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NONCOMPACTNESS MEASURE INVARIANCE OF THE INDEX
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ABSTRACT. We state some new results of perturbations with respect to
the noncompactness measure, concerning Fredholm-type objects in Banach
spaces. In particular, we solve the problem of the invariance of the index in
this context. We generalize some related results to the case of the variable
domains.
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It was proved in [13] that if a complex (B%); is sufficiently close to a Fredholm
complex (o); in the sense of the noncompactness measures ||3* — a'||,, then (8*);
is Fredholm, too. It was natural to suppose the equality of their indices, but no
proof was known except for certain particular cases. The operator case had been
stated in [16]). In [14] the invariance of the index was proved for short complexes,
using techniques which could not be extended to the general case. In the particular
case of the small perturbations [|8* — o], various results were stated ([2], {12],
[25]). In the case ||t — ||, = 0 (i.e. for compact perturbations), the problem was
solved in [6] using some results from [4] and [5]. By Corollary 14, we solve now this
problem in the general case. The main results Theorems 9, 12, 13, 17 are stated
in the more general context of the Fredholm pairs with variable domains. In this
case the noncompactness of the perturbations is measured by the quantity ¢ which
we define in (2). Theorem 17 generalizes some small perturbations results from
(3], [4], {5] to the case of unbounded operators between quotient Banach spaces. It
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generalizes the corresponding statement concerning Fredholm complexes ([1], [2]),
too. See {1], (7], [10], [11], [12), [23] for other related results.

We denote by D(S5), N(S), R(S), G(5) and «(S5) the domain, null-space,
range, graph and reduced minimum modulus of a closed operator S, respec-
tively ([2]). The product of two Banach spaces X, ¥ is endowed with the norm
Iz, )I1? = |lz}® + ||]|>. Let C(X,Y), B(X,Y), resp. K(X,Y) be the set of
all closed, bounded, resp. compact operators from X to Y. We denote respec-
tively by X;, X* and ¢(X) the unit ball, dual and set of closed linear sub-
spaces of X. Let d(a,B) be the distance from ¢ € M to B C M, where M
is a metric space. The measure of noncompaciness of A C M is defined by
q(A) = Biﬁrﬁfimilelgd(a,B) ([20]). Then |IS|ly := 9(S5(X1)) is called the non-
compactness measure of § € B(X,Y) ({16]). We have ||S||;, = 0 & S is com-
pact. Set ||S]|. := d(S,K(X,Y)). If ¥ has the bounded approximation property,

_then || - [l and || - || are equivalent seminorms ([21]). If Y, Z € G(X), we set
Y, 2):= Sél}}/) d(y, Z) ([18]) and 8(Y, Z) := max{6(Y, Z},8(2,Y)} ([18], [19]). If
ychn

Y: € G(X), i = 1,2,3, then ([17])
(1) 8(Y1,Y3) € 6(Y1,Y2) + 6(Ya,Y3) + 8(Y1, ¥2)d(Y2, Y3).

For S, § € C(X,Y), set 6(S,5) := 8(G(S),G(5)) and §(5,5) := max{s(S, 3),
8(5,5)} ([2). If D(S) = D(S), then 8(5,5) < ||S — 8| ([2]). Thus 4(S, )
measures the size of the perturbation when D(S) # D(S), while ||S—§ ||q measures
its noncompactness when D(S) = D(§). For arbitrary S, S € C(X,Y), let us
define

9(8,8):=_ inf  sup d((z5z),G(5)+{0} x Q),
(2) =compactC zeD(8),

q(S, §) := max{g(S, §),q(§, 8)}.

We obtain results of invariance of the index with respect to g. They generalize the
corresponding statements concerning perturbations which are either compact, or
small (with respect to & or || - ||).

PROPOSITION 1. (i) Let S, § € C(X,Y) with§(S,5) < 0. IfA € K(D(S),Y)
and A € K(D(5),Y), then (S + A, § + A) = ¢(S, 5).

(i) If S; € C(X,Y), i = 1,2,3, then we have the inequality ¢(S1,S3) <
(51, 52) + (52, S3) + g{(S1, S2)g(S2, S3).

(iii) If S, § € C(X,Y) with ||S|| < oo and 6(5,5) < (2||S|| + 2)~!, then
ISl < 2|8l +1 and (8, 8) < (1 + max{||S|1%, | 5]1%()"/25(S, 5).
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(iv) Let 8,5 € C(X,Y) with D(S) = D(8). If ||S— 5|y < o0, then (S, 5) <
15 = 8|, If either S or S is bounded, then

15 = 8y < (1 + min{|IS[%, 15)°H?4(S, 5)-

If S — § is bounded, then §(5,5) < ||1S - Sll, < IS - 5]l € IS - fs“u.

Proof. (i) Set K = A(D(S)1) + (2 + ¢(S, S5))A(D(S);). By (2), for any
€ € (0,1) there exists a compact set @ C Y such that for each z € D(S N there
are ¥ € D(S) and y € Q with ||(z — &, Sz — 5% — wll < a(8; S) +¢. Since ||z €
and ||Z|| < ||z — Z|| + ||z||, it follows 3’ = y + Az — A% € Q+ K. Then

d((z, (8 + A)z), G(S + A) + {0} x (Q + K))
<z, (S + A)z) = (7, (5 + A + )]l < ¢(S8,8) +¢.

We take the supremum over z. Since @ + K is precompact, then we infer the
inequality ¢(S + 4,85 + A) < ¢(S,5) +¢. Now let € — 0. Then (i) holds due to
the symmetry (apply the previous step to S + A4, S+ A, write S = (S + A)-A
etc.).

(ii) Let £ € (0, 1] be arbitrary. Set a := ¢(51,S2) + &+ 1. By (2), for some
compact sets @, Q@ C Y we have the following. For any z; € D(51); there exist
zz € D(S2) and y € Q such that

flull < g(S1,52) +¢, u:=(z1,521) — (@2, S2z2) — (0,y)-

Hence ||z2|| < ||z1 — z2|| + ||z1]| € a. For a™*zy € D(S,),, there exist z3 € D(S3)
and ¥’ € Q' such that

l|lvl| < q(S2,S3) +¢€, v := (a™ 22, Saa ™ xy) — (23, S323) — (0,¢').

Set 25 := azs and Q" := Q + {tq'}+,y, where 0 < ¢ < ¢(S1,5:2)+2 and ¢’ € Q.
Hence y +ay’ € Q" and u+ av = (z1, S121) — (2}, S325 +y + ay’). We obtain the
inequality

d((z1, 571), G(S3) + {0} x Q") < [lu + av|| < [lull + ol

<
< g(51,52) + e +a(q(S2, 53) +¢),
in which we take then the supremum over x,. This provides an estimate for
q(81, S3), via (2), since Q" is precompact. By letting ¢ — 0, we obtain (ii).

(iii) Let ||S]| < oco. For the uniform boundedness of S, see Lemma I1.3.18
from [7], which shows that (S,S) < (1 +||S]|}~* implies

IS < (@ + 1SS, 8) + SN ~ (1 + [1S1)8(5, )~
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If z € D(5); and z = (1 + ||S||?)*%2’, then (z', Sz') € G(8); and
d((z, 5z), G(8)) = (1 + 15122 d((<’, S2'), G(5)) < (1 + |SI1%)26(S, 5).

We take the supremum over z to obtain (S, S) < (1+]/S)|2)1/26(S, 5). Similarly,
q(S,8) < (1+|5112)1/26(S, S) and the inequality (iii) is proved.
(iv) If ||S — §||, < 0o, then for any € > 0 there exists @ C Y finite such that

a(5,5) < sup d((z,52),G(S)+{0}xQ) € sup d((S-5)z,Q) < [S~5lo+¢
zeD(8) zED{S)

(note that for each z, the left side distance does not change if we substract (z, S z) €
G(5)). Since ¢ is arbitrary, then we obtain ¢(5, S) < ||5‘§]|q (as well as ¢(S, §) €
15 - Slly). )
Now assume ||S|| < oo and take again an arbitrary ¢ > 0. There exists

Q C Y compact such that for any = € D(S) with ||z]| < 1 there are % € D(S) and
y € Q with ||(z — 7, Sz — §% — y)|| < ¢(S,5) + e. There exists an e-covering of
¢ with balls of centers in a finite set Q'. For any z € D(5) etc., let ¥ € Q' such
that ||y — ¢'|| € €. By an elementary Cauchy-Schwarz inequality we obtain

d((S - 8)z,Q) < (S - Sz -yl < 1Sz - ST -yl + 1SE - )| + |y - ¥/l
1+ |81z ~ %, Sz ~ 57 ~ g)l| +e

<
< (

< +[151P)3(a(S,8) + ) +e

We take the supremum over z € D(S);. This provides an estimate for ||$ — § i
in which we let £ —» 0. When ||S|| < oo, we simply change the roles of S, 5. We
obviously have || - ||; < || - ||le. Thus (iv) holds, and Proposition 1 is proved. 1

Let F(K) denote the space of all bounded real-valued functions on a set K,
endowed with the sup-norm.

LemMMA 2. Let S, § € C(X, F(K)) with ||S||, 3(5,5) < oo, where X is a
real Banach space. Then there exists S; € C(X, F(K )] such that D(S;) = D(S),
dim R(S; — 8) < co and 8(S, 5y) < (||S)% + 5)/24(S, 5).

Proof. Let € > 0 be arbitrary. By (2), there exist some compact sets Q,
Q' C F(K) such that

sup d((z, Sx),G(g) + {0} x @) < g(S, S)+e,
z€D(S)N

_sup  d((7,5%),G(S) + {0} x @) < ¢(5,9) +¢
zeD(Sh

3)
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The closure of the finite-rank contractions on F(K) in the operator strong topology
contains the identity (see for instance [15]). Hence there is an A € B(¥(K)) such
that ||A|| < 1, dim R(A4) < oo, and |ly — Ay|| < ¢ for all y in the compact set
Q U (—Q"). Namely, we let K be endowed with the topology of all subsets and
apply Proposition 41.1 from [15] for the complexified of F/(K'), to obtain an A which
we replace then by f — 271(Af +A_T), f € F(K). By Theorem 2.9.2 from [22],
there exists B € B(X, F(K)) such that B{D(S) = AS and ||B|| = ||AS|| < [IS]|
(essentially because F(K) is a complete lattice with respect to the usual order,
and so one can follow the lines of the proof of the Hahn-Banach theorem). Since
Q" = (§(8,8) + € + 1)AS(D(8)1) is compact, then there exists C € B(F(K))
with ||C|| £ 1, dim R(C) < oo, and |ly — Cy|| < € for all y € Q" ([15]). We set
5 := 5 — AS + CB|D(S).

Let g := (z,8z) € G(S)1 (resp. §:= (%, 51F) € G(5,)1) be arbitrary. Hence
z € D(S)1 (resp. Z € D(5)1). By (3), there exist T € D(S) and f € Q (resp.
there exist z € D(S) and ' € Q') such that ||g — (F, 5%) — (0, )| < a(S,8) + ¢,
resp. ||(%,5%) — g — (0, f")| < ¢(5,S) +¢. Therefore, in each of these cases we can
findany (= f or —f') in Q U (—Q’) such that

(4) (z — %, Sz — §% —y)|| < (S, 8) +¢.

Moreover, we have ||z|| < (S, §) +&+1 (since either ||z|| € 1, or IZ}f €1 in which
case [|z]| € |z — Z|| + ||Z]|). Hence ASz € Q”, and so ||ASz — CASz|| <.

Set a := ((||Sz — 5% —y|| +£)? + ||z — F||2)"/2. We compute a2, then use the
estimates (4) and ||Sz — 5% — y|| < (S, §) + ¢ to obtain

(5) a < (S, 8) + 2.

Note that ||ASz — Bz|| = ||B(z - z)|| < ||B| llz — Z|| < |||l |z - Z||. By (4) and
the previous estimates, we obtain
|5z — 8,%|| = ||Sz — 8% + AS% — CB3||
< |18z = 5% — gyl + ly — Ayl + | A(y + 5% — §z)|
+ ||ASz — CASz|| + ||C(ASz — B)||
< 2(|Sz - 5% —y| + &) + || S| Iz — |
<@ +ISI%3a.

By using ||z — Z|| € a also, the above inequality leads to

lI(z, $z) — (Z, 51 8)|| < (5+ [|S)|*) 2 a.
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Thus for any g € G(S); (resp. § € G(S1)1) we can find § € G(S1) (resp.
g € G(S)) such that

lg - 31l < (5 +1IS2)% (a5, 5) + 2¢)

(see (5)). It follows &(S,81) € (5 + ||S)I2)2(4(S, §) + 2¢). Now let £ — 0, and
Lemma 2 is proved. 1

LEMMA 3. If S, Se C(X,Y), then we have the following.
(i) If ¢(5,8) < 0o and ||S|| < oo, then ||5]| < oo.
(i) For any X 2 1 we have ¢(AS, AS) < Ag(S, S).
(iil) Let X, ¥V, F be Banach spaces such that F x X € G(X), Y € G()) and
dimF < co. Set S1(f,z) := Sz and 5,(f,%) := S% for f € F, z € D(S) and
% € D(S). Then Sy, 5y € C(X,) and (51, 5) < (S, ).

Proof. (i) Let 7 > ¢{S, 8) be finite. There exists Q C Y compact such that
for any € D(S),; there are z € D(S) and y € @ with [|T—z], ||ST- Sz —y| <.
We take the supremum over Z in the inequality

157 < 1157 — Sz — yl| + I|Sz|| + iyl
<7+ ISl = Z| + JZI) + [yl
<r+ISH(r+1) + sup [|y]| < co.

yeQ

(ii) Let @ denote any compact subset of ¥. Then take successively the

infimum over T € D(5), y € @, the supremum over z € D(S);, and the infimum
over Q C Y in the inequality

ll(z, ASz) — (%, A5% — My)|| < All(z, Sz) — (&, 5% — y)||.

(iii) We have d(((f,z), Sz}, G(51) + {0} x Q) < d({(z, Sz), G(5) + {0} x Q)
for f € F, z € D(S) and Q C Y. Take the supremum over all (f,z) € D(S);, note
that ||(f,z)|| < 1 implies ||z]| < 1, and then take the infimum over all Q compact
in Y. Thus Lemma 3 is proved. 1

Set a = a(8,T) := dim N(S)/N(S)NR(T), b=b(S5,T) := dim R(T)/N(S)N
R(T), c:=a(T,S)and d :=b(T,S) for S € C(X,Y), T € C(Y,X). Ifa,b, ¢, d, ||S|,
[IT]| < oo, then (S,T) is called a Fredholm pair. In this case y(S), ¥(T) > 0. The
pair is said to be ezact if N(S) = R(T), N(T) = R(S). Let F(X,Y) denote the
set of all Fredholm pairs. We define the indez of (S, T) by ind(S,7) =a—b—c+d
([4], {5], (6], [7]). See Definition 16 for a generalization to the unbounded case.

Theorem 4 and Lemmas 5-8 are proved in [5], [7] (and [4] in the case D(S) =
X, D(T) =Y). See [6] also for Theorem 4. For the explicit estimate in Lemma 6,
see for instance (3.16) from [5], or (11.4.15) from [7]. Set G'(T) := {(z,); (y,z) €
G(T)}.
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TueorEM 4. If (S,T) € F(X,Y) and A € B(D(S),Y), B € B(D(T),X)
have finite rank, then (S+A,T+B) € F(X,Y) andind (S+A,T+B) = ind(5,T).

LEMMA 5. Let (S,T) € F(X,Y) such that ind(S,T) = 0. Then there are
two finite rank operators A € B(D(S),Y), B € B(D(T), X) such that N(S+ A) =
R(T + B) and N(T + B) = R(S + A).

LEMMA 6. Let (S,T) € F(X,Y) such that N(§) = R(T) and N(T) = R(S).
Set v := min{y(S),¥(T)}. Then §(G(S),G'(T))* 2 +*(2y+ 1)1 - 1.

LEMMA 7. Let (8,T) € F(X,Y) such thot dimY/R(S), dim X/R(T) = co.
Then for any & > 0 there ezists (S,T) € F(X,Y) with D(§) = D(8), D(T) =
D(T) such that: ||S - S|, IT = T|| < ¢, nd(S,T) = ind(8,T) and N(S) ¢ R(T),
N(T) C R(S5).

LEMMA 8. Let X, Y be real Banach spaces. Let (S,T) € F(X,Y) such that
N(8) C R(T) and N(T) C R(S). If ind(S8,T) > 0, then there exist z € D(S5),
z* € X* and y* € Y* such that y*|D(T) = z*T and 16(z*(z) — y*(52))? >
(™1 + Ny 12l + 15211%).

In the proof of Theorem 9, the first part concerning the inequality (6) is
stated without details (we follow some ideas from [4], [5], [7], where similar facts
are proved with respect to || - || or & instead of 7).

THEOREM 9. For any (S,T) € F(X,Y) there ezists ¢ > 0 such that if
(8,T) € F(X,Y) and §(S,8), §(T,T) < ¢, then ind(§,T) = ind(S,T).

Proof. By definition || S|, ||T|| < oo. Following [7], we make several successive
assumptions without any loss of generality at each step, the various changes of
(S,T) being accompanied by corresponding changes of (S, T). We may assume
that X, Y are real Banach spaces. We may also assume ind(S,7) € 0 (since
ind(T,8) = —ind(S,T), and so we can change the roles of S, T if necessary).
Now if we replace (S,T) by (So, To), where Sy(t,z) := Sz, t € R™, z € D(5),
Toy := (0,Ty), vy € D(T) and m := —ind(8§, T'), then we may assume ind(S,T) =0
(see Lemma 3 (iii)). By Lemma 5 and Proposition 1 (i), we may assume now
N(8) = R(T), N(T) = R(S), since we can replace (5, T) by a certain (5+A4,T+B)
with N(S + A) = R(T + B), N(T + B) = R(S + A), which we perturb to (5,T).
By Lemma 6 and Lemma 3 (ii), we may assume

(6) §:=8(G(S),G'(T)) < 471,

since we can replace (S, T) by (AS, AT) with a fixed large X such that A2y2(2\y +
1)"! — 1 > 4, where 7 := min{y(S),¥(T)} (note that ¥(AS) = Ay(S), v(AT) =
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Ay(T)). Finally, by Lemma 3 (iii) (with F := {0}) we may assume X = F(L)
and ¥ = F(K), since we can replace X, resp. Y by X := F({X*)1), resp.
Y = F((Y*)1) (we have isometric embeddings of the form X 3> z — f, € X,
fz(z*) := z*(z), z* € X*, ||z*|| € 1). Thus all the involved operators will have
infinite codimensional ranges. Note the symmetry of the above hypothesis with
respect to S, T

Now let ¢ > §(5,5), @(T,T). By Lemma 2 and Theorem 4, there exists
(8,,T1) € F(X,Y) such that

(7) 8(81,8),8(T, Ty) = O(e), ind(S;,T1) = ind(S, T).

Here the classical notation Of(e) stands for a quantity f = f(S,7) such that
|f| € Ce with a finite constant C = C(S,T') independent of the perturbed data
§, T (see Proposition 10 for a more precise estimate on €). By Lemma 7, there
exists (S3,72) € F(X,Y) such that

(8) 86(85,5)),6(T1,T2) < e, md(S,T2) =ind(S;,T3)
and
9) N(5) C R(Ty), N(Ty) C R(5:).

We apply the estimate (1) to the graphs of T, ﬁ and Tg, instead of Y3, Y, and Y;
" respectively. By (7) and (8), we obtain 6(T,T3) = O(e). By using again (1), now
for the spaces G(S), G'(T) and G'(T), we obtain 6(G(S), G'(T2)) € 6+ O(e). By
(7) and using (1) for G(5,), G(S), G'(T), we obtain 8(G(5;), G’ (T3)) < 6 + O(e).
Finally, by (8) and using (1) for G(S>), G(51), G'(T3), it follows §(G(S,), G'(Th)) <
§ + O(e). By (6), this implies

(10) 8G(82), G (Ty)) < 47

for a sufficiently small &.

Suppose now that ind(§2,f2) > 0. By (9) and Lemma 8, there are nonnull
vectors ¥ = (z*,—y*) in X* x Y* = (X x Y)* and v = (z,%z) in D(S2) x Y
such that y*|D(T2) = «*T5 and 4|u(v)| > ||u|| ||jv|| (note that the isomorphism =
is isometric). Since v € G(S3), then by (10) there exists w € G(T3) such that
llv — wl|| € 47 Y|v||. Since u(w) = 0, it follows

[l o]l < 4fu(v)] = 4fu(v - w)| < 4dllull flv —wll < [l 0],

which is false.
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Therefore, we must have ind(S,75) < 0. By (7) and (8), it follows
ind(S,T) < 0.

Due to the previously mentioned symmetry of the hypothesis, we may change
now the roles of § and T. If ¢ is sufficiently small, then we obtain ind(T, S) <
0. But ind(T,S) = ~ind(S,T) » 0. Hence ind(:S'_,'f) = 0 (= ind($,T)), and
Theorem 9 is proved. 1§

PROPOSITION 10. Let (S,T) be an exact pair on X, Y. Set v := max{]|5]|,
7|1}, v := min{y(S),(T)} and X := max{1,11y~'}. For (S,T) € F(X,Y), let
e = max{§(8, 9), (T, T)}. If 3A(A2v245)1/2e < 1072, then ind(5,T) = ind(S, T)
(=0).

Proof. We simply follow the proof of Theorem 9. We have to specify the
estimates (7), (8) etc., for (AS, AT') instead of (5,7") (see Lemma 3 (1i)). Note that
the reduced minimum modulus and the norms are not modified by the embeddings
X & X, Y < ). Take an arbitrary ¢/ > 0, independent of S, T. Set & := f{\y)~?
for f(t) = t2(2¢ + 1)7! — 1. By Lemma 6 and Lemma 3 (ii), we have

S(G(A\8), G'(AT)) £ 6,

as well as 641072 < 471 (use Ay > 11 and f(11) = 98/23). Set a := (A2p24+5)1/2)
and b := & + ae(ae + 2)(6 + 1). We keep the other notations in the proof of
Theorem 9. Then Lemma 2 and Lemma 3 (ii) provide the following equivalent of

(7):
§(S1,A8),8(AT, T1) < ae.

By applying Lemma 7 for &', we obtain the next version of (8):
8(S2,81),8(T1, To) < €'
The corresponding estimates obtained by successively applying (1) lead to
(T, Tg) < ag + €' + aee’,
8(G(AS), G'(Ty)) < 6 + ae + O(¢') + 6(ae + O(e"))
and
8(G(82), G'(Ty)) < ae + 8 + ae + bae + ae(b + ae + dae) + O(e') = b+ O(e').

We have to verify (10), and then the proof will be completed as in Theorem 9. The
above estimate shows that it suffices to prove b < 47!, since ¢ is arbitrary. We
use 6 + 1072 < 471 as well as 3ac < 10~2 which we have by hypothesis. Namely,
we have

aclae +2)(6+1) <371 107%(372. 1072 +2)(4™1 —= 1072 + 1) < 1072,

and so b < 8§+ 1072 < 4. Proposition 10 is proved. 1
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With some minor modifications in the statement, we can give an estimate
on € as in Proposition 10 without the hypothesis that (S,T) is exact. In this case
we have to set v := min{vy(Sp + A),y(To + B)}, where Sy, Ty are the operators
defined in the proof of Theorem 9, and A, B are given by Lemma 5. However, in
this general case the estimate is not so explicit in terms of S, T

If $ € C(X,Y) with {|S]| < oo, then let § denote the bounded extension of S
to the closure of D(S). Since § is closed, then N(5) = N(S), R(S) = R(S). Hence
for § € C(X,Y), T € C(Y, X) with ||S]|, |T]| < o0, we have (5,T) € F(X,Y) &
(§,T) € F(X,Y), in which case

(11) ind(S,T) = ind(S, T).

If S € C(X,Y) also is bounded, then

o~

(12) 9(5,3) < (S, 5),
which holds as follows: for any € > 0, Q compact in Y and € D(S);, we take
z € D(8); with ||Z — z|| < e(1 +1|5]|?}~*/?, and note that we have the inequality

d((7,5%), G(S) + {0} x Q) < d((z, Sx), G(5) + {0} x Q) + ||(Z,5%) — (=, Sz)]|
< up d((z', Sz'), G(8) + {0} x Q) +¢,
z'e 1

in which we take then successively the supremum over Z and the infimum over ¢
and €.

Following now a classical construction ([9], [24], see also [13]), we let [*°(X)
(resp. 7{X)) denote the space of all bounded (resp. precompact) sequences (Zn»)n
in X, endowed with the sup-norm, ||(z,)n|l := sup||z»||. Then 7(X) € G(I*(X)).
Set X" := 1°(X)/r(X). If S € C(X,¥) with D(S) € G(X) (and hence ||S|| < 00),
then we define S by (zn)n + 7(X) = (Szu)ln + 7(Y), zn € D(S). Thus by
definition D(S") C X'. Moreover, ||S7|| < |15}

ProposITION 11. (i) If § € C(X,Y) and D(S) € G(X), then S € C(X",Y")
and D(S') € G(X").

(i) If § € C(X,Y) also with D(S) € G(X), then 6(S",5") < 24(5,5).

Proof. (i) If a : D(S) ~» X is the inclusion, then R(a’) = D(S"). Let € > 0

be arbitrary. Let P : X — D(S) be an e-projection on D(S) ([8]). Then P is
continuous (not necessarily linear), and ||z — P{z)|| < (1 + &)d(z, D(S)) for all
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z € X. For any £ = (2n)n € I°°(D(S)) there exists (c,), € 7(X) such that
l(@n = cn)nll < d(€,7(X)) + €. Then (P(cn))n € 7(D(S)) and

llen = Pea)ll < (1+&)d(cn, D(S)) < (1 +€)ll2n —enll, n 2 1.

Hence

d(&,7(D(5))) € l(@n ~ Plea))nll € [(@n = cn)nll + [|(crn = Plcn))nll
<

(T (
(ga T(X)) +e+ (]— + E) S];lzp “xn - cn“
< (2 +e)d(€, (X)) + €2 + 2.

Then for any £ 4+ 7(D(S)) € D(a’) and € > 0 we have

€+ 7(D(SHI € (2 +e)lla’ (€ + (DS +€° + 2.
Hence y(a’) » 271, and so R(a’) (= D(§")) is closed. Since ||S’|| < oo, then
S eC(X,Y).
(ii) Let € > 0 be arbitrary. Let @ C Y be compact such that
(13) sup d((z, 87),G(S) + {0} x Q) < (S, 5) +

z€(8)

Let P : X — D(S) be an e-projection onto D{S) ([8]). Let u € G(S’); be
arbitrary, v = (£ + 7(X), S (¢ + 7(X))) with € = (z,)» and 2z, € D(S), n > 1.
Since ||u|| € 1, then there are (¢,), € 7(X) and (dy), € 7(Y) such that

sup [|zn — cnll> + sup[|Szn, —dn|P < 1+
n k3

Hence z := (2 + &)1 + &)~ (z,, — P(cn)) € D(S), and ||z|| < 1 because

llzll = llzn ~ Plca)ll < llzn — enll + llea — Plea)ll
< llzn — enll + (1 + £)d(en, D(S))
<

(24 e}|lzn — ¢l < (2+ €)1 +£).
Set y!, = (24 ¢€)(1 + €)yn. By (13}, there are T, € D(§) and ¥, € @ such that
(zn — P(Cn) = Fn, S(@n — Plcn)) — 850 — )| < (g(S, S)+e)(2+¢e)(1 +e).

If £ := (Fn)n and @ := (£ + 7(X), S (£ + 7(X))), then & € G(S'). Note that
(Plen))n € 7(X) and (SP(cp))n, (¥n)n € 7(Y). Then the above estimate pro-
vides d(u, G(§)) < |lu — @|| < 24(S,8) + O(e). Since u is arbitrary, it follows
6(G(S),G(5)) < 24(8,8) + O(e). If we let € — 0, then we obtain (ii). Proposi-
tion 11 is proved. 12
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From the previous proof, it follows that §* € C(X", Y }and S € B(D(S)',Y")
are similar via the obvious map

(14) D(S) =1=(D(8)/7(D(8)) = (=(D(8)) + 7(X))/r(X) =D(S') C X .

If § € C(X,Y) also with D(5) € G(X), then both §, § € C(X',Y") have the
graphs in the same space X  x Y, which was not the case for §° € B(D(S)",Y"),
5 e B(D(S),Y").

THEOREM 12. Let (8,T) € F(X,Y) with R(8) C N(T) and R(T) C N(S)
Then there ezists € > 0 such that for any § € C(X,Y), T € C(Y X) with R(S) C
N(T), R(T) c N(S) and §(S,3), §(T,T) < ¢, it follows (§,T) € F(X,Y) and
ind(S,T) = ind(S, T).

Proof. The perturbation (§, f) of (S,T) remains Fredholm if  is sufficiently
small. Essentially, this was established in [13] (with respect to || - ||4, for fixed
domains). For the sake of completness, note some details in our context. By
Lemma 3 (i) we have |||, ||| < oo, and so we may assume that all domains
are closed (see (11), (12)) For any such pair (5,7) (as well as for (S, T) =
(,T)), we may consider S € B(D(S), D(T)), T € B(D(T),D(8)) with §T =
0, TS = 0. By [13], we have (5,7) Fredholm if and only if (§°,7") is exact
in F(D(S)',D(T)) (ie. N(§) = R(T) and N(T') = R(S)). Via (14), this
exactness is now equivalent with the exactness of (5°,7") in F(X",Y" ). But the
exactness in F(X',Y") is preserved under small perturbations with respect to
8, by Proposition 2.10 from (2] (which deals with closed operators and may be
applied because of Proposition 11 (i)). Thus we obtain the desired conclusion via

Proposition 11 (ii). Now the invariance of the index holds by Theorem 9, and
Theorem 12 is proved. 1

For a family a; € C(X;), ¢ € I with sup]|ai|] < 00, let X be the space of
all (z;); with 2 iz:||? < oo endowed with the £2-norm, and let GB a; €C(X) b
defined by (.11:,)z ~ (aiz;); for z; € D(a;). Then || @ ai|| = sup ||aiH. Ifa; € C(X,-)

i i
also with sup ||d;|| < oo, then
i
(15) 5(@9%@51) < sup§{as, i)
i i i

If in addition 7 is finite, then

(16) (@a,,@a,) maxq(a,,a,)
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Let us prove (16) for instance. Let I be finite. Set @ := @a;, @ := Pd; and
i i
q = maxq(a;, a;). Let € > 0 be arbitrary. Since g(e;,@;) < ¢ + ¢, then there are
?

some compact sets Q; C X; such that sup d((z,e;2), G(@;)+{0} x Q;) < g+¢,
z€D(ai)y
i € I. Let @ be the closed convex hull of {0} U] @:. Let z = (z:); € D(a) be
i

arbitrary with ||z|| € 1. The previous estimates provide some Z; € D(g;) and
yi € Q; such that ||(z; — %, a0 — GTi — ||@s|w)]| < (g +¢€)||aill, ¢ € I. Set
T = (Z;); and y := {||z;lly:):. Since |[z;]] < 1, then y € @, and by the above
inequalities we have

d((z, az), G(a) + {0} x Q) < ||(z — &, 0z — & — y)|

(Z i ~ E| + 2 loses - G — llzilluill?)
<(g+e (ZH&:, ) <g+e.

Now take the supremum over all z € D(a);. Since @} is compact, then we obtain
g(a,@) € g+ ¢. Hence (16) is proved by letting ¢ — 0. The estimate (15) holds
similarly.

For various definitions of the notion of {Fredholm) complex, see [2], {7], [10],
(12], [25]. We state here a particular case. A family a = (a');cz with of €
C(X* X**!) and X' € G(X), where X is a fixed Banach space, will be called
a complez in X if R(a*~1) C N(a?) for all i. Let 8(X) denote the set of all
complexes in X. Set H'(a) := N(a*)/R(c*"!). The complex a is called Fredholm
if irz;f'y(ai) > 0, sup||’|| < oo and the function ¢ — dim H*(a) is finite and has

1

finite support. In this case, we define the indez of @ by inder = 3_(—1)* dim H*(¢).
7

THEOREM 13. Ifa = (a'); € (X) is a Fredholm complex, then there exists
an € > 0 such that for any compler & = (&); € 8(X) with sup@ot,&') < € and
i

i 1]11’1’1 8(af, &) < e, it follows & Fredholm and ind @ = ind o
—o0

Proof. For any complex & (as well as for @ := o), we construct two closed
operators S, T (resp. S, T) in £2(X)} as follows. Set

D(3) i= {(@3)s € £(X); o € DE™), 22141 = 0},
D(f) = {(Ti)i € ZQ(X); Tor =0, Tog41 € D(&Zk-{—l)}

and define S (resp. 7~“) on the components by T2z — @**za; (resp. Tors1 =
@**+1zor41). Then @ is Fredholm if and only if (S, T) is Fredholm, in which case
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ind&@ = ind(S, T'). Note that R(g) C N(T) and R(T) C N(S). This construction
was stated in [1]. We omit the details. ’
Then (S, T) is a Fredholm pair, inda = ind(S,T) and R(S) C N(T), R(T) C
N(S). Let € = ¢(S5,T) > 0 as stated in Theorem 12. Set s := sup [la*||. Let ey > 0
be such that (1 + (25 +1)*)"/?¢; < € and (25 + 2)e; < 1. Let &@ € 8(X) such
that sup §(e?, @) < € and Erﬁ—g(a", @) < €. Then there exists 75 > 1 such that

sup 8(a®*,a%) < ;. By (15), we have
lk|>ig

(17) 3( D o, @ a%) < sup §(a?*,E%) < ;.
[k|>i0 |k|>ig Jkl>1p

Since H (a5 ag"” < sande; < (25 +2)7}, then (17) shows that we can apply

tk[>io
Proposition 1 (iii) for € o?* and @ &%. It follows H b &”‘” < 2s5+1,
k]>d0 &[> k[ >0
and (using again (17))
o1 @ o, @ )
|k|>‘io |k|>iq
1
1 2 JRTEI N o
< (rmell g, 2, ) W 2 2 )
[k| >0 ke[ > k[ >0 [k]> 40
S(1+(2s+1)%)%e, <.
By (16), we have
(19) g = a( B o, @ az%) < max §le®, &%) < ¢
kSio [kl Iklio

and 3(S$,8) € max{g,¢'}. By (18) and (19), we obtain §(S,8) < £. Similar
estimates hold for the odd indices, and we have (T, T) < ¢ also. By Theorem 12
and the previous construction of (§, Tv), it follows a Fredholm and ind&@ = inda.
Theorem 13 is proved. 1

COROLLARY 14. Let X', i =0,...,n be Banach spaces, and let
0 a° 1 ot ™"l
a: 0=2X" - X' —.---— X" >0

be a Fredholm complex. Then there ezists an € > 0 such that for any complez

o 1 “n-1
a: 05X L X' 5 ...t X" 0
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with ||&@* — ot||, <€, i=0,...,n we have & Fredholm and ind & = ind o.

COROLLARY 15. If T = (T1,...,Ty) 18 @ Fredholm commuting multioperator
in B(X)™, then there exists an € > 0 such that for any commuting multioperator
F = (T,...,Tn) in B(X)" with |Tj —Tylly < £, 5 = L,...,n it follows T Fredholm
and indT = ind 7.

Let X, YV be Banach spaces. If X, Xp € G{X) and Y, Yy € G(V) with
Xo C X, Y, CY, then for § € C(X/Xo,Y/Ys) we set ([2])

No(8):={z € X;2+ Xo € N(§)}, Ro(S) :={y €Y ; y+ Yo € R(S)},
Go(S) :=={(z,¥) € X xY;(z + X0,y + Yo) € G(S)}.

Hence N(S) = No(S)/Xo and R(S) = Ro(S)/Ys. If in addition S €
C(X /X0, Y /¥s) with X, Xo € G(X) and ¥, ¥ € G(I), then we set do(5,S) :=
5(Go(85), Go(S)) ([2))-

Now let § € C(X/Xo,Y/Ys) and T € C(Y'/Y3, X'/ X}), where X, X', Xo,
X[I) € Q(X) and Y, Y’ Yy, Y(; € g(y) Set ag = GU(S,T) = dlmNo(S)/No(S) n
Ro(T), bo = bo(S,T) = dimRo(T)/Ro(T) n ND(S), Cp = ao(T, S) and do =
bo(T, S). With this notation, we state the following.

DEFINITION 16. Let S € C(X/Xo,Y/Yo) and T € C(Y'/Yy, X'/ Xy). Then
(8,T) is called a Fredholm pair if ag, bo, cp, dy < oo. In this case, we define the
indez of (S,T') by ind(S,T) = ap — bo — co + do-

Let F(X,Y) denote the set of all such Fredholm pairs. Definition 16 gen-
eralizes the previously defined notion of Fredholm pair, since for X’ = X etc.
we have ao(S,T) = a(S,T) etc. The results of stability of the index under small
perturbations, concerning Fredholm complexes of closed operators between quo-
tient Banach spaces ([1], [2]) are generalized by Theorem 17. This holds via the
construction from (1] briefly stated in the proof of Theorem 13.

THEOREM 17. If (S,T) € F(X,)), then there exists an € > 0 such that for
any (S,T) € F(X,Y) with (S, 8), 8o(T,T) < &, we have ind(S,T) = ind(S, T).

Proof For any (S T) (as well as for (S, T) = (5,T)), we define the contrac-
tions S; and T; by D(5;) := Go(8), resp. D(Ty) := {(3: ) (@', #) € Go(T)} and
$1(%,7) := (0,7), resp. T1(Z,7) := (%,0). Since N(8,) = No(S) x {0} etc., then
(§1, ﬁ) (as well as (S1,71)) is a Fredholm pair and

(20) ind(8,,Ty) = ind(S,T), ind(Sy, T1) = ind(S, T).
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&mﬂ=mm®£wm+t@t>aLaﬁ:«anmjnemih
be arbitrary. Then for (Z,7) € Go(S):1 there exists (z,3) € Go(S) such that

I(z — Z,y — §)Il < . Hence ((z,9),(0,y)) € G(S:) and d(7,G(5:)) < [[§ - gll <
21/26,. We take the supremum over § and let ¢ — 0. Hence 8(81,81) < 2124,
By similar computations, we finally obtain

(21) 8(81,51) < 2580(5, 5), 8(T1, Th) < 2380(T, T).
By Proposition 1 (iii), we have also
(22) @51, 51) € 275(81, 81), §(Th,T1) < 238(Th, Th).

Now let ¢ = (Sl,Tl) > 0 be as in Theorem 9. Let (5,T) € F(X, V)
such that &(S, 9), 60(T T) < €/2. By {21), (22) and Theorem 9, we obtain
ind(S1,T1) = ind(S1,T1). Via (20), this implies ind(S,7) = ind(S,T). Theo-
rem 17 is proved. @

PROPOSITION 18. Let (8,T) € F(X,¥) as in Definition 16. Set v =
min{y(8), Y(T)} and X := max{1,11(1 + v"2)}/2}. For (§,T) € F(X,)), let
€= max{do(S 3), (50(T T)}. If the pair (8, T) is exact and 6A(A2+5)1/25 <1072,
then ind(S,T) = ind(5,T) (= 0).

Proof. We apply Proposition 10 for the Fredholm pairs (S, 7y) and (§1, ﬁ)
defined in the proof of Theorem 17. Then use the estimates (21) and (22). Note
that S; etc. are contractions. We need only to estimate 4{S;), v(7}) in terms
of ¥(§), ¥(T). For instance, we have ¥(S;) = (1 + ~v(8)~2)~!/2, which holds as
follows. Let € > 0 and (0,%) € R(S:) be arbitrary. Then (0,y) = Si(z,v) with
Y+ Yy = S(z + Xg). There are 2’ € Ny(8) and 2y € X, such that

llz — ' + Xol| < d(z + Xo, N(S)) + ¢

and
||I - I" - IE()” < Hx — $l +X0|I +E.

Then z’ + zp € Ny(S), and so (z/ + z0,0) € N(S;). Since
YS)d(z + Xo, N(5)) < [|S(z + Xo)ll < {9,
it follows

d((z,y), N (81)) < ll(2,9) = (@ + 20, 0)l| < (& — 2" — ol + [ly]I*)

<
< (1+7(5)72)2((0,9)]| + Oe),

etc. We omit the details. 1
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Theorems 12 and 13 deal with pairs (8,T) with ST' = 0, TS = 0 (or with

complexes (a');, a’a’~* = 0)). In these cases, the results from [1], [2] on the 5
invariance of the exactness provide a better approach to quantitative estimates on

E.
in

10.

11,

12.

13.

14.

15.

16.

17.

Namnely, we apply the functor S — S, T+~ T, and then proceed as indicated
the proof of Theorem 12.
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