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THE SEMI-COMMUTATOR OF TOEPLITZ OPERATORS
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ABSTRACT. In this paper we characterize when the semi-commutator Ty 7T, —
Tt of two Toeplitz operators Ty and T on the Hardy space of the bidisc
is zero. We also show that there is no finite rank semi-commmutator on the
bidisc. Furthermore explicit examples of compact semi-commutators with
symbols continuous on the bitorus T? are given.
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1. INTRODUCTION

Let D be the open unit disk in C. Its boundary is the unit circle T. The bidisc D?
and the torus T2 are the subsets of C? which are Cartesian products of two copies D
and T, respectively. Let do(z) be the normalized Haar measure on T2, The Hardy
space H2(D?) is the closure of the polynomials in L2(T2,ds) (or L?(T?)). Let P
be the orthogonal projection from L?(T?) onto H?(D?). The Toeplitz operator
with symbol f in L*®(T?) is defined by Ty (k) = P(fh), for all h € H?(D?) and
the Hankel operator with symbol f is defined by Hy(h) = (I — P)(fh}, for all
h e H*(D?).

Let f and g be two bounded functions on T?. In this paper we study the
semi-commutator 1T, — Ty, of two Toeplitz operators Ty and T on the bidisec.
As in the case of the unit disk, the semi-commutator is connected to the Hankel
operators by the following relation.

(1.1) TyT, — Ty, = —H3:H,.
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To motivate the problems to be considered in the paper, we shall recall some
classical results for the semi-commutators of Toeplitz operators on the Hardy space
H?(D) of the unit disk. Let f; and g; be bounded functions on the unit circle
T. For two Toeplitz operators T}y, and T}, on the Hardy space H?(D) of the unit
disk, Brown-Halmos ([2]) shows that the semi-commutator Ty, Ty, — T}, 4, 1s zero
if and only if either f; or gy is analytic. In other words, H}] Hg, is zero if and only
if either Hy, or Hy, is zero.

In this paper, we will characterize when the semi-commutator T5T, — Ty,
of two Toeplitz operators Ty and Ty on the bidisc is zero. In particular, we note
that unlike on the unit disk one can have both Hjy and H, are not zero, but their
product H7H, is zero. Furthermore we will see that there is no finite rank semi-
commutator on the bidisc. But this is false on the unit disk. Indeed it was shown
in [1] that for Toeplitz operators Ty, and Ty, on H%(D), Ty, Ty, — 17,4, is of finite
rank if and only if either fi or g; is an analytic function plus a rational function.

The main question to be considered here is when the semi-commutator T 7y —
T, on the bidisc is compact. This problem is connected with the spectral theory of
Toeplitz operators on the bidisc and various applications, see [7], [8] and reference
therein.

For Toeplitz operators Ty, and Ty, on the unit disk, this hard problem was
solved by the combined efforts of Axler, Chang, and Sarason ([1]) and Volberg
([12]). Their beautiful result is that Ty,,, — Ty, 7y, is compact if and only if
H®[fi]n H*®[g,] C H>®(DB) + C(T); here H*°[g,] denotes the closed subalgebra
of L®(T) generated by H*(D) and g; and C(T) the continuous functions on T.

The function theory on the bidisc is quite different from and much less un-
derstood than the function theory on the unit disk ([9], [3] and [5]). The proof of
the above result on the unit disk relies on some deep results and techniques from
function theory on the unit disk which are not available from function theory on
the bidisc.

In this paper we content ourselves with some partial results for the com-
pactness of TyT, — Ty,. By carefully analyzing the action of T;T,; — T}, on the
reproducing kernel of H?(D?) and exploiting the harmonicity of certain functions,
we will get a necessary condition for the compactness of TyTy — Ty,. This shows
that for a large class of functions f and g, 75T, — Ty, is compact if and only
if it is zero. For example, if f is a trigonometric polynomial on T? and g is an
arbitrary bounded function on T?, then for such f and g, there is no compact
semi-commutator 73T, — Ts,. Also as a corollary of this condition we see that
there are no compact Hankel operators on bidise, which was proved by M. Cotlar
and C. Sadosky ([4]) using a completely different method. It is natural to guess
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that for f and g in L=(T?), T;T, — Ty, is compact if and only if TyTy — Ty, is
zero. But it is false.

For the class of bounded functions f and g on T? of the form f(z1,22) =
fi(z1) fa(z2) and g(#1, z2) = g1(#1)g2(22), we will show that 73T, — Ty, is compact

if and only if the following two conditions hold:

(l) f1 (zl)g1 (21) =0 and fg(zz)gg(zz) = 0 on T, and
(2) lim (| Hpk |2l Hksllz = 0,

where k, denotes the normalized reproducing kernel of H?(D?). Here the Little-
wood-Paley theory on the bidisc and a certain distribution function inequality
in Zheng ([13]) play a key role. We remark that only one condition similar to
condition (2} above is needed for the compactness of the semi-commutator Ty, Ty, —
T}, 4, on the Hardy space H?(D) of the unit disk. Indeed it was shown in [13] that
Ty, Ty, — Ty.q, is compact on H2(D) if and only if zli_*nlr | Hykz |2l H gy k|2 = 0,
where k,, denotes the normalized reproducing kemell of H%(D).

Now we outline the plan of the paper. In Section 2 we study when the semi-
commutator of two Toeplitz operators 1s zero or finite rank. In Section 3 we derive
a necessary condition for the compactness of 7T, — T},. In Section 4, for f and g¢
of the form f(z1,22) = fi(z1)f2(22) and g(z1,22) = g1(21)g2(22), we characterize
when T;T, — Ty, is compact. This result shows that the necessary condition for
the compactness of T;T, — Ty, obtained in Section 3 is not sufficient in general.
This result also provides us with explicit examples of compact semi-commutators
T Ty — Ty, with symbols f and ¢ continuous on the bitorus T2, '

2. ZERO SEMI-COMMUTATORS

Let Z denote the set of all integers, Z the set of all nonnegative integers and Z_
the set of all negative integers. As in [10] we consider multiple Fourier series on
the bitorus T2, The multiple Fourier series on the bitorus T2 can be viewed as the
Fourier transformation on L'(T?). For f in L!(T?), the Fourier transformation of
fonZ xZ is given by

2m 27

2
fm = (ZLW) //f(eie‘,ew‘)ei(”"a) dé, dé,
00

where m = (my,m3) € Z x Z, § = (01,0) and (m,f) = mi0; + mafp. By
Theorem 1.7 in [10], the Fourier transformation is injective, i.e. If f € L}(T?)
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and fi, = 0 for all m € Z x Z, then f = 0. We recall also that by using multiple
Fourier series,

L*(T?) = {f f= Y e N il < oo}

meELXL mETXT

H*(D?) = {fz th= Z By (™) Z thm(? < oo}

meTLy XLy meZ L xTy

and

Pf= z frme ™2 for f = Z Fme' ™) e L2(T?).

meT xTy melxl

THEOREM 2.1. Lel f and g be two bounded functions on the torus T2. The

following are equivalent:
(1) TyT, — Ty, is a finite rank operator.

(i1) Ty Ty — Tyq is zero.

(iii) For each i (i = 1,2) either f or g is analylic in 2.

Proof. We first show that (iii) implies (ii). Assume that for each i (i = 1,2)
either f or g is analytic in z;. Without loss of generality, assume that f is analytic
in z; and g is analytic in z;. Then it is easy to see that

(I - P)gh)= Z apm 2™

m=(my,mq)EL_ XLy

for all hy € H?(D?) and

(I = P)(fh2) = > by 2™

m=(my,ma)eL xL_

for all hy € H2(D?). Therefore
(Hghy, Hghy) =0

for all hy, hy € H3(D?). That is, H;—Hg =0. SoTyT, —Tjg = —H}Hy = 0.

It is obvious that (ii) implies (i). Now we prove that (i) implies (iii). That
is, assume that TyT, — Ty, is a finite rank operator, we will show that for each
i (i = 1,2) either f or g is analytic in z;. Without loss of generality, we assume
that i = 1. We write f and g as

oo

f:: Z 22)21 Z fs‘l

i=—00 i=—00
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oo

[s.2]
9= Y g(n)d = > g

iz=—00 i=—00
Let o, B,k,1 € Z. Then by a straightforward computation we have
(HjHgzi2g,225) = (Hoz5 2t Hy 2 7))
= Z (9:(22) 28, f-ipr—1)(22)25)
i€ —(k+1)
+ Z ((I2 — P3)gi(22)23, F—(ivr—1y(22)75)

i2—k

where I is the identity on L%(T) and P; is the projection from L*(T) onto H?(D).
Therefore

(Hyzizf, Hyz\2h) — (Hom¥'ag, Hym ' 2h))
= (9-r+1)(22)(22)%, Foay(22)(22)7)
— (T2 = Po)g-grar)(22)(22)", fqreny(22)(22)7)
= (Pag-(ean)(22)(22)%, F-qeny(22)(22)°).

Let S denote the multiplication by z; on H2(D?), i.e., S1h = 2, for h € H?(D?).
The above relation implies that

el pra (1 *
(‘SI,I{nySf - 51( +1)HngSf+x)h2(22) = Tng_<k+:)h2(ZZ)

for all h, € H%(D). Therefore, if H}{Hg is a finite rank operator on H?(D?), then
Tng_(Hl) is a finite rank operator on H*(D). By a result in [2], we have that
either f_q41) or g_(k41) = 0. Hence either f-g+1y =0forallk > 0org 41y =0
for all { 2 0. That is either f or g is analytic in z;. This finishes the proof of the

theorem. &

3. A NECESSARY CONDITION FOR COMPACTNESS

In this section we will give a necessary condition for the compactness of the semi-
commutator Ty T, — Ty,.

Before going to the main result of this section, we need some notations and
definitions. We use z to denote the vector (z1, z2) in €2 of two dimensional complex
plane. Since for any z in D?, the pointwise evaluation of functions in H2(D?) at z
is a bounded functional, there is a function K, in H%(D?) such that

f(2) = (f,K:)
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for all f in H?(D?). K,(w) is called the reproducing kernel for H?(D?) and some-
times we use K (z,w) to denote K,{w).

Let K,, denote the reproducing kernel of the Hardy space H?(D) of the unit
disk at the point z; in D, and k,, the normalized reproducing kernel of the Hardy
space H2(D) at the point z; € D. Namely,

| b (==l
(I-zrwr) ™7 (I—-Fwy)
It is easy to check that the reproducing kernel K, of the Hardy space H?2(D?) of the
bidisc is the product K, (w;)K,,(w2) of the reproducing kernels of H%(D). So the
normalized reproducing kernel k, of H2(D?) is also the product k,, (w1)k,,(w2) of

the normalized reproducing kernels of H2(D). We abserve that &, weakly converges
to zero in H2(D?) as z tends to the boundary of D2, For a function f in the space

L(T?), ie.,
Y. fmw™

meIxI

K, =

flw) = , weT?

where f,, is a sequence of numbers such that
2
Z |fm| < 0,
melxZ

the bi-harmonic (in short, harmonic) extension f(z) of f is defined via the Poisson
integral

- (=la) (=P o
7(2) -—T/Tff( N T 4o(mn) do(w2)
= (f(w)ks(w), ks (w))

We write the power series expansion of the harmonic extension f(2) of f as follows:

)= > fme"
(3.1) meZx
= o4 (2) + Fo-(2) + -4 (2) + - (2),
where
fer(2) = D0 fmd™ ()= ) fm”
mEL 4 X2y meZ xT_
forl(2) = Y ™ f(2)i= ) fm2™
meT _ XLy meZ_xT_
Also let
(3.2) Fu(2) = Fra(2) + Fro(2), f=(2) = fon(2) + Fo—(2),

where for example, m =

2™ the product 2™,

(my, mg) € Z_ x Z; means that my; € Z; and my € Z_,
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THEOREM 3.1. Lel f and g be two bounded functions on the bitorus T2. Then
TyTy — Ty, is compact implies that the following two statements hold.
(i) For allz; €D and all 24 € T,

of dg B
5_2,’;’(21 ) 22)-55;(21 ,29) = 0.

(ii) For all z, €D and all 2 €T,
of

dg
——(z1,29)==—(27,22) = 0.
322( 1 2)322( 1,22)

Proof. Without loss of generality, we prove statement {i). The proof of state-
ment (ii) is similar. We write f and g as (see above for the notations)

f(2) = foa(2) + f—(2) + f-4(2) + [--(2)
= 1 (2) + £-(2)
and similarly
9(2) = 944 (2) + 94— (2) + 9-4(2) + 9--(2)
= g4(2) + 9-(2).
We compute the action of a Toeplitz operator T, for g as above on the
normalized reproducing kernel k,(w) as follows:

Tok,(wi,w2) = gy (wy, walks + g4 (w1, 22)k; + g—1(21, w2)k;

(3.3)
+ g-——(zl ) 22)"72

for z = (21, 22) in D%, where for example

— m -|m2|
fr—(wr, 22) = E gmwy " Zy
(m1,m2)EL L xZ_

for all w; € T and z; € D. We remark that in fact the above formula (3.3) holds
for any g € L?(T?).

For convenience, we consider T57T, — 75, instead of TyT, — Ty,. We write
that

k. (w)[? do(w) + (Tyks, Tyks)

(TfTy — Tr, ks  ks) = — /WQ(W)
(3-4) T2
= hy(z) + h(z)

for any z in D?, where

h(z) = - / Faw)a(w)lks (w)]? do(w),
T2
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Mz) = (T5Tok:, k2).
Furthermore by (3.4), we write h(z) as
hz) = (TjTyks, ks) = (T5Tyks, ko) := hia(2) + haa(2) -+ hay(2) + haa(z)

where

(3:5)  hn(2) = (To ka(w), Troka(w)), haa(z) = (Tgy kolw), Ty_ ks (w)),

(35) () = (Ty_ka(w), Trpku(w),  han(2) o= (Ty_ k. (), Tk ().
Let m = (my,my) € Z x Z be fixed. Let ¢ = (81, 02) and
Uy = diag{e', e!2}.

Set
Hi(z) = / ha(Us2)ei ™) dg
T2

Hij(2) 5:/hz’j(U92)ei(m’o)d9, =12
T2

for z € D?, where hi(Ugz) and h;;(Upz) are obtained by replacing z with Usz in
the definition of h; and h;; respectively. For example, by (3.3), we have

Hya(z) := / (g++(w1,w2)kugz + g4 (w1, €% 20) ks, 2,
3.7 T2

f_+(ewl 21, W)k, + fe (eia1 21, elf2 zg)kuaz)ei(m'e) dg.

For a fixed 23 € D and uy € T, let 20, converge to the point uy on T,
then zq = (21, 220) converges to the boundary point (21, u3) of the bidisc D%. We
claim that H;(z), H11(2), H12(2), H21(z) and Hyy(z) are continuous on DZ, and
furthermore if we denote the limits of H1(z), H11(2), Hi2(2z), H21(2z) and H2y(z) as
zq converges to the boundary point (21, us) by Hi(z1, u2), Hi1(z1, u2), Hiz2(z1, ua),
Hai(z1,uq) and Hyp(z1, up), respectively, then Hy(z1, ua), H1i(z1, u2), Hi2(z1, u2)
and Hai(z1,u2) are harmonic in z; for any up € T. However Hyp(zy,ug) 1s not
necessarily harmonic in z;. We postpone the proof of the claim and first continue

with the proof of the theorem.
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We will first show that if TiTy — T, 1s compact, then H3y3(z) is harmonic in
z1. Replacing z by Upz in (3.4) yields

((T5Ty — Ty Yevez, kugz) = hy(Upz) + h(Usgz).

Multiplying the above equation by ¢/0™#) and then integrating with respect to 6
give that

./((7}‘T.q~ng)’cuaz,kusz)ei(m‘0) 40 = Hy(2)+ Hy1(2) + Hiz(z) + Hor(z) + Haa(z).
T2

Now note that k, weakly converges to zero as z goes to the boundary of D2,
Therefore if T¢T; ~ Ty, is compact, then

lim /((Tny = Tr kUgze ks, )el™ dg = 0.

(#)a—(21,u2)
Hence by (3.4), we conclude that

im  (H1(2) + Hi(2) + Hi2(2) + Hoi(z) + Haa(2)) =0

2o—+(21,uz)
for any z; € D and us € T. That is
—Haya(z1,u9) = Hi(z1, u2) + Hir(z1, uz) + Hiz(z1,u2) + Hai(21, ua).

Since by our claim Hq(21,u2), Hii(z1,uz), Hi2(z1,u2) and Hai(2z1,us) are har-
monic in z, for any uy € T, so Hya(z1, u2) ts harmonic in z; for any ug € T. Thus
A, Hao(zy,ug) = 0.

On the other hand, if we write

f-(z1,2) = Zkl

and

00 1d
(Z1,22 :Z'—' k (0 22)21.
k=0

Z

Let m = (0, m2). We note that

H (0 . — 1 akf—- 0 104 Hky—- 0 183 Limo 6o d9| 2k
22 ,uz)—zw W( y ugel®z) a2 (0, uze™?)e 2]z |7
T

k=1
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Since Haz(#1,u2) is harmonic in z; for any up € T, thus A, Haa(21,u2) = 0. In
particular, A,, Hap(z1,ug) = 0 for z; = 0. Hence

of-

0z
T

——(0, ugei®?) ,gz— (0, upe®2)e™2%2 g, = 0
1

for all my € Z and uy € T. We observe that both %(0, ug) and ag—_((),ug) are

05
in L%(T). So Bf_ (0 12) (0 u3) is in L}(T) and the Fourier transformation of

AN ag_
3z, (V) g5-

implies that

(0 ug) on Z is zero. The injection of the Fourier transformation

TN
6—(72) (0> 2)—0

for all up € T. But this is same as
af dg _
52—1(0, 1A2)52—1(0, Uz) =0

forallu, € T.
Next by using the Mobius transform of the bidisc, we will show that state-
ment (i) in the theorem holds. Let ,(w) denote the Mabius transform

@ (W) = (s, (w1), P2, (w2))

in the bidise D? for each point z = (z1,2;) € D?. For a fixed point z € D?, we
define a unitary operator U, on L%(D?) by

U, h(w) = hop(wk,(w)
for all h € H%(D?). It is easy to see that U;TyU. = Tyap, . Thus
Ttop. Tyaw. = Tisopu)gopsy = Uz Ty Ty = T3g)Us.
Therefore if Ty Ty — Ty, is compact, then Tyop, Ty, — Tis04, )(gow,) 18 compact.

Replacing f and g respectively by fo go‘(zllgf..,o) and g o @, q,..,0) In above
analysis, we get that

O(f © @(z,,0))

B(g © 9(z1,0)) _
9%, (0, ug) ——~——d—:—(0, uz) =0
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for all z; € D and uy € T. But

O(f oz, ,0,,0))

0z

(0,u2) = (| - 1)(%(21,%).

Therefore
0 0
%(2’1 , U2)%(2’1 , U2) =0
for up € T and z; € D. This completes the proof of the theorem except we still

need to prove our claim.

We first discuss Hy(z). Let

(3.8) A(z) = / TUs2)g(Up2)e' ™ do
T2

for z € D?. Since both f and ¢ are in L®(T?), we write the harmonic extension
of f and ¢ in D? as

f= Z fi7' and g = Z g]-zj

leZxZ JEIXZ

where f; and g; are two sequences of numbers satisfying

Z |£il* < 0o and Z lg;]% < oo.

leZxT JEIXT

A straightforward computation gives that

(3.9) Az) = Y Firmgjz0+mad
JEZXZ

1

for z € D?, where recall that by our convention z[ ' is z1, for example. Since

> !mng( > |f,-+m|2> ( > |9le) < o0,

jEEIXE JjELXI leZxZ

A(z) is continuous on the closure D’ of D?; and indeed A(z) is defined by the
series expansion in (3.9) for all z € D’. But note that here A(z) for z € D? is not

necessarily the harmonic extension of A(w) for w € T?. By an abuse of notation,
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we have that (3.8) holds for all z € 0. It follows from the definition of Hi(z) that
for all z € D?,

Hi(z) = —//T(-z—ujg(wﬂkuﬂ(w)ﬁ do(w)et™® dg
T2 T2
= —]/f(Uow)g(Uow)e‘(m"’) 61k, (w)]? do(w)

T27F2

== [ Ak () d4(w)
T2

where the second equality is obtained by changing the order of integration and a
change of variables from w to Usw. That is, H;(z) in D? is the harmonic extension
of the continuous function A(w) on T2. Therefore H1(z) is continuous on D’. Let

2, (Az) be the Mobius map %2 “:_)\2
1-Z AZ

. Changing variable wy = ¢.,(X2) in the

above integral, we have
Hi(z) = — / / A, @2y (3a)) s (1) 2 dAwr) dAQAs).
T 7T

It follows from Lebesgue dominated convergence theorem and the continuity of
A(z) on DB? that

Hi(z,up) = (Z)GE?}MQ) Has(2) = ——‘/A(wl,uz)llcz,(wl)l2 dA(wy).
T
That is, Hq(z, u2) as a function of z; on D is the harmonic extension of A(wy, uz)
as a function of wy on T. Therefore Hy(z,us) is harmonic in z; € D for any
ug € T.
Next we discuss Hy2(z). Without loss of generality, we consider a term B(z)
of Hyz asin (3.7):

Bl=) = //f&+(eie‘zhw2)9++(w)4kuez(w)|2 dA(w)e ™) 4
T2 T2
= [ [ TG o o) ™) dojle () ()
T2 T2
where the second equality is obtained by changing the order of integration and a
change of variables from w to Upw. By integrating with respect to w; and noting
that f-4(Ug(z1,wz)) is independent of wy, we get that

B(z) = f / Tt Wa(z1, w2)) g4+ (Us(z1, w2))el ™) bk, (w)|* dA(ws).

T 712
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Now we define
(3.10) Oz) = / T o wa)g.4 ()ei™9) da.
T2
By the proof of the continuity of A(z), we see that C(z) is continuous on D2. By
an abuse of notation we see that (3.10) holds for all z € D2. Indeed we have
(3.11) C(z) = Z @bz~ U™
JEIXT
for all z € D?, if we write f_(2) and g4y (2) as
f-+(z) = Z a7z and g__(z) = Z b; 2
leZxZ JEEZXI

where, since f..(z) and g__(z) are in L%T?), a; and b; are two sequences of

Z |a1|? < 0o, and Z |6;] < co.

1€IxZ JETXT
Next note that

numbers satisfying

B() = [ Clar,wallbe, ()l dA(ws).
T

22 — Ag

=3

Hence B(z) is continuous on D2. Let ,,(A2) be the Mdbius map

have

B(z) = /C(Zla@za(/\z))d/l(/\g),
T
It follows from the continuity of C(z) that

B{z1,ug) = lim B(z) = /C(Z],UQ) dA(X2) = C(2z1, u2).
(2)o—(21,u2) 4
To prove that C'(z1, us) is harmonic in z; for any u; € T, we look at the series
expansion of C(z)} more carefully. We first note that aj = 0 for { = ({1,82) € Zx Z
such that {; > 0 and b; = 0 except for j = (j1,Jj2) € Z4 x Z4. Therefore in fact
C(z1,uz) = 0 for m = (my,my) € Z4 x Z, and

c(zhuz)=zr"“uz""( 2 Z%—m”")

05 1< —my J2€24
for m = (m1, my) € Z_ x Z. This finishes the proof of the claim concerning H;(z)-
The proof of the claim concerning Hy1(z) and Hz(z) is similar. So does the
proof of the continuity of Hoo(z). Nevertheless one does not necessarily have that
Hay(2y,uz) is harmonic in z;. So the claim is established. This completes the
proof of the theorem. &
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We remark that in general the conditions (i) and (i) in Theorem 3.1 are
not sufficient for Ty Ty — T}, to be compact. See Theorem 4.1 in next section for
examples.

Next we use Theorem 3.1 to derive a result in [4] about compact Hankel
operators on the bidisc; see [4] and reference therein for more related results.

CoroLLARY 3.2. ([4]) Let f be a bounded funciions on the bitorus T2, The
Hankel operators Hy is compact if and only if it is zero.

Proof. Note that —H;H; = T§Ty — Tj;. Thus by Theorem 3.1, Hy is
compact implies that for all zy € D and all 22 € T,

af 2

'5(21,22) =0
and for all 2o e Dand all z; € T,

P 2

-(‘—)—g;(zl,Zz) = 0

Therefore f is analytic in D?. So H; is zero. The proof is complete. &

The following result is an immediate consequence of Theorem 3.1. See also
[[1] for related results on the Bergman space of the bidisc.

COROLLARY 3.3. Let f and g be two bounded functions on T2. If one of the
functions f, f, g, § is analytic, then TiTy —T,Ty is zero if and only if Ty T, — T, Ty
s compacl.

Proof. Without loss of generality, we assume that f is analytic. It is easy to
see that in this case Ty T, — T, Ty = T3 T, — Ty,.

By Theorem 3.1, if TyT, — Ty, is compact, then for all z; € D and 2, € T,

of dg _

ﬂ(zla zZ)ﬁ(Zla Z2) =0,
and for all 2o € D and all z; € T,

9f

(922

Since f is analytic on the unit disk, we conclude that for each ¢ (i = 1,2) either
f or g is analytic in z;. By Theorem 2.1, this implies that T§Ty —Tig = 0. This

Ie,
(21, 22)%(2’1 ,22) = 0.

completes the proof of the corollary. &

We remark that the above corollary is not valid without the assumption that
one of the functions f, f, g, § is analytic. An example will be shown in next
section.
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4. COMPACT SEMI-COMMUTATORS

In this section we will characterize when 7T, — Ty, is compact for Toeplitz oper-
ators Ty and T, with symbols of the form f(z1, z2) = fi(21)f2(22) and g(z1, 22) =
91(21)g2(22). This will show that the condition in Theorem 3.1 is in general not
a sufficient condition for 73T, — Ty, to be compact. Furthermore it provides us
with nontrivial compact semi-commutators.

THEOREM 4.1. Let f1, fa, 91 and g2 be nonzero bounded functions on the
unit circle T. Let f and g be bounded functions on T2 of the form f(z1,22) =
fi(z1) f2(22) and g(z1, 22) = g1(21)g2(22). Then TyT, — Ty, is a nonzero compact
operator on the Hardy space of the bidisc if and only if the following two conditions
hold:

(1) f1(z1)g1(z1) = 0 and fo(22)g2(22) =0 on T, and

() lim [|Hzk||2||Hgk:||2 = 0.

z—8Dh

Proof. We first prove the necessity part of the theorem. Assume that Ty7, —
Tyq is compact. By Theorem 3.1, we have that for all 2y €D and all 2 € T,

0f1(z1) 8g1(=21)
o 0z,

(4.1) fa(z2)g2(22) = 0

and for all 2z €D and all 2; € T,

0f2(22) Og2(z2)

(4‘2) Ozq Oz

fi(z1)g1(21) = 0.
We claim that this implies that condition (i) holds. Suppose that condition (i)
does not hold. Without loss of generality, assume that f;g; is not zero. Then

equation (4.2) gives that

02001 _

Ozg 07y
for all z; € D. That is either f; or gy is analytic in z3. Say, g2 is analytic in 2.
Thus g2f2 is not zero since otherwise either fy or go will be zero. Now equation
(4.1) implies that

0f1 091 _

0z 0271

That is either f; or gy is analytic in 2. Say, fi is analytic in z;. Hence f is
analytic in z; and g is analytic in z2. By Theorem 2.1, we get that Ty T, — Ty, is
zero. This is a contradiction. Therefore condition (i) holds.
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Next we show that condition (ii) holds. We first need some notations. Let
P; be the projection defined by

Pi(h) = 3 hmz™ i h = > hm(22)2™ € L3(T?),

m={m; m3)el 4 xI m=(my,ma)ELXT

and similarly P, the projection defined by

Py(h) = > hpz™ if h = > hm(22)2™ € L3(T?).

m=(m;,ma)eIXTy m=(mi,my)EL =T

It is casy to see that P = PP, = PP,. Let ho(z1) € H?(D) such that h,
converges weakly to zero in H?(D). For any h(z2) in H?(D), let H,(z1,22) be
h(z2)hn(z1). Note that H, converges weakly to zero in H2(D?) as well. Note also
by condition (i),

(TfTH - ng)Hﬂ(zl ) 22) = TnyH"(Zl’ 22)
= Po(f2Prg2h)(22)T1, Ty, hn(21)
= —-Pz(nggggh)(n)H%—Hglhn(zl)
and Po(f2)P2(g2h)(22) is not zero for some h € H2(B). Thus if T3T, — Ty, is
compact, then IIH;—Hg,hnll converges to zero. Therefore Hll-Hgl is compact on

the Hardy space of the unit disk. The compactness of H%;ng can be established
similarly. It follows from Theorem 2 in [13] that

JNim |7k ol el = 0

and

Nim | Hyzksallol ez = 0.

So
lin (| Hyoks |2 H g kel H ke |2l Hos ka2 = 0.

Zzy or zp—

On the other hand,
NHyksl\2l| Hokzllz = | Hyrkay |2l Hg koo |2l Hp ks ||| H g ka2

Hence
lim [1Hzk Ll Hyka 1o = 0

as it is equivalent to _
zlli—ran"l' |le_1’“21“2”Hy1 k21”2 =0,
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and
hm ”H kzz“2||ngkzz“2 =0.

We now turn to the proof of the sufficient part of the theorem. By condition
(i), we have Ty T, — Ty, = TyT,. Let ¢ and ¢ be in H2%(D?). We observe that

Ty Ty = PiPa(f1 f2P1 Pa(g192¢))
= Pif1 - Prg1 - Po(f2P2(929))
= Pifi - (I = Pi)g1 - Pa(f2(T — P2)(g2¢0))
= Pufi - Po(fa(1 = Pr)gi(1 — Po)(g29)),

where the third equality follows from condition (i). Therefore

(Ty T, ) = (P1f1 - Poa(fo(I — Pi)gi(I — P2)(g29)), ¥)
={((I - P))g1- (I = P2)(g20), frFot)
={((I = P)g1- (I - Pa)(g29), (I — Po)J1- (1 = Pa)(Fo))-

It is easy to see that (I — Py)g; - (/ — P2)(g2¢) 1s co-analytic in z; and 23. So

Vil = Pas (= Po)(ga0)] = 5=l = P - (1 = P){gas)].

Since

f (I = Pi)gs - (I = Po)(g2p) do(z1) = 0

and

[ =l = P (1 = Poang) do(e2) =0,

using the Littlewood-Paley formula, we have
(I = Pi)gr - (I = Pa)(gaw), (I = P)Ji - (I — P2)(Fad))
= [ [(@1 921 = Par (1 = P@x), w2 92 (= POFF- (1 = P (T
DD

X log log dA(z) dA(z2)

ol % o]
- / / (I = PO 2l = Po)g20)], walI = PO - sl = Po)(Faw))

X log log dA(zl) dA(zz)

=h+L+1s
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where

I =/ /(Vl[(f = P)g1) - 72l = P2)(920)), v1l(I = P) 1] - 72[(7 — P2)(F24)))

rD rD

X log log — d.A(Z1)dA(2'2)

lz1] 7 [za]
I =_/ /(Vx[(l = Pi)gr] - Wa2[( = Pa)(g200)), val( = PO A) - 207 — Pa)(Fa)])

D/rp D

X log i log ol dA(z1) dA(z2)
13:/ /(Vl[(f ~ P)g1]- v2[(I = P2)(g20)], V1l(I = PL)Ti) - w21 — Pa)(Fa)])
rDD/rD
x log — log — dA(z;) dA(zs).

ll Il

It is easy to see that there is a compact operator K, such that

I = (Kr, ).

To deal with I and I3, we use the distribution function inequality established
in {13]. As in the proof of Theorem 7 in [13], we obtain that

/ <V1 (T = P))g1) - v2l(I = Pa)(g29)), vil(I = P)f1)-

D/rD

Tl = P)(Fa)] ) log - dA ()

|21
< C7|Sl;l>) | Hgrhs I Hoffez, | 72 [(T = Pa)(g20))l, (| 22 (7 = Po)(F2)]ll:

where for h € L?(T?) and 2, fixed, ||h||,, denotes the L? norm of h(z1, 2;) as a
function of z;. Similarly we also have

[ {9110 = Pooi) 92l - (a2, 9l ~ PO

D/rD

Vol — P)(Fw)]) log — dA(z)

|22
< C|Sl|1§ MH 7k 1 H g ko || 71 [ = Pr)(gre)llz, Il 71 [(2 = POz
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So
k,

IH

ol € C sup || Hyks,
1
|z1|>r

[(7 = P2)(Fo)l):, logr“l dA(z2).

< [ 119210 = P
rD

By Schwarz inequality,

2 € C sup ([Hymko, |1y
21| >r

| S
(S0

[//Iw (= P2l og 1 dotan) dAG)

.

[//le I—Pg) fg’(/)):” 10g Z])dA(Z'z)

D aD

By the Littlewood~Paley theorem and the fact that g, and f; are bounded,

|I2] < ¢ sup ||Hzk,
|z1}f>r

el el 19211

91

Similarly we can also get the estimate for I3,
3| < (-7|51|11>3 | Hppheso || 1 H gokoaa |l el 1901
22 r

In the proof of the necessary part of the theorem we have shown that the second
condition is equivalent to

z}i—lzl'l’ '|H?Tk21||2Hngk21||2 =0,

and
Jim (1H75, ol bl =
Hence we conclude that

liﬂ} Ty Ty — Tyq — Ko} = 0.
r—

Therefore Ty Ty — T}, is compact. This completes the proof of the theorem. &

We now give an example to show that the assumption in Corollary 3.3 is
necessary. Namely, there exist bounded functions f and ¢ such that Ty T, — 1,7}
is compact, but Ty7, — 7,7} is not zero.
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ExampPLE 4.2. Let f1(#z;1) and g,(z1) be nonzero continucus functions on
the unit circle satisfying the conditions that fi(z1)g1(21) = 0 and the set {2 :
fi(z1) = 0} 0 {z; : g1(z1) = 0} as a subset of T has positive Lebesgue mneasure.
Let fa(22) and g2(z2) be nonzero continuous functions on the unit circle such that

f2(22)g2(22) = 0.
First we show that Ty T, — 7,7} s not zero. Note that

(Ty Ty — TyTy)ha(21) = Pa(f2) P92} (T, Tgy — Ty, Ty, Y (21)

for all by € H%(D). It is casy to see that the assumption on f and gp implies that
Py(f2)P2(g2) is not zero. Therefore it suffices to show that Ty, Ty, — T, Ty, is not
zero. Let S denote the multiplication by z; on H*(D). We observe that / — 5157
is the rank one operator ey ® eg, where eg = 1 € H2(D). Note that

Tfl Tgl - Tngfl - Sil" (Tfl T!]l. - Tlefl )Sl

=T5 Ty — 1 T5 Ty, 51 — (T4, Ty, — 5174, T3, 51)

SyTy, 5187 Ty, 51— STy, Ty, 81— (87T, 5157 Ty, 51— S1T4, Ty, 51)
= STy (1 — $y81) Ty, 1+ 51Ty, (I — S180)T1, 51
= =511y, e0 % ST Ty, eq + 51Ty, €0 0 S7T7F,

i

where the second equality follows from the fact that for Toeplitz operator T,
STy, 51 = Ty,. Thus if Ty, T,, — Ty, Ty, = 0, then there exists a contant ¢ such
that

S? Tf1 €g = CS{ Tg; €q.

That is, there exists a constant d such that Py(f; — cg1) = d. Hence if we denote
the function f; — g7 by h, then A is analytic. But by our assumption, h(z) = 0
on a subset of T with positive Lebesgue measure. Therefore i3 = 0 on T, 1.e.,
fi = eg1. This contradicts to the conditions that both f; and g; are nonzero and
figr=00on T. So Ty, Ty, — Ty, T}, 1s not zero.

Next we show that Ty Ty — T, Ty is compact. Since fi{z1), g1(z1), fa(22) and
¢2(z2) are continuous, so HJ,—IH_,,I and 1‘1'}.—2!'*{9,2 are compact. Hence

zllliql' “Hﬁkzl“:Z”Hgl k»’lllz = 01

and
ziif:lT ||Hf_2k,2 2l Hyz k2, ll2 = O,

or equivalently condition (ii) in Theorem 4.1 holds. Therefore 7;T, — Ty, and
TyTy — Tys are compact. Note that

T§Ty - Tng = (Tng - ng) - (TQTf - Tg!)~
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Hence TyT, — T,Ty is compact.
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