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ABSTRACT. In this paper we will give a natural definition for morphisms
between multiplicative unitaries. We will then discuss some equivalences of
this definition and some interesting properties of them. Mareover, we will
define normal sub-multiplicative unitaries for multiplicative unitaries of dis-
crete type and prove an imprimitivity type theorem for discrete multiplicative
unitaries.
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0. INTRODUCTION

In [2], Baaj and Skandalis defined multiplicative unitaries and showed that they
are nice generalisation of locally compact groups. They also showed that the
Woronowicz C*-algebras (which can also be considered as compact quantum
groups) can be included in the consideration of multiplicative unitaries of com-
pact type. However, there is not any notion of morphism being defined so far.
In [8], Wang define morphisms between compact quantum groups as Hopf *-
*homomorphisms between the underlying Woronowicz C*-algebras. However, for
a given multiplicative unitary V, we can associate with it four Hopf C*-algebras
(if the multiplicative unitary is good), namely, Sv,§v, (Sv)p and (§v )p- It is not
clear which of the Hopf *-homomorphisms between these Hopf C*-algebras should
be used as a candidate for the morphisms.

In this paper we will investigate a natural notion called birepresentation
and show that it is a good candidate for the morphisms between multiplicative
unitaries. More precisely, given two multiplicative unitaries U and V, we define
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morphisms from V to U to be the collection of all U-V-birepresentations. Some
of the Hopf -homomorphisms between the Hopf C*-algebras defined by U and
V are equivalent to U-V-birepresentations (see Theorem 4.9). We also find an-
other equivalence that birepresentations are in one to one correspondence with the
mutual coactions (see Definition 3.13) between those Hopf C*-algebras. We also
investigate the crossed products of the different coactions arising from a morphism
and show that (Sv )p X §,max (Sv)p =~ (Sv)p x?”,max (Sv );p‘

Now we obtain a category of multiplicative unitaries (those satisfing some
good property). It contains the locally compact groups as a full subcategory.
However, it seem not easy to define kernels of these morphisms. By looking at the
case of discrete groups, we can define kernels of morphisms between multiplicative
unitaries of discrete type (which is really a kernel in the categorical sense).

Finally, from the definition of a kernel, we can define normal sub-multiplica-
tive unitaries of multiplicative unitaries of discrete type. We then prove an im-
primitivity type theorem for this setiing.

1. PRELIMINARY AND NOTATION

The notation in this paper mainly follows from those of [2] and [5]. We also assume
the basic definitions and the results from these two papers.

DerINITION 1.1. Let (A, 48) be a Hopf C*-algebra.
(a) A *-subalgebra B of M(A) is called a Hopf C*-subalgebra of A if:
(1) there exists an approximate unit {e;} of B such that ¢; converge strictly

to 1in M(A);

(i) 8(B) C M(B ® B)

(iti) the restriction, ¢, of § in B is a co-multiplication on B.

(b) Let A°P be the C*-algebra A with a co-multiplication §°P defined by
6°P = ¢ o § (where o is the flip of variables).

Note that condition (iii) in Definition 1.1 (a) means that e{ B)(1® B) C B®B
and condition (i) makes sense because of (i). It is easy to see that 6°P is a co-
multiplication on A and (A°P)* = (A*)°P (algebra with an opposite multiplication).
We recall that a Hopf*-homemorphism ¢ from a Hopf C*-algebra (A, 8) to another
Hopf C*-algebra (B, £) is a non-degenerate *-homomorphism from A to M (B) such
that (p @ p)od = €0 .

LEMMA 1.2. Let (A,6) and (B,¢) be two Hopf C*-algebras and ¢ be a Hopf
+-homomorphism from A to M(B). Then By = ¢(A) is a Hopf C*-subalgebra
of B.
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LEMMA 1.3. Let A end B be C*-algebras. If p and o are non-degenerate
*-homomorphisms from A to M(B), and frem B to M(A), respectively such that
wo1 and ¥ o @ are identily maps, then ¢ is an isomorphism from A {o B.

Proof. We first note that @(A) is an ideal of M(B) since ¥(p(a)m) =
ay(m) € A for any a € A and m € M(B). Let {e;} be an approximate unit of A.
Then for any b € B, ¢(e:)b € p(A) will converge to b and hence B C o(A). 1§

DEFINITION 1.4. Let (R,¢) and (S, §) be Hopf C*-algebras. A unitary U €
M(R®S) is said to be a unitary R-S-birepresentation if (id® 6)(U) = Ur2Us3 and
(e ®1d)(U) = U3Uas.

LEMMA 1.5. Let (S,8) and (T,¢) be Hopf C*-algebras. Let w and v be
unilary co-representations of S aend T respectively on the same Hilbert space H
and let u = w® € M(S®K(H)) (where o means the flip of the two variables). If
X is a unitary in M(SQT) such that u;3X13v93 = vazuia, then X s a unitary
S-T-birepresentalion.

Proof. Applying (id ® id ® €) to the equation we have that
u12(id ® id ® €)(X13)v23v24 = v23v24U12 = V23U12X14V24-
Thus,
(Id ® id ® €)(X13) = ul,vasu12X 1453 = X13v23X14v53 = X13X14.

Similarly, (6 ® ld)(X) = X13Xoa3.

DEFINITION 1.6. Let X be a unitary S-T-birepresentation. Let w and v be
unitary co-representations of S and 7" respectively on the same Hilbert space and
let u = w’. Then (u,v) is said to be a covariant pair for X if u and v satisfy the
condition in the previous lemma.

We now recall the following definitions from [1].

DEFINITION 1.7. Let V be a multiplicative unitary on a Hilbert space H.
Then:

(a) V is said to be semi-regular if the norm closure of the set {(id@w)(ZV) :
w € L(H).} contains the set of all compact operators X(H). Moreover, V is said
to be semi-biregular if it is regular and the norm closure of the set {(w®id)(ZV):
w € L(H).} contains K(H) as well;

(b) V is said to be balanced if there exists a unitary U € £(H) such that

(i) U? = In;

(i) the unitary ¥ = £(U ® 1)V (U ® 1)E is multiplicative.
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REMARK 1.8. For simplicity, we will call a multiplicative unitary semi-
wrreducible if it is both semi-regular and balanced.

PROPOSITION 1.9. Let S and T be Hopf C*-algebras and ¢ be o Hopf x-
homomorphism from S to M(T). If € is a coaction on a C*-algebra A by S, then
d=(1d®p)oc is a coaction on A by T.

Proof. The coaction identity follows easily from the fact that ¢ respects the
co-multiplications. It remains to show that §(A) C MA® T). Let (u;) be an
approximate unit of §. For any a € A and t € T, ¢; = ¢(u;)t converges to ¢ in
norm and so 4{a)(1 ®¢;) converges to §(e)(1 ®t) in norm. Now, é(a)- (1 ®¢;) =
([d®p)e(@)(l®u)] - (18t) e ART. 1

ProrosiTiON 1.10. Let A, 5,T,p,c and § be the same as in Proposition 1.9.
Suppose that the crossed products A Xemax S and A Xgmax T exist. Then there
ezists a x-homomorphism & from A X max TtoM (A X5 max .§).

Proof. Let (B,,u) be a covariant pair for (4, 5,¢) and let v = (id ® @) ().
Then (B,¥,v) is a covariant pair for (A, T, 8} and the proposition follows from the
definition of crossed product (see [5], 2.11 (b)).

2. BASIC MULTIPLICATIVE UNITARIES

The aim of this section is to find some basic assumptions on the multiplicative
unitaries such that the results in this paper holds. We will show that the semi-
irreducible multiplicative unitaries and regular multiplicative unitaries both satisfy
these basic assumptions (the manageable multiplicative unitaries “almost” satisfy
these assumptions, at least when they are either amenable or co-amenable).

DEeFINITION 2.1. Let V be a multiplicative unitary. Then V is called a C*-
maultiplicative unitary if for any representation X and co-representation ¥ of V on
K and L respectively:

(i) §x = {([d®w)(X):w € L{H),} and Sy = {(w ®3id)(Y) :w € L(H)+}
are both C*-algebras;

(ii) X € M(Sx ® Sy) and Y € M(Sy ® Sy).

Basic examples of C*-multiplicative unitaries are regular multiplicative uni-
taries, semi-irreducible multiplicative unitaries (see Remark 1.8) and manageable
multiplicative unitaries.

REMARK 2.2. (a) By the argument in [11], Section 5, if V' is a C*-multiplica-
tive unitary, then Sy and Sy are both Hopf C*-algebras with coactions § and 6,
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respectively. Moreover, (id ® 6)(X) = X15X53 and (8 ® id)(Y) = Yi3Yas if X and
Y are representation and co-representation of V, respectively. Furthermore, by
using the argument in that section, we can also show that the closure of {{(w ®id®
id)(Y12Y13)(1 ® 8) : w € L(H )4, 8 € Sy} = Sy ® Sy for any co-representation Y.

(b) If V is a C*-multiplicative unitary, then by the same argument as in [2],
A6, ([2], A6 (a)-(d)) hold for V. Moreover by part (a) above, ([2], A6 (e)) holds
as well.

(c) We also note that all the main results in [5] hold for C*-multiplicative
unitaries (actually, except (5], 3.7 and 3.15 which involve the Takesaki-Takai type
duality). ‘

Let V’ and V" be as defined in [2], A6. We call V' and V" the universal
representation and the universal co-representation of V, respectively. We also need
the following technical assumption.

DEFINITION 2.3. Let V be a C*-multiplicative unitary.

(a) Let Vp, be a unitary in M((Sy)p®(8v)p). Then V, is said to be a universal
birepresentation of V if Viy(Vy)13Veh = VE4Viy in M((8v), ® K(H) ® (Sv)p).

(b) A C*-multiplicative unitary V is said to be basic if there exists a universal
birepresentation for V.

REMARK 2.4. (a) It is clear that if a C*-multiplicative unitary V is amenable
(respectively, co-amenable), then V, = V" (respectively, V, = V') exists and V' is
basic.

(b) By Lemma 1.5, if the universal birepresentation of V' exists, it is a unitary
(Sv)p-(Sv )p-birepresentation. Moreover, it is clear that (id ® Ly)(V,) = V' and
(pv @1d)(V,) = V",

We are going to show that V, exists in good case. Note that we can also
deduce the existence of V}, from [2], A8, but irreducibility is required there. We
first recall the set C(V) = {(id @ w)(ZV) : w € L(H),} from {2]. Note that the
idea of the proof of the following lemma is from [2], 3.6 (c).

LeEMMA 2.5, Let V € L(H ® H) be a multiplicative unitary and X and Y
are a representation and a co-represention of V. on K and L respectively. Let
W=X}Y03X12Yss E LKQHQL). Then (1@c@1)W =W (1®c®1) for any
¢ € C(V). Consequently, z’fz(_ijeak = L(H), then W is of the form W = Z,3 for
some unitary Z € L(K ® L).
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Proof. We first note that

X12Y24X12Y54 803Vos = D23 X13V34 X135, Vag = D3 X334 X13 Va3 Y5, Yo
= o3 X75Y3a X1 Vas X12Y5, Yoy
= Yo3(X12X13)" VasYaa Yau X12 Y5, Yoo
= To3Va3 X719 Y24 X12Y5,.

Now let ¢ = (id ® w)(EV). Then

= (ld RUdRWwR id)(EQ;;stszYMXuY;;) = (1 RE® 1)W

The final part of the proposition is clear. &

e k

PROPOSITION 2.6. If V is a C*-multiplicative unitary such that C(V') =
L(H), then V is basic.

Proof. This proposition is clear by putting X = V' and ¥ = V" into
Lemma 2.5. 1

COROLLARY 2.7. Every semi-irreducible (respectively, regular) multiplicative
unitary s basic.

REMARK 2.8. It is natural to ask whether we can use similar arguments
as in Lemma 2.5 to prove that manageable multiplicative unitaries are basic as
well. However, we encounter a difficulty in doing so. The difficulty comes from
the unboundedness of Q. It is not hard to show that if (V, Q, 17) is a manageable
multiplicative unitary such that (f ® id ® g)(W)(Dom @) C Dom Q (where W =
Vi3 VosVyoVas*) for any f € (§v); and g € (Sv);, then V' is basic. Note that if Q
is bounded, then V is regular and sy is bounded.

In the rest of this section, we assume that the multiplicative unitary V €
L(H® H) is basic. Let VT = ZV*Y € L(H ® H) and Vr € M[(§v)p ® (Sv),] be
the universal birepresentation of V.

LEMMA 2.9. (i) Sy = Syr and Sy = Sy+ as *-subalgebras of L(H) (in

fact, SF = Syv and SiF = Sy+ as Hopf C*-algebras);
v

(ii) If W is a representation (respectively, co-representation) of V, then
WT = SW*S is a co-representation (respectively, representation) of V' ;

(iii) (Sv)gP = (Sv)p and (Sv)sP = (Sy), (as Hopf C*-algebras);

H _ *\o "o _ *\o T _ *\o

() (VT) = (V"™)7, (V)" = (V)7 and V] = (V;})? (where ¢ means the
flip of variables).
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We recall the antipode sy from Ay to Sy defined by sy ((w ® id)(V)) =
(w ®id)(V*). In the same way, we define the antipode jv from (Av), = {(w ®
1d) (V") :w € L(H)} to (Sv)p by jv((w@id){(V")) = (w ®id)(V"*). Note that
jv is well defined since (w ®id)(V") = 0 implies w = 0 on S and hence w* = 0 on
M(S) (which implies that w*((id @ f)(V")) =0 for all f € (Sv);). Moreover, we
can extend sy and jy as follow.

LEMMA 2.10. sy and jy can be extended to Ay = {(feid)(V'): fe (§V);}
and (Av)p = {(f@id)(V,): f € (§v);§}, respectively.

Proof. Since the map that send f € (§v); to (f ®1d)(V") is injective (see
[5], A6), the map xy that send (f ®1d)(V'} to (f @ 1d)(V"*) is well defined and is
clearly an extension of the xy above. Similarly, since the map that send f € (§V);
to (f ® id)(V,) is injective, the extension of jy is also well defined. 1

PROPOSITION 2.11. There is a one to one correspondence between unitary
co-representations of Sy and those of (Sy)p.

Proof. If w is a unitary co-representation of Sy, then w, = (p, ® id)(V})
is a unitary co-representation of (Sv), (by Remark 2.4 (b)). On the other hand,
if u is a unitary co-representation of (Sy),, then uy = (id ® Ly )(u) is a unitary
co-representation of Sy. Moreover, it is clear that (id ® Lv)(py ® id)(V,) =
(pw ®1d)(V’) = w. It remains to show that if (id® Ly )(u1) = (id ® Lv)(ug), then
u; = ug. It follows from exactly the same argument as in [5], 2.7. 1

COROLLARY 2.12. If €' is a coaction of a C*-algebra A by the Hopf C*-
algebra (Sv)p, then the full crossed product A X ¢t max (§V)p erists and is a quotient
of A X¢ max §V (where € is the reduced coaction that corresponds to €' as defined
in the paragraph before ([5], 2.14)).

Proof. Using Proposition 2.11 and the same argument as in [5], 2.12 (a),
we can reformulate the full crossed product of (A,&') as in (5], 2.12 (c). Now
by a similar argument as in [5], 2.13, the full crossed product exists. Since any
covariant representation of (A4,¢’} is a covariant representation of (A, ¢), it is clear

that A X¢/ max (.§V)p is a quotient of A X, max gv. ]

PROPOSITION 2.13. Let A be a C*-algebra and £ a coaction on A by Sy.
Let (B, ¢, p) be the full crossed product. Then there is o dual coaction & on B by
(§V)p such the p is equivariant.
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Proof. Let v = (p®id)(V'). Then (¢ ® id)e(a}-v = v (¢(a) ® 1) for any
a € A. Now define the *-homomorphisms ¢ = (id@ 1)oyp and v = (u®id) o by
from A and (§v)p respectively to M(B ® (§V)p). We first show that (¥, v) is a
covariant pair for (4, Sy,¢). In fact, for any a € A,

(¥ ®id)e(a) = (p ® id)e(a)1a
and
(v eid)(V') = (1 ®id @id)(6y ®id)(V') = v13Vis.
Hence

@ ®id)e(a) - (v ®id)(V') = [(» @ id)e(a) - v]13V33 = v13 - (9{a) ® 1®1) - Vi
= (v@id)(V') - (¥(a) @ 1).

Thus, we have a map & from B to M(B® (Sy),) such that ¢ = £ogp and v = £op.
Now for any a € 4 and s,t € (§v)p,

Elp(@)u(s)] - (1®1) = (p(a) ®1) - (u®id)[Bv(s) - (1 ®¢)] € B® (Sv),

(as By (s) - (1®t) € (§v)p ® (§v)p and p(a)u(u) € B for all u € (Sy),). Since
{e(a)u(s) : @ € A,s € (Sy),} generates B (by [5], 2.12 (b)(3)]), we have &(B) C
M (B®(§v)p). It remains to show the coaction identity. Fora € A and s € (§v o

(E®id)elp(a)u(s)] = (€ @id)[(p(a) ® 1) - (1 ®id)dy (s)]
= (p(a) ®1® 1) - (1 ®id) 0 3y ®id]dy (s)
=(p(a)®@1®1) (1 ®id ®id)(id ® §v )dy (s).

On the other hand, we have

(id ® dy )l (a)u(s)] = (id ® o) {(p(@) @ 1) - (1 ® id)3y (s)]
=(p(a)®1®1) - (u®id ®id)(id ® 5y )y (s).

Finally, p is equivariant by the definition of £, 1
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3. U-V-BIREPRESENTATIONS

In this section we mainly deal with C*-multiplicative unitaries. We will discuss
basic multiplicative unitaries in the next section. We will define and study the
bireprescntation of two C*-multiplicative unitaries. Let (K,U) and (H,V) be
C*-multiplicative unitaries and X € £(K & H) be a unitary operator.

DEFINITION 3.1. X is said to be a U-V -birepresentation if X is a represen-
tation of V as well as a co-representation of U.

Let X be a U-V-birepresentation. Then there are *-representations Lx and
px of (Sy), and (Sy)p on H and K respectively. Moreover, we have:

PROPOSITION 3.2. Lx is a Hopf x-homomorphism from (Su), to M(Sv).
Consequently, Sx = Lx(Su)p s a Hopf C*-subalgebra of Sy. Morcover, Lx
preserves antipodes.

Proof. The first statement is clear from the fact that (ox ®1id)(V’) = X and
V' € M((Sv), ® Sv). The second one follows from Lemma 1.2. Finally, we need
to show that Lx ojy = ky o Lx. Note that Lx o jy((w®id)(U")) = (w®id)(X*).
Now since {px ® id)(V") = X, Lx((w ® id)(U")) = (w o px ®id)(V') € Ay
(see Lemma 2.10). Moreover, £y o Lx({w ® id)(U")) = (wo px ®1d)(V") =
(w@id)(X™). W

REMARK 3.3. {(a) Similar things hold for px and Sx.

(b) It is clear that X is a birepresentation if and only if X is a unitary
§U—Sv-bil'epresentation in M(§U ® Sy) (see Definition 1.4).

(c) Let X be a U-V-birepresentation. Then X1 = LX*T isa V'-U'-
birepresentation. Moreover, Lyt = px and px= = Lx.

(d) If we borrow Proposition 3.5 below, we have the following: Any Hopf
x-homomorphism from (Su), to M(Sy) preserves antipodes. 1

We are going to give a converse to Proposition 3.2. Let us first investigate
under what condition a co-representation will be a birepresentation.

LEMMA 3.4. Let X be a co-representation of U on H. If Lx is Hopf
x-homomorphism from (Sy)p to M(Sv), then X is a U-V -birepresentation.

Proof. 1t is required to show that X is a representation of V. For any w €
L(K)«, we have

(Lx ® Lx)}{(6y(w ®id)(U")) = (w @ 1d ® id)(X12X13)
and
Sy (Lx(w@id)({U") = V[(w @ id)(X) ® 1]V" = (w ® id @ id)(Va3 X12V53)-
Since L£(K). separates points of L(K), X12X13Va3 = VazX12.
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PROPOSITION 3.5. Any Hopf *-homomorphism nt from (Sy), to M(Sv) in-
duces a unique U-V -birepresentation X such that 7 = Lx. Similarly, any Hopf
x-homomorphism from (§v)p to M(Sy) also induces a U-V -birepresentation.

THEOREM 3.6. There are one to one correspondences between the followings:
(a) U-V -birepresentations;

(b) Hopf »-homomorphisms from (Sy)p to M(Sv);

(¢) Hopf x-homomorphisms from (§v)p to M(Sy).

COROLLARY 3.7. Let ¢ be a non-degenerate representation of (Sy)p on
L(H). Then ¢((Su)p) € M(Sv) and is a Hopf x-homomorphism if and only
if there exists a non-degenerate representotion v of (§U)p on L{H) such that
(id®@ ) (U"} = (¥ @ id)(V").

LemMA 3.8. There is only one V-Ig-birepresentation.

Proof. Let ¢ be a Hopf x-homomorphism from (Sy), to C. Then ¢ € (S'v)p
is an idempotent. Suppose that x is the homomorphism from (Sv);, to M (5v)
as defined in [5], A6. Then x(¢) = (id ® ¢)(V") is both an idempotent and a
unitary. Hence x(¢) = 1. But since x is unital and injective (see [5], A6), ¢ is the
co-identity of (Sv)p. #

DEFINITION 3.9. Let W be a C*-multiplicative unitary. Let X be a U-V-
birepresentation and Y a V-W-birepresentation. Then the unitary Z as given in
Lemma 2.5 (if exists) is called the composition of X and Y.

REMARK 3.10. (a) By Lemma 1.5, the composition Z (if exists) is a U-W-
birepresentation.

(b) In the above setting, if V is basic, then Z = (px ® Ly )(V,) exists.

It is not clear for the moment how to relate Lz to Lx and Ly, i.e. how to
define “composition” of Lx and Ly. We will deal with this in the next section.

ExampLE 3.11. (a) X =V is a V-V -birepresentation.

(b) X = Iygx is a U-V-birepresentation. Hence the collection of U-V-
birepresentations is non-empty.

(c) Let G and H be locally compact groups and U = Vg and V = Vi (where
VeE(s,t) = &(ts,t) for all 5,t € G and € € L?(G x G)). If ¢ is a group homomor-
phism from G to H, then X € L?(H x G) defined by Xn(r, s) = n{p(s)r, s} is a U-
V-birepresentation such that the map Lx from (Sy), = Co(H) to M(Sy) = Cp(G)
is the *-homomorphism defined by ¢. In fact, for any ¢, € L?*(H), the map g
defined by g(s) = (we,, ®id)(U)(s) = [ £(t)n(st) dt is in Co(H) and Lx(g)(r} =
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(we.n ®1A)(X)(r) = [ E(t)n(p(r)t) dt = g(p(r)). Note that by Theorem 3.6, U-V-
birepresentations are precisely group homomorphisms in this case.

As a corollary of Proposition 1.9, we have the following:

LEMMA 3.12. Let ¢ and ¢ be Hopf #-homomorphisms from (Sy), to M(Sv)
and from (§v)p to M (§U) respectively. Let 8y and 8y be the co-multiplications
on (Su)p and (:‘5'\\/),J respectively. Then ¢ = (id ® ¥) o dy is a coaction on (Sy)p
by Sy and €= (id® ‘P)gv 18 a coaction on (§V)p by Su.

Let X be a U-V-birepresentation. Then, by Lemma 3.12, X induces coac-
tions ex and Ex on (Sy), and (gv),, by Sy and Sy respectively. Moreover, these
coactions are “mutual” in the following sense:

DEerFINITION 3.13. Let (S,ds) and (T, é7) be two Hopf C*-algebras. A coac-
tion € on S by T is said to be a mutual coaction if (§s ®id)oe = (id ® ) 0 ds.

We can now add one more equivalence to Theorem 3.6.

PROPOSITION 3.14. Let € be a mutual coaction of S by T. If § has a co-
identity E, then ¢ = (E®id)oe is a Hopf *-homomorphism from S to M{(T) such
that € = (id ® ) o dg. Hence, U-V -birepresentations are in one to one correspon-
dence with mutual coactions of (Su)p by Sy (and also with mutual coactions of

(§V)p by §U}

Proof. First note that éroy = (E®id®id){(e®id)e = (¥ ®id)oe. Moreover,
(e®e)o0ds = (e®id®id)(6s®id)e. Hence, (y@1)ods = (E®id®id)(e®id)(i[d® E®
id)(ds ®id)e = (¥ ®id)oe. Finally, (id®¢)ods = (ild® E®id)(ds ®id)e = . Now
by [5], 2.1, (Sv), has a co-identity and the second part follows from Theorem 3.6. §

It is natural to ask what is the relation between the crossed product of ex
and that of £x. Before comparing these two crossed products, let us first give the
following lemmas.

LeEMMA 3.15. Let B be a C*-algebra and let ¢ and p be x-homomorphisms
from (Sy)p and (§V),, respectively to M(B). Then (p, 1) is o covariant pair for
((Su)p,Sv,ex) if and only if ((id ® ¢)(U"), (p ®1d)(V')) is a covariant pair for
X in the sense of Definition 1.6.

Proof. Let u = (id®¢)(U") and v = (u®id)(V’). Then, by definition, (¢, i)
is a covariant pair for ((Sy)p, Sv,ex) if and only if for any w € L(K).,

(p ®id)(id® Lx)du (0 ®id)(U")] = (u@id)(V)[p((w ®id)(U")) ® 1)(1@id) (V')".
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This is the case if and only if
(p@id)(w ®id ®id)(Uj5X13) - v = v - (w ®@ id @ id)(u12).

Now the left hand side equals (w ® id ® id)(u12X13v23) while the right hand side
is (w ®id ® id){vo3u12). Therefore, the lemma follows from the fact that £(H).
separates the points of Sy, &

LEMMA 3.16. Let B, v and p be the same os in the previous lemma. Then
(i, 1) is a covariant pair for ((Su)p, Sv,ex) if and only if (1, ) is o coveriant
pﬂ'.i?" fOT ((SvT)p, SUT,ExT).

Proof. Let u = (id ® p}(U") and v = (g ®id)(V"’) as in the previous lemma.
Suppose that (g, p) is a covariant pair for ((Sy)p, Sv,ex). Then u12X13v03 =
vogurz. Now let y = (id ®@ p)(V ™) and z = (p @ id)(UT"). It is required to show
that 12X 5223 = 2z2ay1a. In fact, y = v*° and z = u*® (where ¢ is the flip of
variables). Thus,

V12X 5223 = (1 ®1d)(V'™*)21 X3, (id ® ) (U™ )32 = (uza Xayvm )* = (vgrus)*

(this is true by flipping the first and the third variables) and so y12X;3223 = z23%12.
The proof for the converse is the same. B

Actually, the crossed product of £x is the same as that of the opposite of £
ie exv. (Note that Sy+ = (S)7F).

PROPOSITION 3.17. (S5)p Xex max v = (Sy7)p Xe, 1 max Sy
By this proposition and Corollary 2.12, we have:

COROLLARY 3.18. If 6§, 87 and 3 are co- -multiplications on (Sv)p, (SyT)
and (Sv)p respectively, then (Sv)p Xsmax (Sv)p > (SyT)p X657 max (SVT)
(8v)p x (Sv)gP.

a3

HZ

6°P,ma.x
Now for any U-V-birepresentation X, we obtain a C*-algebra C*(X) =
(St)p Xex,max Sv = (8v)p X 2y ymax S;P which has coactions by (Sv)}, and by
(Su)p respectively (see Proposition 2.13) such that the canonical maps y and ¢

from (§v)p and (Sy), respectively to M{C*(X)) are equivariant (sce Proposi-
tion 2.13).

REMARK 3.19. By Proposition 1.10, we obtain a map 7 from C*(X) to
M(Sy X sy ,max Jv) and hence a representation 7 of C*(X) on H. Similarly, we
have a representation 7 of C*(X) on K. Moreover, Ly = 7oy and px =7opu. In
fact, if 9 is the canonical map from Sy to M(Sy X, - §v) {which equals L(H)),
then mop =1 oLy = Lx (since ¥ = Ly).
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4. LIFTING OF BIREPRESENTATIONS

In this section, we assume that all multiplicative unitaries are basic. We will show
that any birepresentation X € M (§U ® Sy) is the image of a unitary (§U)p-
(Sv)p-birepresentation X,. (see Definition 1.4). Consequently, we can lift any
Hopf #*homomorphism ¢ : (Sy)p, — M(Sv) to a Hopf +-homomorphism ¢’ :
(Su)p = M(Sv)p. First of all, let X be a U-V-birepresentation and define X' =
(id ® Lx)(Up) and X" = (px ®id)(V;). Then:

LemMA 4.1. X' and X" are unitary (§U)p-SV—birep?‘esentation and unitary
§U—(Sv)p-birepresentatz'on, respectively, such that (py @ d)(X') = X = (id &
Ly )(X").

Proof. Since U1,(Uph13Uss = UzaU7,, we have Ujy X {3 X235 = Xo3U{,. Thus,
by Lemma 1.5 and the fact X is a representation of V', X' is a unitary (§U)p’SV—
birepresentation. The second part of the lemma is clear. #

REMARK 4.2. (a) Note that by Proposition 2.11, X’ and X" are uniquely
determined by X.

(b) Since X' is a representation of V, we can define a map px from (§v)p to
M ((§U)p) such that X’ = (px ®1d)(V’). Moreover, by a similar argument as the
proof of Proposition 3.2, px- is a Hopf x-homomorphism. Similarly, we have a Hopf
x-homomorphism L x~ from (Sy), to M((Sy)p) such that X" = (id ® Lx~)(V").

(c) Both Ly~ and px- preserve antipodes (by a similar argument as in
the proof of Proposition 3.2). Hence any Hopf *-homomorphism from (Sy), to
M((Sv)p) preserves antipodes.

(d) Both\Lx~ and px+ preserve co-identities in the following sense: if Ey
is the co-identity of (Sv),, then Ey o Lx« is the co-identity of (Sy),. This fol-
lows directly from Lemma 3.8. Thus any Hopf *-homomorphism from (Su), to
M((Sv)p) preserves co-identities.

LemMa 4.3. Let X and Y be the unitaries as in Definition 3.9 and let Z =
XoV (see Definition 3.9). Then Ly = Ly o Lxr and pz = px o py’.

Proof. We first note that Lx~{({(w ® id)(U")) = (w @ id}(X") = (wopx ®
id)(Vp). Thus, Ly o Lx»((w ®1d)(U"})) = (w ® id)(px ® Ly )(V,) = (w ® id)(Z).
The proof for pz = px o py: is the same. 1
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LEMMA 4.4. (id ® Lx-)(Up) = (px: ®id)(V,).

Proof. Let X) = (id ® Lx»)(Up) and X3 = (px ® id)(V,). First no-
tice that both X; and X, are unitary co-representations of (Sv), (as Lx« is
a Hopf x-homomorphism). Moreover, (id ® Ly )(X1) = (id ® Lx)}{(Up) = X' and
(id ® Ly }(X2) = (px ®id}(V') = X’'. Hence, the lemma follows from Proposi-
tion 2.11.

DEFINITION 4.5. Let X be a U-V-birepresentation. Then X, = (id ®
Lxn)(Up) = (px ®id)(V}) is called the lifting of X in M((Sy), ® (Sv)p)-

REMARK 4.6. X, is a unitary (§U)p-(Sv)p-birepresentation by Re
mark 2.4 (b). Moreover, (id ® Ly )(X,) = X’ and (py ® id)(X,) = X".

LEMMA 47. LZH = Lyu o] LXII and pzi p—y pxi [s) pyl.

Proof. For any w € L(H)., we have

Lyno Lxn[(w@1d)NU")] = (w ® Ly)(X") = (w ®id)(px ® Ly~ )(V)
= (w®id)(px o py’ @ id)(W,)
= (w®id)(pz ® id)(W,) = (w ®id)(Z").

The proof for pz« = px: o py: is the same. 1

LEMMA 4.8. Let X be a U-V-birepresentation and Y a V-W -birepresenta-
tion. Let Z = XoY. Then there are equivariant maps from C*(Z) to M(C*(X))
and to M(C*(Y)) (see Remark 3.19 for the definition of C*(X)).

Proof. We first show that Ly« from (Sy), to M[(Sv),] is equivariant with
respect to the coactions £z and ey respectively. In fact, ey oLy~ = (id® Ly )ody o
Lx» = (id®Ly) 6(Lx:: &Lxn}ody = (Lxn ®id)o(id®Lz)ody = (LX" ®id)oez.
Hence, we obtain a non-degenerate map ¥ from C*(Z) to M(C*(Y)) (by [5], 3.9).
Now let o, 11, ¢o" and 4’ be the canonical maps from (Sy),, (§w)p, (Sv)p and (§W)p
to C*(Z) and C*(Y) respectively. Then we have

(¥ @id)ez{p(s)u(t) = (¥ ®id)[(¢(s) ® 1)(1 ® id)sw (2)]
= (¢ (Lxn(s)) ® 1) - (i ®id)dw (2)
= Ey (¥ @ id)(p(s)u(t))
forany s € (Sy)pandt € (§W)p (where Zy and £z are the dual coactions as defined

in Proposition 2.13). The map from C*(Z) to M(C*(X)) is defined similarly by
considering C*(Z) = (Sy), X2, max SU- B
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We summarise the equivalences of UU-V-birepresentations as follows:

THEOREM 4.9. There are one to one correspondences between the collections
of the following objects:

(a) U-V -birepresentations;

(b) Hopf x-homomorphisms from (Sy)p to M(Sy) (respectively, from (§v),,
to M(Sy));

(c) mutual coactions on (§V)p by (Su) (respectively, on (Su)p by (Sv));

(a') unitary (Sy)p-(Sv )p-birepresentations;

(b') Hopf *-homomorphisms from (Sy), to M[(Sv),] (respectively, from
(Sv)p to M{(Su)sl); ) )

(¢") mutual coactions on (Sv)p by (Su)p (respectively, on (Su)p by (Sv)p).

In this case, the Hopf x-homomorphisms in (b) and (b') preserve antipodes
automatically. Moreover, Hopf-+-homomorphisms in (b") preserve co-identity.

REMARK 4.10. (a) It is also clear from the above results that unitary Sy-
Sv-, (§U)p~Sv~, §U-(Sv)p- and (§U)p-(5v)p~ birepresentations are all the same.

(b) Note that there may not be a one to one correspondence between the set
of Hopf #-homomorphisms from Sy to M(Sy) and the sets in Theorem 4.9. In
fact, they are in one to one correspondence if and only if U is co-amenable. Note
that if the trivial birepresentation induces a Hopf *-homomorphism from Sy to
M(Sy), then Sy is co-unital (by Lemma 3.8) which implies that Sy = (Su), (by
[5], Ad).

5. THE CATEGORY OF BASIC MULTIPLICATIVE UNITARIES

Let M be the metagraph with the collection of all basic multiplicative unitaries as
its objects and hirepresentations as arrows such that given a U-V-birepresentation
X, we denote dom(X) = V and cod(X) = U. Then by the results in Sections 3
and 4, we have the following:

PROPOSITION 5.1. M is a category with null object Ic. It contains the
category of all locally compact groups as a full subcategory.

More generally, M also contains the category M., (respectively, M,) of
co-amenable (respectively, amenable) multiplicative unitaries in M as a full sub-
category. Moreover, M., is a strict monoidal category (and so is M,) as shown
by the following lemma.
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LEMMA 5.2. Let U and V be co-amenable (respectively, amenable) C*-multi-
plicative unitaries. Then W = UQV is also a co-amenable (respectively, amenable)
C*-multiplicative unitary (hence is also basic by Remark 2.4).

Proof. We first show that W is a C*-multiplicative unitary. In fact, by [5],
2.4 and 2.5, any representation X of W is of the form X = Yi3Z,4 for some
representations ¥ and Z of U and V respectively. Hence Sx is a C*-algebra
which equals Sy ® 5z. Hence condition (ii) of Definition 2.1 holds as well. Now
we will show that W is co-amenable. Let Ey, Ev and Ew be the co-identities of
(Sv)p, (Sv)p and (Sw ), respectively. Since U and V are co-amenable, (Sy ), = Su
and (Sv), = Sy are nuclear (see [5], 3.6). Let

E=E;®FEy € {(Su)p & (Sv)p}* = S;V
Then

(E' o Lw)(w ® l/) = (EU ® Ev)[Lu(w) ® LV(V)]
= (id®w)(1K) ® (ld ® U)(IH) = Ew(w ® l/).

Now Ljy, (Syy) is a right ideal of (Sw); (see (5], A4) containing the identity and
therefore Ly, (Siy) = (Sw)p. 8

Since Woronowicz C*-algebras will give multiplicative unitaries of compact
type, we can roughly say that M, contains all Woronowicz C*-algebras if we
identify all Woronowicz C*-algebras that give the same multiplicative unitaries.
Now we turn to subobjects and quotients.

DEerFINITION 5.3. Let U and V be basic multiplicative unitaries.

(a) V is said to be a sub-multiplicative unitary of U if there exists a Hopf
x-homomorphism Lx~ from ((5u)p) onto (Sv)p.

(b) U is said to be a quotient of V if there exists a Hopf *-homomorphism
px from ((§v)p) onto (§U)p.

(¢) A U-V-birepresentation X is said to be an isomorphism if there exists a
V-U-birepresentation Y such that X oY =U and Yo X =V.

REMARK 5.4. Let U and V be basic multiplicative unitaries. Then an
isomorphism between U and V is equivalent to the existence of two Hopf *-
homomorphisms % and ¢ from (Sy), to M((Sv)p) and from (Sy), to M{(Su),)
respectively such that 9 o ¢ = id and ¢ o ¢ = id. Hence, by Lemma 1.3, isomor-
phisms between U and V are equivalent to Hopf *-isomorphisms between (Sy),
and (Sy)p. Moreover, if Sy = Sy as Hopf C*-algebras, then U is isomorphic to V.
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LEMMA 5.5. Let U, V and W be basic multiplicative unttaries. Let X andY
be a U-V -birepresentation and a V-W -representation respectively. Then XoY =1
if and only if py' map (§W)p into the fized point algebra of Ex in M((gv)p).

Proof, Let Z = X oY. Note that £x o pyr = (id® px+) 0 dy o pyr. ¥ Z = I,
then £x o py = (py' @ pz/) 0w = (py @ E-1) odw = (pys @ 1) (where E is the
co-identity of (§w)p). Conversely, suppose that py:(§w)p cCM ((§v)p)?" . Then
for any w € L(K). (where K is the underlying Hilbert space for W),

(id ® px-) 0 by 0 py+((id ® w)(W')) = py+((d @ w)(W") ® 1.
Now the right hand side of the equation equals
(id ® px)((id ® id ® w)(Y{3Y33)) = (id ® id ® w)(¥{3Z53)

while the left hand side is (id ®id ®w)(Y{5). Hence, (id®id®@w)(¥Y{3Z5; — ¥{3) =0
for all w € L(K).. Since L(K). separates points of L(K), we have Y3753 = Y|
and thus Z = I (as Y’ is a unitary). 1

It is natural to ask whether we can define the kernel of a morphism. We do
not know how to define it in general. However, by examining normal subgroups
of discrete groups (see the Appendix) and suggested by the above lemma, we try
to define kernels of morphisms between basic multiplicative unitaries of discrete
type as follows.

DEFINITION 5.6. Let U, V and W be regular multiplicative unitaries of
discrete type. Let X be a U-V-birepresentation and Y be a V-W-birepresentation.

(a) Y is said to be a kernel of X if py+ is an isomorphism from (Sw), to the
fixed point algebra of £x in (§v)p.

(b) If W is a submultiplicative unitary of V through Y, then W is said to
be normal if Y is a kernel of a morphism.

PROPOSITION 5.7. If the kernel of a morphism X ezists, then it is unique
up to isomorphism.

Proof. Let (W1,Y1) and (W,,Y2) be kernels of X. Then there exists a Hopf
«-isomorphism between (Sw, ), and (Sw,), (by definition). Now the proposition
follows from Remark 5.4.
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PROPOSITION 5.8. Suppose that the kernel (W,Y) of a U-V -birepreseniation
X exists. Let Yy be a V-Wy-birepresentation such that X oYy = I. Then there
exists a unique W-Wi-birepresentation Z such that Y1 =Y o Z.

Proof. By Lemma 5.5, py; induces a unique Hopf *-homomorphism ¢ from
(Sw, )p toO (§W)p such that pyr o = py; (i is unique since py- is injective). Now
the proposition follows from Theorem 4.9. 8

REMARK 5.9. (a) Proposition 5.8 justifies the use of the term “kernel”.

(b) The kernel of a morphism need not exist in general, e.g. if H is a closed
subgroup of a compact group G, then the fixed point algebra C(G)*¥ (which
equals C(G/H)) is not a Hopf C*-subalgebra of C(G) unless H is normal (where
ay is the action of H on C(G) induced from the canonical action of G on itself).

EXAMPLE 5.10. The only example about normal submultiplicative unitaries
that we have, for the moment, is the following very simple one. Let V be the
product of U and W, then W is a normal submultiplicative unitary of V.,

6. AN IMPRIMITIVITY TYPE THEOREM FOR MULTIPLICATIVE UNITARIES
OF DISCRETE TYPE

Let U be a regular multiplicative unitary of discrete type. U is clearly co-amenable.
Let ¢y be the Haar state on §U. If £ is a coaction on A by §U with fixed point
algebra A, then E = (id ® py) o € is a conditional expectation from A onto A=.

In this section we will give an imprimitivity type theorem for discrete type
multiplicative unitaries. On our way to this, we found the following interesting
fact from Lemma 6.5: the set {(we¢ ® id)(U) : £ € H} generates Sy if U is of
discrete type and e is the co-fixed vector of U (see [2], 1.8).

Stimulated by [9], 2.2.16, we are going to use Watatani’s C*-basic construc-
tion (see [9], Sections 2.1 and 2.2) to prove the imprimitivity type theorem. We
recall that if A is a C*-subalgebra of B with a common unit and E is a faithful
conditional expectation from B to A, then the C*-basic construction C*(B, e,) is
equal to K(F) where F is the completion of B with respect to the norm defined
by E (see [9], 2.1.3 and 2.2.10). Moreover, we recall the following result:

PROPOSITION 6.1. (Watatani) Let B be a unital C*-algebra and A be a
C*-subalgebra of B that contains the unit of B. Let E be a faithful conditional
expectation from B to A. If B acts on a Hilbert space H faithfully and e is a
projection on H such that

(i) ebe = E(b)e for allb € B and

(ii) the map that sends a € A to ae € L{H) is injective,
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then the norm closure of BeB is isomorphic to C*(B,es) canonically.

We now state the main theorem of this section. Let U, V' and W be mul-
tiplicative unitaries of discrete type such that W is a normal sub-multiplicative
unitary of V with quoticnt U. Let £’ be the coaction on (§v)p by (§U)p as defined
in Section 3. For technical reasons, we assume that U is amenable.

THEOREM 6.2 . (.’S’\W)p is strongly Morita equivalence to (§V)p Xerr Sy

Note that there exists a faithful Haar state for §U if U is of discrete type.
Hence U is biregular and irreducible (up to multiplicity). Since it is more conve-
nient for us to work with the reduced crossed product of the form A x., Sy, we
will consider U/ instead of U. Let U be as defined in [2], 6.1. By [2], 6.8, Sy Sz
as Hopf C*-algebras. Let ¢ be the coaction on‘(gv)p by S;; induced by ¢’ and let
Yy be the corresponding Haar state on SE?‘ Then (§V)p Xerp Sy = (§V)p Xeg,r 5%.
Let E = (id ® ¥y) o € be the conditional expectation from (§v)p to (§W)p as
defined by the first paragraph of this section. Since vy is faithful, E is faithful (e
is injective since it is defined by a Hopf *-homomorphism from (§V)p to Sy and
Sy has a co-identity). We first give the following lemmas.

LEMMA 6.3. (id®id® 1/10)((712(713) =(idgid® W) (Tha).

Proof. Since vy is the Haar state, (id ® 'lpy)da(.’r) =ty(z) 1forall z € S;
(where 87 is the co-multiplication on Sg;). Hence

(w Rid® wu)(ﬁlzﬁlg) = (UJ ®id® 'l/JU)(fjl:;)
for all w € L(Hy). and the lemma follows immediately. 8

LEMMA 6.4. Let (§v)p be faithfully represented on a Hilbert space H. Regard
€ as an injective map from (gv)p to L(H® Hy), end let e = 1 ®@ p (where p =
(pu®id)(U) = (id®yy )(U) € L(Hy)). Then e and e will satisfy the two conditions
on Proposition 6.1.

Proof. Since for any a € (Sw)p, £(a) = ¢ ® 1, the map in (ii) of Proposi-
tion 6.1 will send a to a ® p and so is injective. We can formulate condition (i) in
the following way: (1 ® p)e(b)(1 ® p) = (id ® ¢y )e(b) ® p for any b € (Sy)p. Now

(1®p)ed)(1 @ p) = (i[d ®id ® ¢ ® Yy} Tasle(B) @1 1)024)
= (id ® id ® Yy ® ¥y )(((id ® d5)e(b) @ 1)TasTs4)
(since ¢ satisfies the coaction identity). Thus, using Lemma 6.3,
(1@ p)e(b)(1 ®p) = (id ®id ® Yy ® Yy )(((id ® d5)e(b) ® 1)Ua4)
= [(id ® id ® ¥u)((id ® &5)e(b))](1 ® p)
= (ild ®@¥u)(e(h)) ® p.
This proves the lemma. &
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LEMMA 6.5. The set P = {(py - s@id)({U) : s € Ay} is dense in Sy.
Equivalently, {(id ® Yy - s)(U) : s € Az 51 is dense in S’A

Proof. We first note that because p = (py ® id)(U) is a minimal central
projection, p € Sy (p- Sy = C - p). Moreover, if s = (id ® w)(U) then

(e ®id)((s @ 1)) = (pr ®id)(id ® w ® id)(V12U13)
= (py ®id)(id ® w ® id}((id ® oy )U) = (w ® id)du (p).

Note that du(p)(z ®1) € Sy ® Sy (for any z € Sy) and so (w ®id)éy(p) € Su.
Thus P is a subset of SU Let t € Sy be such that (py - s)(t) =0 for all s € Ay.
Then oy (t*t) = 0 (as Ay is dense in Sy). Because wy is faithful, P separates
points of Sy. Hence P is a(§;},§u)-dense in 55 Therefore, for any f € §{,,
there exists a net s; in .ZU such that ¢y - s; converges to f weakly. Note that
g(Ly(h)) = h{py(g)) for all g € S and h € §;} and that py(Sy;) is a<ense
subset of Sy (because 1 € Sy). Hence for any v € £L(Hy)., there exists a net a;
in Ly(P) such that g{a;) converges to g(Ly(v)) for any ¢ € Sj;. Therefore, the
a(Sy, S5 )-closure of Ly(P) will contain Sy and so Ly(F) is norm dense in Sy
(because Ly{P) is a convex subset, in fact a vector subspace, of Sy). &

LEMMA 6.6. Let the notation be the same as in Lemma 6.4. Then the linear
span, T, of {e(a)(1 ® p)e(b) : a,b € (Sv),} is norm dense in (8v)p Xewr §3 =
(§v)p Xetr Su.

Proof. We first note that T is a subset of (§v)p Xe,r S’b. Since ¢ is a coaction,
(1@ pe(b) = (id ® 1d ® vy ){(e ® id)e (D) s).
Therefore,
e(a)(1 @ p)e(d) = (id ®id ® ¥u)(( ®id)((a ® 1)e(6))Tazs).
Now
((8v)p ® )e(Sv)p = (1d @ B)(((Sv)p ® v (8v)p) = (Sv)p ® S

(where &y is the co-multiplication on (Sv)p which is non-degenerate and @ is the
map from (Sv), to Sy that define €,  is surjective since U is a quotient of V).
Thus element of the form

(id ® id ® i ){(e ®id)(c @ 5)Ta3)

(c e (§V)p and s € S;) can be approximated in norm by elements in 7. Note
that
(id®id ® Pu)((e ®1d)(c ® 8)Uns) = £(c)(1 ® (id @ Yu - s)(U))-

Hence by Lemma 6.5, T" is norm dense in (§v)p Xer Eﬁ_ ]
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We can now prove the main theorem in this section very easily.

Proof of Theorem 6.2. By Lemma 6.4 and Proposition 6.1 (see the paragraph
before Proposition 6.1 as well), (gw)p is strongly Morita equivalent to the closure
of the linear span of the set {e(a)(1® p)e(b) : a,b € (Sy),} which, by Lemma. 6.6,
equals (§V)p Xenr Su. B

REMARK 6.7. It is believed that the amenability of U can be removed.

APPENDIX

The aim of this appendix is to give a C*-algebraic characterisation of normal
subgroups of discrete groups. Let H be a discrete group and let ¥y be the
canonical tracial state on C*{H). We first recall a well known fact about the fixed
point algebra of a discrete coaction.

LemMMA Al. Let B be a C*-algebra with a coaction € by C*(H) and let
® = (id® ¥y)oe. Then ®(B) is the fized point algebra BE.

THEOREM A2. Let ¢ be a homomorphism from a discrete group G to a
discrete group H. Let N = Ker(p) and ey be the coaction on C*(G) by C*(H)
as gien in Theorem 4.9. Then C*(N) is isomorphic to the fized point algebra
C*(G)eH of the coaction ex.

Proof. By [7], 4.1, the canonical map j from C*(N} to C*(G) is injective.
Therefore, we need only to show that F(C*(N)) = C*(G)*#. It is clear that
F(C*(N)) C C*(G)*¥. Let ® be the map as defined in Lemma Al with B = C*(G)
and € = ey. For any t € G, ®(u) = (id @ Uy)(ur ® uz) (where ¥ = ().
Hence, ®(u;) = 0 if ¢t ¢ N and ®(us) = u: if ¢t € N. Now it is clear that

C*(G)e® C j(C*(N)) since @ C - u, is a dense subspace of C*(G). 1
teG

Acknowledgements. We would like to thank Prof. Zhong-Jin Ruan for indicating a
mistake in the original version of this paper.

This work is partially supported by the Croucher Foundation.

REFERENCES

1. S. BAAJ, Representation reguliere du groupe quantique des deplacements de
Woronowicz, Astérisque 232(1995), 11-48.

2. S. BaaJ, G. SKANDALIS, Unitaires multiplicatifs et dualité pour les produits croisés
de C*-algebres, Ann. Sci. Ecole Norm. Sup. (4) 26(1993), 425-488.



224

3.

Cui-KeunG Ng

M.B. LANDSTAD, J. PHILLIPS, I. RAEBURN, C.E. SUTHERLAND, Representations
of crossed products by coactions and principal bundles, Trans. Amer. Math.
Soc. 299(1987), 747-784.

4. V. DE M. IoRr1o, Hopf C-algebras and locally compact groups, Pacific J. Math.

9.
10.

11.

87(1980), 75-96.

C.K. Ng, Coactions and crossed products of Hopf C*-algebras, Proc. London Math.
Soc. (3) 72(1996), 638-656.

1. RAEBURN, On crossed products by coactions and their representation theory, Proc.
London Math. Soc. (8) 64(1992), 625—652.

M.A. RIEFFEL, Unitary representations of group extensions: An algebraic approach
to the theory of Mackey and Blattner, in Adv. Math. Suppl. Stud., vol. 4, pp.
43-82, Academic Press, Orlando 1978,

S.Z. WANG, Free products of compact quantum groups, Comm. Math. Phys. 167
{1995), 671-692.

Y. WATATANI, Indez for C*-Algebras, Mem. Amer. Math. Soc., vol. 242, 1990.

5.L. WoroNowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111(1987),
613-665.

S.L. Woronowicz, From multiplicative unitaries to quantum groups, Internat. J.
Math. 7(1996), 127-149.

CHI.KEUNG NG
Mathematical Institute
Oxford University
24-29 5t. Giles
Oxford OX1 3LB
UNITED KINGDOM

E-mail: ng@maths.ox.ac.uk

Received October 8, 1995; revised January 3, 1996.



