finally, if v(r) is a path in $V_n(A';A)$, we may right multiply by a path of scalar unitaries so that $v(r)^*v(r) = v(0)^*v(0)$, for all r.

For each $0 < \varepsilon < 400^{-1}$, we let $V_n^{\varepsilon}(A'; A)$ denote the set of v in $M_n(A^{\sim})$ such that:

- (i) v is a partial isometry,
- (ii) v^*v is in $M_n(\mathbb{C})$,
- (iii) $||vv^* q|| < \varepsilon$, for some q in $M_n(A'^{\sim})$.

We let $V^{\varepsilon}(A';A)$ denote the union of the $V^{\varepsilon}_n(A';A)$, with the usual inclusion of V^{ε}_n in V^{ε}_{n+1} . For any a in $V^{\varepsilon}(A';A)$, let v be as in Lemma 2.1. We define $\kappa(a) = \kappa(v)$. This is independent of the choice of v by Lemma 2.2 (ii). It is also easy to see that Lemma 2.2 is valid if we replace V(A';A) by $V^{\varepsilon}(A';A)$. We extend the definition of \approx to $V^{\varepsilon}(A';A)$ in the obvious way.

LEMMA 2.6. Suppose A has a countable approximate unit $\{e_n\}_1^{\infty}$ contained in A'. Then for every v in $V_n(A';A)$ and $0 < \varepsilon < 400^{-1}$, $v \approx w$, for some w in $V_{2n}^{\varepsilon}(A';A)$ such that

$$w = \begin{bmatrix} w_0 & 0 \\ (p - w_0^* w_0)^{\frac{1}{2}} & 0 \end{bmatrix},$$

where w_0 is in $M_n(A)$, p is a projection in $M_n(\mathbb{C})$ and $0 \leq w_0^* w_0 \leq p$. Moreover if

$$w = \begin{bmatrix} w_0 & 0 \\ (p - w_0^* w_0)^{\frac{1}{2}} & 0 \end{bmatrix}, \qquad w' = \begin{bmatrix} w_0' & 0 \\ (p - w_0'^* w_0')^{\frac{1}{2}} & 0 \end{bmatrix}$$

are homotopic in $V_{2n}^{\varepsilon}(A';A)$ then there is a path

$$w(t) = \begin{bmatrix} w_0(t) & 0 \\ (p - w_0(t)^* w_0(t))^{\frac{1}{2}} & 0 \end{bmatrix}$$

joining them.

(The point here is that w_0 lies in $M_n(A)$ and not just $M_n(A^{\sim})$.)

Proof. Notice that $v \approx \dot{v}^* v$ — see the proof of Lemma 2.5 — and $(\dot{v}^* v)' = \dot{v}^* \dot{v} = p$ is a projection in $M_n(\mathbb{C})$. Thus, we may assume $\dot{v} = p$. Using e_m to denote $1_n \otimes e_m$ in $M_n(A)$, notice that

$$e'_{m} = \begin{bmatrix} c_{m} & -(1 - e_{m}^{2})^{\frac{1}{2}} \\ (1 - e_{m}^{2})^{\frac{1}{2}} & e_{m} \end{bmatrix}$$

is a unitary in $M_{2n}(A^{\prime \sim})$ so

$$v \approx e'_m \left(v \oplus 0 \right) = \begin{bmatrix} e_m v & 0 \\ \left(1 - e_m^2 \right)^{\frac{1}{2}} v & 0 \end{bmatrix}.$$

160 Ian F. Putnam

We will let $w_0 = e_m v$, for some sufficiently large m, which is in $M_n(A)$. It is clear that $w_0^* w_0 \leq p$. Consider

$$\begin{split} \|(1-e_m^2)^{\frac{1}{2}} v - (p-w_0^* w_0)^{\frac{1}{2}} \| &\leq \|(1-e_m^2)^{\frac{1}{2}} (v-p) \| \\ &+ \|(1-e_m^2)^{\frac{1}{2}} p - (p-w_0^* w_0)^{\frac{1}{2}} \|. \end{split}$$

The first term tends to zero since v-p is in $M_n(A)$ and e_m is an approximate unit. As for the second, since $(1-e_m^2)$ and p commute, their product is positive and

$$\begin{aligned} \|(1 - e_m^2)^{\frac{1}{2}} p - (p - w_0^* w_0)^{\frac{1}{2}} \| &\leq \|(1 - e_m^2) p - (p - w_0^* w_0)\|^{\frac{1}{2}} \\ &= \|(p - v)^* (1 - e_m^2) (p - v)\|^{\frac{1}{2}} \end{aligned}$$

which tends to zero as m goes to infinity. Therefore, we may choose m so that $e'_m(v \oplus 0)$ and

$$\begin{bmatrix} w_0 & 0 \\ (p-w_0^*w_0)^{\frac{1}{2}} & 0 \end{bmatrix}$$

are sufficiently close so that the latter is in $V_{2n}^{\varepsilon}(A';A)$ and is \approx -equivalent to the former.

For the final part, consider the C^* -algebra $C[0,1] \otimes A$. We omit the details.

3. THE EXCISION THEOREM

Here, we state and prove our main results (Theorems 3.1-3.7). We describe the hypotheses. We suppose that A and B are C^* -algebras acting on the Hilbert space \mathcal{H} . We also suppose that z is a selfadjoint unitary operator on \mathcal{H} . Note that we regard $M_n(A)$ and $M_n(B)$ as acting on $\mathcal{H} \oplus \cdots \oplus \mathcal{H}$, the n-fold direct sum. We also let z denote the operator $z \oplus \cdots \oplus z$ on $\mathcal{H} \oplus \cdots \oplus \mathcal{H}$. We let [a,b] = ab - ba for any operators a,b on \mathcal{H} .

We will assume conditions 1-6 hold.

- 1. For all a in A, b in B, ab is in A; i.e. B acts as multipliers of A.
- 2. zAz = A.
- 3. For all b in B, zbz b is in A.
- 4. There is a continuous path $\{e_t \mid t \ge 0\}$ in A such that:
 - (i) $0 \le e_t \le e_s \le 1$, for $t \le s$;
 - (ii) $e_s e_t = e_t$ for $s \ge t + 2$;
 - (iii) for all a in A,

$$\lim_{t \to \infty} ||e_t a - a|| = 0 = \lim_{t \to \infty} ||a e_t - a||;$$

(iv)
$$[e_t, z] = 0$$
, for all t .

We define C^* -subalgebras

$$A' = \{ a \in A \mid [a, z] = 0 \}$$

$$B' = \{ b \in B \mid [b, z] = 0 \}.$$

5. For all b in B, there exists b' in B' such that

$$||b - b'|| \le 2||[b, z]||.$$

(In the terminology of M.-D. Choi, almost commuting with z implies nearly commuting with z.)

- 6. There is a dense *-subalgebra $A \subseteq A$ such that for a in A, there is $t_0 \ge 1$ such that:
 - (i) $ae_t = e_t a = a$, for all $t \ge t_0$;

and, for any such t_0 as above, there is b in B such that:

(ii)
$$be_t = e_t b = a, t_0 \le t \le t_0 + 2;$$

(iii)
$$[b, z] = [a, z]$$
;

(iv)
$$||b|| \leq ||a||$$
.

(The choice of b will depend on t_0 as well as a.)

Note that the condition on A analogous to 5 is valid; let a' = (a + zaz)/2.

Many examples are found in the theory of C^* -algebras associated to dynamical systems via the crossed product or groupoid C^* -algebra constructions. Let us mention one explicit example.

Fix an irrational number θ , $0 < \theta < 1$. Let $\mathcal{H} = \ell^2(\mathbb{Z})$ and let u and v denote the unitary operators

$$(u\xi)(n) = \xi(n-1)$$

$$(v\xi)(n) = \exp(2\pi i\theta)\xi(n),$$

for ξ in $\ell^2(\mathbb{Z})$, n in \mathbb{Z} . Then u and v satisfy the relation $uv = \exp(2\pi i\theta) vu$ and generate a C^* -algebra, B, isomorphic to the irrational rotation C^* -algebra, A_θ . We let $A = K(\mathcal{H})$, the compact operators, and

$$(z\xi)(n) = \begin{cases} \xi(n) & n \geqslant 1; \\ -\xi(n) & n \leqslant 0. \end{cases}$$

It is easy to verify 1, 2 and 3. It is also easy to see that

$$A' = K\left(\ell^2\{n \mid n \leqslant 0\}\right) \oplus K\left(\ell^2\{n \mid n \geqslant 1\}\right).$$

The proofs that 4, 5 and 6 hold can be found in [5]. Also the techniques of [5] show that B' is the C^* -subalgebra of B generated by v and u(v-1). (See Example 2.6 of [5].)

162 Jan F. Putnam

Theorem 3.1. Let A, B, z satisfy 1-6 as above. Then there is an isomorphism

$$\alpha: \mathrm{K}_0\left(C(B';B)\right) \to \mathrm{K}_0\left(C(A';A)\right)$$

which is natural in a sense to be described.

Let us take a moment to try to justify our description of Theorem 3.1 as an "excision" theorem. Section 2 describes the K-theory of the mapping cone C(A';A) as partial isometries in A with initial and final projection in A'. The extent to which an element a lies in A' can be measured by zaz - a = z[a, z]. A similar remark applies to B' and B. Conditions 2, 3 and 6 (iii) essentially mean that the sets

$$\{zaz - a \mid a \in A\}$$

$$\{zbz-b\mid b\in B\}$$

"agree". The conclusion is then that the corresponding "relative K-groups" are isomorphic.

We begin by describing the map α . We use e_t to also denote the element $1_n \otimes e_t$ in $M_n(A)$, for any $n = 1, 2, 3, \ldots$ We will use the description of $K_0(C(B'; B))$ provided by Lemma 2.5 and the discussion following it. Let v be in $V_n^{\varepsilon}(B'; B)$. For all $t \geq 1$, we define $\alpha(v)_t$ by

$$\alpha(v)_t = \begin{bmatrix} ve_t & 0\\ (v^*v - e_t v^*ve_t))^{\frac{1}{2}} & 0 \end{bmatrix}.$$

Since B acts as multipliers of A, ve_t is in $M_n(A)$. Also, v^*v is a projection in $M_n(\mathbb{C})$ and it follows that $\alpha(v)_t$ lies in $M_{2n}(A^{\sim})$. It is also worth noting that e_t and v^*v commute so that

$$(v^*v - e_tv^*ve_t)^{\frac{1}{2}} = v^*v(1 - e_t^2)^{\frac{1}{2}}.$$

It is easy to check that

$$\alpha(v)_t^* \alpha(v)_t = v^* v \oplus 0,$$

which is in $M_{2n}(\mathbb{C})$ and is a projection.

LEMMA 3.2. For v in $V_n^{\varepsilon}(B';B)$ and $0 < \varepsilon < 400^{-1}$, there is $t \ge 1$ such that $\alpha(v)_s$ is in $V_{2n}^{\varepsilon}(A';A)$ for all $s \ge t$.

Proof. We claim that

$$\limsup_{t\to\infty} ||[\alpha(v)_t \, \alpha(v)_t^*, \, z]|| \leqslant \varepsilon.$$

To see this,

$$\alpha(v)_t \, \alpha(v)_t^* = \begin{bmatrix} ve_t^2 v^* & ve_t \left(1 - e_t^2\right)^{\frac{1}{2}} \\ \left(1 - e_t^2\right)^{\frac{1}{2}} e_t v^* & v^* v \left(1 - e_t^2\right) \end{bmatrix}$$

and we will check the commutators of the four entries with z separately. The lower right entry actually commutes with z since e_t does and v^*v is in $M_n(\mathbb{C})$. As for the upper right (or lower left)

$$\lim_{t \to \infty} \left[ve_t \left(1 - e_t^2 \right)^{half}, z \right] = \lim_{t \to \infty} \left[v, z \right] e_t \left(1 - e_t^2 \right)^{\frac{1}{2}} = 0$$

since z[v, z] is in $M_n(A)$ and e_t is an approximate unit for A. For the upper left entry, we have

$$\limsup_{t\to\infty}\, \left\|\left[ve_t^2v^*,\,z\right]\right\| = \limsup_{t\to\infty}\, \left\|\left[v,z\right]e_t^2v^* + ve_t^2[v^*,z]\right\|.$$

Since z[v, z] and $z[v^*, z]$ are both in A, c_t will asymptotically commute both, so this equals

$$\limsup_{t \to \infty} \left\| e_t^2[v, z] v^* + v[v^*, z] e_t^2 \right\|.$$

Applying the same argument and noting $[v, z]v^*$ is in $M_n(A)$ since v^* is in the multiplier algebra of $M_n(A)$, this equals

$$\limsup_{t\to\infty} \left\| \left(\left[v,z \right] v^* + v[v^*,z] \right) \, e_t^2 \right\| = \limsup_{t\to\infty} \, \left\| \left[vv^*,\,z \right] e_t^2 \right\| \leqslant \varepsilon$$

since vv^* is within ε of an element of in $M_n(A'^{\sim})$. The claim is established.

To see the conclusion, let

$$q = \frac{z \alpha(v)_t \alpha(v)_t^* z + \alpha(v)_t \alpha(v)_t^*}{2}.$$

Now, (iii) follows from the claim and it is clear that q is in $M_{2n}(A'^{\sim})$.

Notice that

$$\alpha(v \oplus w)_t = \alpha(v)_t \oplus \alpha(w)_t$$

(at least after a change of basis which we will suppress). It follows from Lemma 3.2 that letting

$$\alpha\left(\kappa(v)\right) = \kappa(\alpha(v)_s),$$

for any sufficiently large s defines an element in $K_0(C(A';A))$. To see that α is well-defined it suffices to apply Lemma 2.5 and observe the following. If p is a projection in $M_n(\mathbb{C})$ then

$$\alpha(p)_t = e_t'(p \oplus 0),$$

where e'_t is as in Lemma 2.6. So then $\kappa(\alpha(p)_t) = 0$ by Lemma 2.2 (ii), (iii).

Also observe that if v(r), $0 \le r \le 1$ is a path in $V_n^{\varepsilon}(B'; B)$ then the limit in Lemma 3.2 can be made uniform over r, and, hence, for s large $\alpha(v(r))_s$ will be a homotopy in $V_{2n}^{2\varepsilon}(A'; A)$.

The proof of Theorem 3.1 will require several technical lemmas.

LEMMA 3.3. Let w_0 be in $M_n(A)$ and p be a projection in $M_n(\mathbb{C})$ such that $p \geqslant w_0^* w_0$. Then there is $t_0 \geqslant 1$ and v_0 in $M_n(B)$ with $v_0^* v_0 \leqslant p$ such that:

- (i) $w_0e_s = e_sw_0 = w_0$, for $s \ge t_0$;
- (ii) $v_0 e_s = e_s v_0 = w_0$, for $t_0 + 2 \ge s \ge t_0$;
- (iii) $[v_0, z] = [w_0, z];$
- (iv) $[v_0^*v_0, z] = [w_0^*w_0, z];$
- $(v) [v_0v_0^*, z] = [w_0w_0^*, z];$
- (vi) $[(p v_0^* v_0)^{\frac{1}{2}}, z] = [(p w_0^* w_0)^{\frac{1}{2}}, z].$

Proof. Choose any t_0 and b as in hypothesis 6 for $a = w_0$. Then let

$$v_0 = bp$$
 so $v_0^* v_0 = p b^* b p \le p ||b||^2 p \le p$.

Conditions (i), (ii) and (iii) follow at once from hypothesis 6.

We have

$$[v_0^*v_0, z] = [v_0^*, z] v_0 + v_0^*[v_0, z] = [w_0^*, z] v_0 + v_0^*[w_0, z]$$
$$= [w_0^*e_t, z] v_0 + v_0^*[e_t w_0, z],$$

for $t_0 \leqslant t \leqslant t_0 + 2$,

$$= [w_0^*, z] e_t v_0 + v_0^* e_t [w_0, z]$$

= $[w_0^*, z] w_0 + w_0^* [w_0, z],$

by (ii),

$$= [w_0^* w_0, z]$$

and so (iv) holds. A similar argument establishes (v). As for (vi), it follows from (iv) that

$$[f(p-v_0^*v_0), z] = [f(p-w_0^*w_0), z]$$

for any polynomial f. By standard approximation arguments, the same holds for $f(t) = t^{\frac{1}{2}}$.

LEMMA 3.4. Let w_0 , p, t_0 , v_0 be as in Lemma 3.3. Define w in $M_{2n}(A^{\sim})$ and v in $M_{2n}(B^{\sim})$ by

$$w = \begin{bmatrix} w_0 & 0 \\ (p - w_0^* w_0)^{\frac{1}{2}} & 0 \end{bmatrix}$$
$$v = \begin{bmatrix} v_0 & 0 \\ (p - v_0^* v_0)^{\frac{1}{2}} & 0 \end{bmatrix}.$$

Then:

- (i) $w^*w = v^*v = p \oplus 0$,
- (ii) $e_s[v, z] = [v, z] e_s = [v, z] = [w, z]$ for $s \ge t_0$,
- (iii) $[ww^*, z] = [vv^*, z].$

The proof is an easy consequence of Lemma 3.3; we omit the details.

LEMMA 3.5. Let w_0 be in $M_n(A^{\sim})$, p a projection in $M_n(\mathbb{C})$ with $p \geq w_0^*w_0$. Let t_0 , v_0 be as in Lemma 3.3, w, v as in Lemma 3.4 and assume w is in $V_{2n}^{\epsilon}(A'; A)$ for some $0 < \epsilon < 400^{-1}$. Then:

- (i) v is in $V_{2n}^{4\epsilon}(B';B)$,
- (ii) $\alpha(v)_s$ is in $V_{4n}^{4e}(A';A)$, for all $s \ge t_0$,
- (iii) $\kappa(\alpha(v)_s) = \kappa(w)$, for $t_0 \leqslant s \leqslant t_0 + 2$.

Proof. (i) From Lemma 3.4 (i), $v^*v = p \oplus 0$ and we must check only that vv^* is close to an element of $M_{2n}(B'^{\sim})$. From Lemma 3.4 (iii)

$$||[vv^*,\,z]||=||[ww^*,\,z]||\leqslant 2\varepsilon$$

since w is in $V_{2n}^{\epsilon}(A';A)$. Apply hypothesis 5 to find q in $M_{2n}(\mathcal{B}'^{\sim})$ so that $||q-vv^*|| \leq 4\epsilon$, and (i) is complete.

(ii) As before, we must compute

$$\|[\alpha(v), \alpha(v), z]\|$$
.

Now, for $s \ge t_0$,

$$\alpha(v)_{s} \alpha(v)_{s}^{*} = \begin{bmatrix} ve_{s}^{2}v^{*} & ve_{t} (1 - e_{t}^{2})^{\frac{1}{2}} v^{*}v \\ v^{*}v (1 - e_{t}^{2})^{\frac{1}{2}} e_{t}v^{*} & v^{*}v (1 - e_{t}^{2}) \end{bmatrix}$$

and commutators with z for each of the entries is done separately. The off-diagonal entries commute with z because $v^*v = p$ and by condition (ii) of Lemma 3.4, so $(1 - e_t)[v, z] = 0$. The lower right entry also commutes with z while

$$[ve_s^2 v^*, z] = [ww^*, z]$$
 for $s \ge t_0$.

This completes the proof of (ii).

(iii) By direct computation

$$\alpha(v)_{s} = \begin{bmatrix} v_{0}e_{s} & 0 & 0 & 0 \\ (p - v_{0}^{*}v_{0})^{\frac{1}{2}}e_{s} & 0 & 0 & 0 \\ p(1 - e_{2}^{2})^{\frac{1}{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e_{s} & -(1 - e_{s}^{2})^{\frac{1}{2}} & 0 \\ 0 & (1 - e_{s}^{2})^{\frac{1}{2}} & e_{s} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\cdot \begin{bmatrix} w_{0} & 0 & 0 & 0 \\ (p - w_{0}^{*}w_{0})^{\frac{1}{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

for $t_0 \le s \le t_0 + 2$, using Lemma 3.2. The first matrix above is in M_{4n} (A'^{\sim}) and so the result follows from Lemma 2.2 (iii).

LEMMA 3.6. Suppose v is in $V_n(B';B)$ and $||[v,z]|| \le \varepsilon \le 10^{-6}$. Then $\kappa(v)=0$.

Proof. By hypothesis 5, there is a v' in $M_n(B'^{\sim})$ such that $||v'|| \leq 1$ and $||v-v'|| \leq 2\varepsilon$. Let

$$w = \begin{bmatrix} v'p & 0 \\ (p - pv'^*v'p)^{\frac{1}{2}} & 0 \end{bmatrix},$$

where $p = v^*v$, so w is in $V_{2n}(B'; B)$ and in $M_{2n}(B'^{\sim})$ and

$$||v \oplus 0 - w|| \leqslant 4\varepsilon^{\frac{1}{2}}.$$

Moreover, $\kappa(w) = 0$ by Lemma 2.2 (v) and $\kappa(v) = \kappa(w)$ by Lemma 2.2 (ii).

Let us describe the naturality of the isomorphism described in Theorem 3.1. Suppose $(A_1, B_1, z_1, \{e_t^{(1)}\})$ and $(A_2, B_2, z_2, \{e_t^{(2)}\})$ are two systems satisfying 1-6. Also suppose

$$\sigma: A_1 \longrightarrow A_2$$

$$\pi: B_1 \longrightarrow B_2$$

be *-homomorphisms such that

$$\begin{split} &\sigma(ab) = \sigma(a)\pi(b), \qquad a \in A_1, \ b \in B_1 \\ &\sigma(z_1az_1) = z_2 \, \sigma(a) \, z_2, \qquad a \in A_1 \\ &\pi(z_1bz_1) = z_2 \, \pi(b) \, z_2, \qquad b \in B_1 \\ &\sigma(z_1bz_1 - b) = z_2 \, \pi(b) \, z_2 - \pi(b), \qquad b \in B_1 \\ &\sigma(e_t^{(1)}) = e_t^{(2)}, \qquad \text{for all } t. \end{split}$$

It is easy to see that σ and π induce *-homomorphisms

$$\tilde{\sigma}: C(A'_1; A_1) \longrightarrow C(A'_2; A_2)$$

$$\tilde{\pi}: C(B'_1; B_1) \longrightarrow C(B'_2; B_2).$$

The map α is natural in the sense that the following diagram commutes:

$$\begin{array}{cccc} \mathrm{K}_{0}\left(C(B_{1}';\,B_{1})\right) & \stackrel{\alpha}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!\!-} & \mathrm{K}_{0}\left(C(A_{1}';\,A_{1})\right) \\ & & & & \downarrow \tilde{\sigma}_{\star} \\ \mathrm{K}_{0}\left(C(B_{2}';\,B_{2})\right) & \stackrel{\alpha}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} & \mathrm{K}_{0}\left(C(A_{2}';\,A_{2})\right). \end{array}$$

The proof of this is immediate. We omit the details.

As an application, suppose (A, B, z, e_t) satisfies 1-6 and suppose X is a compact second countable Hausdorff space. Fix some regular Borel measure μ on X with full support. Then we can regard $A \otimes C(X)$, $B \otimes C(X)$ and $z \otimes 1$ as operators on $\mathcal{H} \otimes L^2(X, \mu)$. Hypotheses 1-3 are easily checked and $e_t \otimes 1$ satisfies 4. We also have

$$(A \otimes C(X))' = A' \otimes C(X)$$
$$(B \otimes C(X))' = B' \otimes C(X)$$

and 5 follows. The algebraic tensor product of A and C(X) can be seen to satisfy 6.

Proof of Theorem 3.1. First of all, it is fairly clear that α is additive. The surjectivity of α follows at once from Lemmas 2.6 and 3.5.

Suppose v is in $V_n(B'; B)$ and $\alpha(\kappa(v)) = 0$ in $K_0(C(A'; A))$. Let $p = v^*v$ which is a projection in $M_n(\mathbb{C})$. Fix $\varepsilon = 10^{-7}$. Choose $t_1 \ge 1$ such that

(3.1)
$$||[v,z]e_t - [v,z]|| \leq \varepsilon$$

$$||[v,z] - [v,z]e_t|| \leq \varepsilon, \quad t \geq t_1$$

and such that

(3.2)
$$\alpha(v)_t \in V_{2n}^{\varepsilon}(A'; A), \quad t \geqslant t_1.$$

Since $\kappa(\alpha(v)) = 0$, we may direct sum $\alpha(v)_{t_1}$ with a scalar projection q so that the result is homotopic to a scalar projection in $V^{\varepsilon}(A'; A)$. By replacing v by $v \oplus q$, we may assume simply that $\alpha(v)_{t_1}$ is homotopic to $\begin{bmatrix} 0 & 0 \\ p & 0 \end{bmatrix}$, which is homotopic to $p \oplus 0$. We apply Lemma 2.6 to obtain a path as described there. We may then approximate the " w_0 " part of this path by a path in $M_n(A)$. We right multiply this path by p and we obtain a path a(s), $0 \le s \le 1$, such that q is in the algebraic tensor product of C[0,1] and $M_n(A)$,

(3.3)
$$w(s) = \begin{bmatrix} a(s) & 0 \\ (p - a(s)^* a(s))^{\frac{1}{2}} & 0 \end{bmatrix}, \quad 0 \leqslant s \leqslant 1, \in V_{2n}^{2\varepsilon}(A'; A)$$

(3.4)
$$a(1) = 0$$

$$||w(0) - \alpha(v)_t|| \leq 2\varepsilon,$$

hence,

(3.5)
$$||a(0) - ve_{t_1}|| \leq 2\varepsilon,$$

$$||(p - a(0)^* a(0))^{\frac{1}{2}} - p(1 - e_{t_1}^2)^{\frac{1}{2}}|| \leq 2\varepsilon.$$

We may apply the sequence of Lemmas 3.3, 3.4 and 3.5 to the element a in $M_n(\mathbb{C}[0,1] \odot \mathcal{A})$ (algebraic tensor product) and p in $M_n(\mathbb{C})$ to obtain a path b(s), $0 \le s \le 1$

$$v_1(s) = \begin{bmatrix} b(s) & 0\\ (p - b(s)^*b(s))^{\frac{1}{2}} & 0 \end{bmatrix}$$

 $0 \le s \le 1$ and $t_2 \ge t_1 + 2$ such that

$$[b(s), z] = [a(s), z],$$

(3.7)
$$b(s) e_t = e_t b(s), \quad t_2 \le t \le t_2 + 2,$$

(3.8)
$$a(s) e_t = e_t a(s) = a(s), \quad t \geqslant t_2,$$

$$[b(s)^*b(s), z] = [a(s)^*a(s), z]$$

$$[b(s)b(s)^*, z] = [b(s)b(s)^*, z]$$

(3.11)
$$\left[(p - b(s)^* b(s))^{\frac{1}{2}}, z \right] = \left[(p - a(s)^* a(s))^{\frac{1}{2}}, z \right],$$

$$v_1(s) \text{ is in } V_{2n}^{4\varepsilon}(B'; B)$$

$$\alpha (v_1(s)), \text{ is in } V_{4n}^{4\varepsilon}(A'; A), \quad t \geqslant t_2.$$

Let us evaluate v_1 at s=1. Making use of (3.4), (3.6) and (3.9), we see that

$$[v_1(1), z] = 0$$

and so $v_1(1)$ is in $M_n(B^{\prime \sim})$. Next, we claim that

$$(3.13) ||[v b(0)^*, z]|| \leq 3\varepsilon,$$

(3.14)
$$\left\| \left[v \left(p - b(0)^* b(0) \right)^{\frac{1}{2}}, z \right] \right\| \leqslant 3\varepsilon.$$

To see the first, we have

$$||[v b(0)^*, z]|| = ||[v, z] b(0)^* + v [b(0)^*, z]||$$

$$\leq ||[v, z] e_{t_1} b(0)^* + v [a(0)^*, z]|| + \varepsilon$$

by (3.1) and (3.6),

$$\leq ||[v, z] e_{t_1} e_{t_2} b(0)^* + v [e_{t_1} v^*, z]|| + \varepsilon$$

by hypothesis 4 (ii) and (3.5),

$$= ||[v, z] e_{t_1} a(0)^* + v e_{t_1} [v^*, z]|| + \varepsilon$$

by (3.7)
$$\leq \|[v,z]e_{t_1}^2 v^* + ve_{t_1}^2[v^*,z]\| + 2\epsilon$$

by (3.5) and (3.1)

$$= \left\| \left[v e_{t_1}^2 \ v^*, \ z \right] \right\| + 2\varepsilon \leqslant 3\varepsilon$$

because of (3.2). To see the second, there is a similar computation which we omit.

Now consider

$$v_2(s) = (v \oplus 0) v_1(s)^*, \quad 0 \le s \le 1.$$

This is a path of partial isometries in $M_{2n}(B^{\sim})$. For each s, its range projection is the range projection of v which is in $M_{2n}(B'^{\sim})$. Its initial projection is the range projection of $v_1(s)$ which is in $M_{2n}(B'^{\sim})$, for all s. As noted in (3.12), when s=1, this projection is actually Murray-von Neumann equivalent to $p \oplus 0$ in $M_{2n}(B'^{\sim})$. So we may find a path of unitaries u(s), $0 \le s \le 1$ in $M_{2n}(B'^{\sim})$ (actually, it may be necessary to pass to $M_{4n}(B'^{\sim})$) such that

$$v_1(1)^* u(1) = p \oplus 0$$

 $v_1(s)^* u(s)$ has initial projection $p \oplus 0$,

$$0 \le s \le 1$$
.

Now, consider the path

$$v_3(s) = (v \oplus 0) v_1(s)^* u(s), \qquad 0 \le s \le 1.$$

It is a path in $V_{2n}(B';B)$. Moreover, for s=1,

$$v_3(1) = v \oplus 0$$

while for s=0,

$$v_3(0) = \begin{bmatrix} v \ b(0)^* & v \ (p - b(0)^* \ b(0))^{\frac{1}{2}} \\ 0 & 0 \end{bmatrix} u(0)$$

which commutes with z, to within 3ε , by (3.13) and (3.14). By Lemma 2.2 (v) and the homotopy invariance of κ ,

$$\kappa(v) = \kappa(v_3(1)) = \kappa(v_3(0)) = 0.$$

This proves that α is injective and we are done.

Theorem 3.7. Let $A,\ B,\ z$ satisfy 1-6 as before. Then there are isomorphisms

$$\alpha: \mathrm{K}_i\left(C(B';B)\right) \longrightarrow \mathrm{K}_i\left(C(A';A)\right),$$

which are natural, for i = 0, 1.

Proof. The case i=0 is done. For the other case, let $B_1=C(S^1)\otimes B$, $A_1=C(S^1)\otimes A$, $z_1=1\otimes z$ and $\sigma:A_1\to A$, $\pi:B_1\to B$ be given by evaluation at some fixed point of the circle, S^1 . There is a split exact sequence

$$0 \to C_0(0,1) \otimes C(B';B) \to C(B'_1;B_1) \xrightarrow{\pi} C(B';B) \to 0$$

and a corresponding one for A and A_1 . Using the naturality of α on K_0 and the usual isomorphism

$$K_1(C(B';B)) \cong K_0(C_0(0,1) \otimes C(B';B))$$

and the usual techniques, one obtains the result for K₁ groups as well.

Supported in part by an NSERC Operating Grant.

REFERENCES

- B. Blackadar, K-theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5, Springer-Verlag, Berlin - Heidelberg - New York 1986.
- T. GIORDANO, I.F. PUTNAM, C.F. SKAU, K-theory and asymptotic index for certain almost one-to-one factors, in preparation.
- G.K. PEDERSEN, C*-algebras and their automorphism groups, London Math. Soc. Monographs, vol. 14, Academic Press, London 1979.
- I.F. PUTNAM, The C*-algebras associated with minimal homeomorphisms of the Cantor set, Pacific J. Math. 136(1989), 329-353.
- I.F. PUTNAM, On the K-theory of C*-algebras of principal groupoids, Rocky Mountain J. Math., to appear.
- C. Schochet, Topological methods for C*-algebras. II: Geometric resolution and the Künneth formula, Pacific J. Math. 98(1982), 443-458.
- N.E. WEGGE-OLSEN, K-Theory and C*-Algebras, Oxford University Press, Oxford 1993.

IAN PUTNAM
Department of Mathematics and Statistics
University of Victoria
Victoria, B.C. V8W 3P4
CANADA