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ABSTRACT. Let T be a contraction in the class & acting on a Hilbert space.
Sufficient conditions in terms of the multiplicity of certain natural unitary
operators associated with the Cy., Cq, Ci. or C.1 part of T are given to
ensure that T belongs to the class A, ,,n,m € N*. Along the way we obtain
new relations between the boundary sets involved in arbitrary triangulations
of T.
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1. INTRODUCTION

Let H be a separable, infinite-dimensional complex Hilbert space. We denote by
L(#) the algebra of all bounded linear operators acting on H. Let C'(#) be the
Banach space of trace class operators on ‘H equipped with the trace norm. If A
is a dual algebra on H, that is, a weak*-closed unital subalgebra of £(#), then it
is well-known (cf. for example [2]) that A can be identified with the dual space
of Q4 := C'(H)/+ A where + A is the preannihilator of A in C'(#), under the
pairing:
(T,[L)a) = trace(TL), T €A, [Lja€ Qa.

The Banach space Q4 is called the predual of A. We write [L] for [L]a
whenever there is no possibility of confusion. For z and y in H, we define z®y by
z ®y(u) = (u,y)z for all u in H. The cosets [z ® y] 4 have been essential in dual
algebra theory. Suppose m and n are cardinal numbers such that 1 < m, n < R.
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A dual algebra A will be said to have property (Apm ) if every m x n system of
simultaneous equations of the form:

i@y, = [Lijg), 0Ki<m, 0<j<n,

where {[L; ;], 0 € 1 < m, 0 < j < n} is an arbitrary array from & 4, has a solution
{z:,0 <1 <m},{y;,0 £ j < n} consisting of a pair of sequences of vectors from .
We write D for the open unit disc in the complex plane C, and T for the boundary
of . The spaces L? = LP(T), 1 € p < oo are the usual Lebesgue function spaces
relative to normalized Lebesgue measure m on T. The spaces H? = HP(T), 1 €
p € oo are the usual Hardy spaces. It is well-known {cf. [9]) that the space H*™ is

27

the dual space of L'/H} where Hj = {f e Ll: [ f(et)e™dt =0, n=0,1,... }
0

and the duality is given by the pairing:

(. lo)) =/fgdm, feH™, g € L\/H}.
T

We denote by Ar the dual algebra generated by T € £(#) and by Qr the
predual space Q 4, of Ar. A contraction T' € L(H) is absolutely continuous if in
the canonical decomposition T' = T7 @ T3, where T} is a unitary operator and T3
is a completely non unitary contraction, T} is either absolutely continuous or acts
on the space (0). The following is essentially Theorem 4.1 in [2]:

THEOREM 1.1. Let T be an absolutely continuous contraction in L(H). Then
there exists a functional celculus & : H® — Aq defined by @7(f) = f(T) for
every f € H®. The mapping ®1 is a norm-decreasing weak*-continuous algebra
homomorphism, and the range of ®1 is weak*-dense in Ar. Furthermore there
exists a bounded, linear, one-to-one map pr of Qr into L'/ H} such that ®r = @}.

In particular the coset [z ® 3] is mapped to an element of L!/H} which we
denote z0y. Very often we will use the sesquilinear map “00” for different absolutely
continuous contractions (a.c.c.). If necessary we will write D to avoid ambiguity.
Thus we write zDy either when there is only one a.c.c. for which 20y is defined
or when for all a.c.c. for which zOy is defined the same value is assigned. We
denote by A = A(H) the class of all absolutely continuous contractions 7" € L(H)
for which the Sz.-Nagy—Foiag functional calculus &y : H*® — Ag is an isometry.
Furthermore, if m and n are any cardinal numbers such that 1 < m,n < Rg, we
set Ap . = Am n () to be the set of all T in A(#) such that the singly generated
dual algebra A7 has property (Am ). We write A, for Ann.
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In this paper, we continue the study of sufficient conditions for membership
in the class A, , using improvements of techniques introduced in [8], [6], [4], [1],
[12]. A lot of work has been done in this direction. For example, in [10], the
authors discuss contraction operators T in the class C.g N A with defect index
dr < oo (dr = dim{(Id ~ T*T)'/2H}~). They show that these are particularly
nice representatives of the class A, x,. Indeed, their membership is completely
determined by the multiplicity of either the shift piece of their Jordan model or
the unitary piece of their minimal ¢oisometric extension.

Our results are based upon the interplay between boundary sets, multiplicity
theory and approximation techniques. In particular, we generalize the results
obtained by [12] for membership in the class A, by localizing the multiplicity
conditions. Though this localization will not surprise the specialist, it is largely
responsible for a lot of new technicalities.

In Section 2 we introduce the notation and terminology used herein. Then,
in Section 3, we shall develop some functional lemmas which lead to approxima-
tion results involving multiplicity (established in Section 4). Along the way, we
give some new results for some triangulation of absolutely continuous contractions
(Section 4). As a sequel to this study we shall deduce some sufficient conditions
for membership in the class A ,, Agx,1 and Ay, where k and n are some positive
integers.

2. PRELIMINARIES

The notation and terminology employed herein agree with those in [5] and [13]. If
we suppose that 7' is an a.c.c. in £(#H), then its minimal unitary dilation U € L(U)
(H C U) is also absolutely continuous.

The minimal isometric dilation U, of T is the restriction of U to the subspace
U, = span {U"H,n > 0}, which is invariant for U. The operator U has the Wold
decomposition U, = S, ® R corresponding to the decomposition of U, as S, R,
where S, is a unilateral shift of some multiplicity in £(8.) if S, # (0), S. is the
zero operator if S, = (0), R is an absolutely continuous unitary operator in £L{R)
if R # (0) and R is the zero operator if R = (0).

The minimal coisometric extension B of T is the compression of U to the
subspace B = span {U"H,n < 0} = span {U*"H,n > 0}, invariant for U* (hence
semi-invariant for U). The operator B has the Wold decomposition B = §* @ R.
corresponding to the decomposition of B as S & R., where S is a unilateral shift
of some multiplicity in £(S) if S # (0), S is the zero operator if S = (0), R. is an
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absolutely continuous unitary operator in £{R.) if R, # (0} and R, is the zero
operator if R, = (0).

Throughout the paper, expressions such as maximality, uniqueness, and
equality of Borel subsets of T are to be interpreted as being satisfied up to Borel
subsets of Lebesgue measure zero.

We write ¥ = Er (resp. ¥, = X, r) for the Borel subset of T such that
mg (resp. myg,) is a spectral measure for R (resp. R.). By Proposition 3.1
in [5], there exists a unique maximal Borel subset Xt of T such that, for any
f e LMX7),|IfllL €1, there exist two sequences (2, ), and (yn)n in the unit ball
of H such that:

Jim (71273 ~ 2a Dl = 0

lim ||z,0w|| =0, w € H;
n—00
lim [lwOyn|| =0, weH.

In fact, T belongs to the class Ay, if and only if X7 = T (cf. [2], with a different
formulation).

We denote by E. (resp. E}) the Borel subset of T equal to Xp U, 1 (resp.
XpUXT). It follows from Proposition 4.8 in [5] that E%. (resp. EL) is the maximal
Borel subset of T such that for any f € L*(E%) (resp. f € LY(EL), Il €1
there exist two sequences (2,)n and (yn), in the unit ball of H such that:

nli_{go N[flL2/mz — zaOyall = 0;

|z2nCw|| = 0 (resp. lwoy.|l =0), weH.

lim lim
n—=>00 oo

The operator T' belongs to the class A n, (resp. Aw, ) if and only if Ef, = T
(resp. EL. =T) (cf. [4]).

By Theorem 4.3 in [5}, an a.c.c. T' € L(H) belongs to the class A if and only
ifT=XruU 2*,'[‘ U Zp.

If M is a semi-invariant subspace for T, we denote by R™ (resp. RM)
the unitary part of the minimal isometric dilation (resp. minimal coisometric
extension) of the compression Ta,.

We denote by Q,Q., A, A, the orthogonal projections of I/ onto S,S,, R, R.
and we denote by @M, QM, AM, AM the orthogonal projections of U™, the space
of the minimal unitary dilation of T, onto SM,SM, RM, RM the spaces as-
sociated in an obvious way to the minimal isometric dilation and the minimal
coisometric extension of Thy.
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If T is any Borel subset of T (satisfying 0 € m(I") < 1), we denote by Mp
the absolutely continuous unitary operator on L?(T") defined by:

(Mpz)(e't) = tz(e), ze L*I), etel.

As to the multiplicity of an absolutely continuous unitary operator on a
Borel subset of T, the following (standard) formulation will be convenient for our
purposes:

DEFINITION 2.1. Let R € £L(R) be an absolutely continuous unitary opera-
tor and let o be a Borel subset of T. We say that the multiplicity of R is greater
than or equal to n,n > 1 on o if there exists a reducing subspace Rq for R such that
Ry := Ry, is unitarily equivalent to (M,)™ on (L*(¢))(™), the n-fold ampliation.

We recall that if T' is an arbitrary a.c.c. in £(#) and if o is a Borel subset of
T, then o is said to be essential for T' and we write ¢ C ess(T") (cf. Definition 3.1
in [6]) if:
1A DN 2 ol 0 f € HZ(T)-

We also recall that a Cy. (resp. C.) contraction is a contraction such that
li_r)n T™h|| = 0 (resp. T}LngOHT*”hI] = 0) h € H. This is equivalent to T, =0
(resp. £ = 0). On the other hand a C1. {resp. C.1) contraction is a contraction
such that lim ||[T"A]| = 0= h =0 (resp. lim ||[T*™k|| =0= h =0).
—+00 n—0o0
We will use the very useful decomposition of a contraction T' € £L(H) intro-
duced in {13}, p. 73, namely:
T() *
T =
(5 2)

relative to the orthogonal decomposition H = Hg ® H1, where Hq is defined by
Ho = {& € H such that nlgrgo |T™z|| = 0}. By construction we have Tp € Co.
and T} € C,.. We denote by E; the maximal essential Borel set for Ty (unique
up to Borel sets of Lebesgue measure equal zero). Since Ty € Cp. we get that
Ey = Erlro (cf. Proposition 4.5 in [5]) and if we define E; by E; = T \ Eg we have
Ey C ess(Th) C Ef, whenever T € A (cf. Proposition 1.3 in [6] and Proposition 4.5.
in [5]).

We now state some elementary observations important in the sequel.

- If M is an invariant subspace for T and T = T{o¢ then z é y==z 7[5] ' for
all z € M and y € H with y = Pmy.

— If J is a semi-invariant subspace for T and Y denotes the compression of
TtoJ, thenzDy=zbyforall z,y € J.
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- With the above notatlon for all z E H and all v € B, we have the following
equalities: .’EDU—:Z'D'U——-xDPHU—xDP'HU

- For all v € Y, and allyEH,uDy:uDy:PHu%y:PyuSy.

- For all z,v € B,z g v=Qx I%’Qv + Az g’A*v.

- For all w,y € Uy, u l[:J| y=Q.u I%*Q,,y + Au g Ay.

The following technical lemmas are very useful.

LEMMA 2.2, Let T be an a.c.c. on L(H). Then for any w € H and any se-
quence (ug)x (resp. (vi)i)inH such that nggo ||wxDw]| = 0 (resp. kll’rr;c [hoOwg|| =
0) we have:

lengOHQukaH =0 and kli{go A uQw|| =0
(resp. kli_)ngo |lwOQuur]| =0 and klln;o llwoAvi|| = 0).

LEMMA 2.3. Let T be an a.c.c. on L(H). Then for any w € H and any
sequence (uk)k in H which tends weakly to 0, we have:

lim [[wOQux| =0 and lim ||Q,urDw| =0.
k— o0 k— o0
LEMMA 2.4. Let T be an a.c.c. on H. Then for any h € H, we have:
lim [|QT"h||=0 oand lim ||Q.7*"h| =0.
n-300 n—oo
LEMMA 2.5. For any z in 1 and any function f in H®, we have:
f(8*)Qz = Q(f(T)z);
fR)Az = A(f(T)z);
F(50)Quz = Qu{f(T*)z)
f(R*)Az = A(f(T*)z).
Besides the sesquilinear map (z,y) € H x H — zOy € L'/H} there is also a
fundamental functional sesquilinear map associated to an a.c.c. T. It is convenient
to define it first for its minimal unitary dilation, U. Since U is absolutely contin-

uous, the family {u.,y, z,y € U} of clementary spectral measures attached to U
(defined by [ fdpey = (f(U)z,y) for f continuous on T) provides a sesquilinear
T

map (z,y) = 2 v y = %’nﬁ‘i from U x U into L*(T). If U is M, (the operator
of multiplication by the position function) acting on some vector-valued Lebesgue
Hilbert space L*(T, E) then - y(€) = {z(£),9(€)} ;. € € T. In particular if E = C
then r -y = 27. Note also an immediate consequence of the definitions:

[z-y] =20y forallz,yeH.

T T U
If T is an arbitrary a.c.c. on H we definez - yforz,y € Hbyz - y=1z - Y.
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3. PRELIMINARY RESULTS
First, we give lemmas which are important steps in the proof of the next
propositions.
LEMMA 3.1. Suppose T € L(H) is an a.c.c. acting on H. Then for any
h € H we have:
lim ||T"hOw|| =0 and lim ||[wOT*"h| =0, weH.
n—roa 00
Proof. We will just give the proof of the first assertion. The second one can
be deduced from similar arguments. Indeed we have:
|A.ThOw|| = (gn(R) AT h,w), weEH
for some g, of norm 1 in H>(T); thus (recall that A,T"h = RI'A,h)
AT hOwl| = (gn(Re) Ry Ach,w) = (gna™, A hOw), w € H.
Since the sequence (g,a™), converges weak® to 0 in H>(T), we obtain:
lim ||AT"hOw|| =0, weH.
n—oo
This combined with the fact that le (|QT™h|| = 0 (sce Lemma 2.4) easily leads

to the above lemma. 1

Now we present two lemmas of factorization which will be important steps
in the proof of the lemmas of approximation.

LEMMA 3.2. Let o be a Borel subset of T, let | be in L'(o) and f, g be some
elements of L?(0), 0 < p < 1/2. Then there erist u € H? and (cp)nen in L (o)

such that:
I+ f-g={f+a"u) cn, neN;
1/2
leally € 25U +1igll,), neN;
fed
2
lullz < 20111372

Similarly there exist also v € H? and (dn)nen in L?(o) such that:
L+ f g=dn-(g+a), neN;
ldally < AL +1£1l.), neN;

ol < 2[1122.
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Proof. We will just give the proof of the first assertion. The second one can
be deduced from similar arguments. Let 0 < p < 1/2, & > 0 such that e < 5;’—[,.
Since |I| + v is log-integrable for any v > 0, there exists a function # in H? such
that |I| +v = |I'|? (cf. [11], p. 53). Moreover, we can choose v > 0 in order to have
12 < (14 z—:)||l||}/2. If we set [” := /U, it is clear that { € L%*(c) and that we
have i =1{".1".

We set Q := {&;|f|(et) < |I'|(®)} and let 8 be a function in H* such that:

18] = 2—p onfy
1y otherwise,

The existence of such a function is granted by [11], p. 53. We obtain that:
[f + 0™ = (1 - p)max{|f{,[1]}.

We set Z := {e"* € 7; f(e'*) = —(8a™1')(e"*)} and we define the function ¢, by:

I+f- g i P
ety = | Frdare©) feEoNZ
0 otherwise.

We easily get: |c,] € 1Tlp(ll”| + |gl), which proves that ¢, € L?(c) and moreover
leallz < 725 (14112 + llgllz). We obtain ¢hat:

I+f-g=(f+ao"u)-c, whereue H? u=0l.

So we get [|uflz < |8]oolt’|l2 € 2|[l|l;/2 and the proof is complete. 11

The proof of the next lemma of factorization is left to the reader since it uses
similar arguments. The starting point is the fact that any function ! € L'(¢) can
be written [ = I' - {" where I’ and I’ are some elements of L2(c).

LemMA 3.3. Let o be a Borel subset of T, let | be in L'(c) and let f, g be
some elements of L*(a). Then there exist u € L*(c) and (ca)nen in L*(0) such

that:
I+f-9=(f+a™u) ey, neN;

leally < 1%+ llgll,,  neN;
lulz < 2021122,

There ezist also v € L*(0), (dn)nen in L2(0) such that:
I+f-g=dn-(g+a™), neN;
ldally U2+ 071, neN;
vl < 201113/,
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NoTATION. From now on, if R! (resp. R') is a reducing subspace for R,
(resp. R), we shall denote by A,y (resp. A;) the orthogonal projection onto R}
(resp. R!) and A,z (resp. Ap) the orthogonal projection onto R, © RL (resp.
RoRY).

If a unitary operator U € L(U) is of multiplicity greater than or equal to n
on a Borel set o, we write: mult(U) > n on o.

Now we give the first lemma of approximation, which can be seen as a local-
ization (in terms of the Borel set) and generalization (in terms of the form of the
vectors obtained) of Theorem 3.11 in [8].

LEMMA 3.4. Let T be an a.c.c., B its minimal coisometric extension, B =
5* @ R,. Let o be o Borel subset of T. We suppose that there exists a reducing
subspace R for R. such that:

mult(R,) > 1 on o where R, := Ryg/;
span {R."(R, N(AH)7), n € Z} = R..

Leta € H,be R.,F € LYo),e > 0,0 < p £ 1/2. Then there exzist h € H, ¢, € R]
(R} is a reducing subspace for R, included in R, such that R.\p: is unitarily
cquivalent to M) such that, for any n > 0, we have:

{ |F 4+ Ava-b— Au(a+ T™h) - (cn + ba)|| < & where b = b — Aub;
lleall € 225l Anbll + 1F13/%).

Moreover, we may assume |T™h|| € 2||F||i/2 foralln 2 1.

Proof. We consider the isometry W defined by W := R.ja,%)-- I
W\(a.#)-nme, is unitary, we get R, = R, N (A.H)~, which implies that R, C
(A.H)~. Since mult(R,) > 1 on o, there exists a reducing subspace R for R.
such that R} C (A,H)~ and such that R,g: is unitarily equivalent to M,.

If W|(a,#)-rw., is not unitary, using the Wold decomposition, we know there
exists a reducing subspace W! for W such that Wy:(= R.w:) is unitarily
equivalent to S, the standard unilateral shift acting on H 2. Moreover we have
WL ¢ (ALH)~. We recall that in this case there also exists a reducing subspace
R: for R, such that R. g1 is unitarily equivalent to M.

We write: F+ A,a-b = F + A0 - Aab + Asza - Aob. First we modify
F 4+ A.a - Auab. In the particular case where R C (A H)™, using Lemma 3.3
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and the vector-function identification R. = L?*(c), there exist u € RL, (cn)n in

R! such that:
F+ Ava-Aanb=(Aaa+ RM) - cp;

lleall < IF(12 + || Aubl;
llull < 2/ 2372,

If R, ¢ (AH)™, using Lemma 3.2 and the natural vector-function identifi-
cations R} = L*(0), W} = H?, there exist ' € W! C (A,H)™,(c"), in R} such
that:

F+ Ana- Aab=(Age+ RM') - c;
lleall < 225 UFIE" + [ Acabll:
ll'l < 9||F||1/2-

Since R! is a reducing subspace for R., we get:
F+Asa-Adb=(A,a+ RIu) (cn + Aub) Cn, € R C (ALH)™
or
Ftdia - Ab=(Aw+RN) (c+Anb)  c eRLu e W! C (AH)".

We assume ||c, + Au2b|| # 0 and ||c}, + A.obl| # 0 otherwise the proof is
immediate taking h = 0, ¢, = A,;b. Now, according to the inclusion R} C (AH)™
or W, C (A,H)~, we are able to find h € H, b’ € H so that:
€ €

_ A*h T — s A*hl _ .
e < s A0 e IF< 2], + Agb|

€ &
Aoh|| < ——m——; and Al < o
1Al < lull; lAR]] < [le’]f.

Since R, is an isometry and considering the equality R} A, h = A T™h, we get:

£
Riu— AgTrh|| < ——

and
R — AT < ——
| S e
which easily leads to the desired inequality. Since lim IT™h|| = [|A«hl|] and since

| A<h|| < [lu], if n is large enough, we can get HT“hH 2||FH1/2 Thus, replacing h
by T™h where ng is a sufficiently large integer, we may assume |[T"A|| < 2HF1|1/ 2
foralln>1. &
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Now we state the dual version of the previous lemma, whose proof is left to
the reader since it can be deduced from similar arguments.

LEMMA 3.5. Let T be an a.c.c., Uy its minimal isometric dilation, U, =
S, ® R. Let 0 be a Borel subset of T. We suppose that there ezists a reducing
subspace R' for R such that:

mult(R') 2 1 on o where R' := Rjp;
span {R*(R' N (AH)™),n € Z} =R,

Leta e R,be H,F € L'(o),e > 0,0 < p £ 1/2. Then there ezist h € H,d, €
Ry (Rq is a reducing subspace for R included in R’ such that Rz, is unitarily
equivalent to M, ) such that, for any n > 0, we have:

{ |F +a-Ab—(d, +a2) - A(b+ T*"h)|| < € where az = a — As0;
lldnll < 5l Asall + [ FI}).

Moreover, we may asume | T*"h|| 2HF||1/2 foralln 2 1.

For an A x, version of Lemma 3.4 and an Ay, version of Lemma 3.5, we
neced the following lemma.

LEMMA 3.6. Let o be a Borel subset of T. Let (Fy)r»1 be a norm summable
sequence of functions in L'(o), let f,(gr)kz1 be in L(c),0 < p € 1/2. Then for
every k > 1, there exist u in H?, (ckn)n in L%(0) such that:

Fo+f-gr=(f+a™) ckn;
1/2
lulla < 2( 3 1Bl)
k21
lekmlla € T UFL + llgell)  for anyn e N,
There also exist v in H?, (dgn)n in L?(0) such that:
Fe+fr-g=din-(g+a");
1/2
loll: < 2( T 1)
k21

lldknlle € TS UFNL? +11fkll2)  for any n e N.

Proof. We just give the proof of the first assertion. The second one can be

deduced from similar arguments. Let F = Y |Frland let 0 < p € 1/2,e >0
k21
be some positive reals such that € € 51_1,—, . Since F + v is log-integrable for any
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v > 0, there exists a function h € H? such that F + v = |h|?. Moreover we can
choose v > 0 in order to have |[A||; € (1 + £)||F|}/*. We consider the Borel set
Q= {e'%]f](e") < |h|(e'*)} and we define a function 6 € H> such that:

0] = 2—-p on
B p otherwise.

The existence of the functions A and § are granted by [1 1], p. 53. Then, for a given
n, define the measurable function ¢y ,, by:

Fe+f gk n
—_— f -+ h=0%

Chn =4 f+8amh on i { be 0y
0 elsewhere.

As in Lemma 3.2, we easily get ¢ € L2(0) and ||ck nll2 < ﬁ(”FkHi/Z +1lg&ll,)-
1/2
Now we set u = 6h € L?(o). So we get |julls < 2( > ||Fk|]1) and Fi + f- g =
k>1

(f + @™u) - ¢k, which ends the proof of the lemma. &
Using the previous lemma, we can state the following propositions:

PROPOSITION 3.7. Let T be an a.c.c., B = S* @ R, its minimal coisometric
extension. Let o be a Borel subset of T. We suppose that there erists a reducing
subspace R, for R, such that:

mult(R,) > 1 on o where R, ;= Rumrss

span { R} (R, N(A.H)"),n € Z} = R..
Leta € H, (bx)k € Ra,(Fi)i a norm summable sequence of functions in Li(o),e >
0,0 < p < 1/2. Then there ezist h € H and (cpi)n € RE (RL is some reducing

subspace for R, included in R, such that R.\r:1 1s unitarily equivalent to M, ) such
that, for any n, k > 0, we have:

{ ”Fk + A.a by ~ A*(a -+ T"h} . (Cn,k + bz,k)” < € where bo g = by — A,1by;
llenkll € 5 (1 Awbyll + 1| Fell3/?).

1/2
Moreover, we may assume ||[T™h]| < 2( 3 ||Fk|]1) .
k21

As usual this lemma has a dual version whose statement is left to the reader.
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PropoSITION 3.8. Let T be an a.c.c., Uy its minimal isometric dilation,
U, = S5.® R. Let o be a Borel subset of T. We suppose that there exists a
reducing subspace R' for R such that:

mult(R') > 1 on o where R' := Rir;

span {R™"(R' N (AH)™),n € Z} =R’
Let (ax)r € R,b € H,(Fe)k a norm summable sequence of functions in LY(o),
£> 0,0 < p < 1/2. Then there ezist h € H,(dni)n € R1 (R1 is some reducing

subspace for R included in R' such that Rjg, is unitarily equivalent to M, ) such
that, for any n = 0, we have:

{ | F + ag - Ab = (dnk + a2,x) - A(b+T*"h)|| < € where azx = ax — Ajrax;
lldn,ill < 125 (Il Avall + I Flly?).

1/2
Moreover, we may assume || T*"h|| < 2( > ||Fk|}1) .
k21

Using matricial tools (see for example Part I, Section 1.4 in [7]) which are
helpful in making certain arguments more transparent, we easily state the following
proposition:

PROPOSITION 3.9. Let T € L{H) be an a.c.c. and let {f*, 1 <i <k, 1<
j € n} (where k and n are some positive integers) be a collection of functions in

the unit ball of L*(Xr). Then there exist sequences of H, (@4, )m and (y,)m such
that:

C i i3] — 2t Oyl || = 0;

Jim (|[f*7] = 23,091 = 0;

n}i—inoo“wmy%”=0’ weH,1<F<n;
{ lm ||z¢ 0wl =0, weH,1<i<k;

m—o0

||zt || < m, m>21,1<i<k;
Uyl < K, m2Llsj<n.

The next propositions (Propositions 3.10, 3.11, and 3.12) are very important
tools in the proof of the main results. They show we can get some results of
approximation where we can choose the sequences of approximation in the space
H1 or Hp (it depends on the choice of the elements of the predual of H*) with
a “vanishing condition” extended to the whole space (recall that the subspaces
‘H, and Hg are those involved in the canonical Cp. — Cj. triangulation introduced
in Section 2). The following proposition slightly generalizes Proposition 2.2, Part
V in [7]. The main improvement is the fact we achieve the approximation for a
collection of functions.
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PROPOSITION 3.10. Suppose T' is an a.c.c.. Let (f7)1¢j<n be a finite se-
quence of elements of L'(X, 1) such that ||f7||, < 1 (the integer n is arbitrarily
large) and let a, b7 be some elements in Hy, 1< j <
that p < 1/2. Then there exist sequences (Zm)m and (y2,)m in H, (1 < 7 < n)
such that:

n. Let p be a positive real such

[ Lm ||[f7] + a0V — 2,095 || =0, 1<j<n;
mM—r o0

lim ||(zm —a)Ow| =0, weEH;
m—o0
4 n . 1/2
la—zall <2( T 00,) ", mz1,
j=1
; ; ; 2 ,
g2l < 253000+ 170,77, 1<i<nme1.

The following proposition is the dual version of Proposition 3.10.

PROPOSITION 3.11. Suppose T is an a.c.c. and let (f*)cicx be a finite
sequence of elements of L*(S,) (the integer k is arbitrarily large) and a*,b,1 <
i <k in Hy. Then there exist sequences (x5)n and (yn)n in H1 (1 €4 < k) such

that: ) ) )
( lim (I + 06 - 28,0l = 0, 1< <K
n—oo

lim [|wO(ys — B)|| = 0, w € H;
=00
. k12
b=l <2( X I70,) 7, nz1,
1=1
i i sy L/2 .
Uil < el + 7405, 1<i<hn>1,

The next proposition states precisely the approximation for a collection of
functions in LY(Ey) . '

ProprosiTiON 3.12. Suppose T is an a.c.c. and let (fi)lgigk be a finite
sequence of elements of L'(Ejp) (the integer k s arbitrarily large) and a*,b,1 <
i K k in Ho. Then there exist sequences (z)n and (yn)n in Ho (1 < i € k) such

that: _ , ‘
lim [[[f*] +@'0b — 2}, 0yal| =0, 1<i<k;
n— o0

lim_[lwO(ya - b)) =0, weH;
n—oo
] kN 1/2

I bl <2( L U170) T, nz

: : 0 1/2 .
Clleill < s 3+ 170, Y7), 1<i<kn>1.
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4. TECHNIQUES OF APPROXIMATION INVOLVING MULTIPLICITY

Let W € L{W) be an absolutely continuous isometry and let W € L(W) be its
minimal unitary extension. We define the multiplicity of the isometry W as the
multiplicity of W.

LEMMA 4.1. Let W € L(W) be an absolutely continuous isometry. Let M
be a subset of W and let M, be the reducing subspace for W generated by M and
M the reducing subspace for 7% generated by M. Then we have:

(1) M, = M, that is to say, the reducing subspace for W generated by M,
s equal to ﬁ, and

(i) W"(W oM, L M, n € Z and consequently, the minimal unitary
extension of Wiwegm, 18 WI ik

Proof. By definition we have M C M, where M, is a reducing subspace for
W. Hence we get Mc MU,. If we suppose that the inclusion is a strict one we get
a contradiction by minimality of the unitary extension W.

Now, for any y € W © M, we get:

(Wry, W M) = (W*y, W' M)  for any k,n 2 0.

Thus we have W“(W oM.} L M, n € N, which implies that the minimal unitary
extension of Wygu, lives on M-+ In fact we have:
where ﬁ/" i is the minimal unitary extension of W),,. By minimality of W and

since the minimal unitary extension of Wjygat, is defined on /T/tui, we get that

the minimal unitary extension of Wjyygm, is W, which ends the proof of the

s
lemma. #

NOTATION. If U € L(I4) is a unitary operator and if a1, ..., ax are some ele-
ments of U, we denote by redy{ai,...,ax) the reducing subspace for U generated
by a1,...,0k.

Now, we are able to prove the following lemma which is essential to our
understanding of multiplicity.
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LEMMA 4.2. Let o be a Borel subset of T and let T € L(H) be an a.c.c.
Suppose that mult(R,) > n (resp. mult(R) > n) on ¢ and let z,,...,2,_1 be
some elements of H. Then there exists a reducing subspace R, (resp. R') for R,
(resp. R) such that:

(i) R, Lredg, (Auzy,..., Aun_y)(resp. R' L redp(Azy,..., Azn_1));

(ii) mult(R. g, ) > 1(resp. mult(Rjx:) = 1) on o;

(iii) span {R}(R, N (A.H)™),n € Z} = R, (resp. span{R™(R’ N (AH)"),
neZl =R

In particular we have R}, N (A.H)™ # (0) (resp. R' N (AH)™ # (0)).

Proof. We establish this lemma in the case mult(R,) > n on ¢. The assertion
of this lemma in the case mult(R) > n on ¢ can be proved using similar arguments.
We set R :=redg, (A.21,..., Auzs_1). Remark that RY is a closed subspace of
(A H)" satisfying mult(R.zy) < 7 —1 on o. Let us set W := R.ia,%)- and
consider M,. := redw{A.21,...,4,2n1}. Using Lemma 4.1, we have:

redg, {M,} =redp, {A.z1,..., Az} =R/,

If R, = (A.H)™, since R, is the minimal unitary extension of W = Ryya,20)-, we
get that R, = R, which contradicts the hypothesis mult(R.) > » on ¢. Hence we
consider the non-trivial invariant subspace W', defined by W', := (4,H)~ e R".
Using Lemma 4.1, if we set R, := span {R"W',,n € Z}, we get:

Ri L RL and R* = R*'R,. D R*I'R'."

In particular we have mult(R.|,:) > 1 on ¢ and since W, C R’ N (AH)™, we
get span{R} (R, N(AH)"),n€Z} =R.. 1

Now we can state the following propositions which are essential steps in the
proof of the main results, that is to say, sufficient conditions for being in the
class A, .

PROPOSITION 4.3. Suppose T € L£(H) is an a.c.c. and let o be a Borel set
of E.. We also suppose that mult(R.) > k on o. Let {7, 1<i<k, j > 1} be
a collection of fuctions in L'(o) be such that:

}:Hfi’jll1 <oo foranyie€{l,...,k}

izl
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and let a* € H, ¥ € R.,1 < i< k,j 2 1. Then there exist sequences (a’), in H,
(b)) in R such that:

lim ||f%7 + Aat - ¥ — Asa, Bl =0, 1<i<k j21;
T—00
Jim 19, - a9 =0, 1<i<h
lim ||(a} — o*)Ow|| = 0, weH,1<i<k.
n—o0
Proof. First we show how to construct o},#] for 1 <i < kand j 2 1. Let
t1,...,t; a finite sequence of elements of H,ey > 0,11 > 0 be given. We will

proceed via k steps in order to construct those elements. If R}((i) is a reducing
subspace for R., ¢ € N, we shall denote by A,(fl) the orthogonal projection onto
Ri(i) and by A(t) the orthogonal projection onto R, & ’R,l(z]

First, we approximate (f* *7)321 using Proposition 3.7 and Lemma. 4.2. Let
’R},(l) be a reducing subspace for R, orthogonal to the reducing subspace gen-
erated by {A.ai,2 < i < k}, such that mult(R,,lR&(l)) > 1 on o and such that
span {R:‘(’R,{(l) N(AH) )n € Z} = RYY Let p be a real number satisfying
0 < p < 1/2. By Proposition 3.7, there exist (cy))n5; in R} and h! in H such
that:

29 + Aval - A — A(ad +T70Y) - (ch, + AQW) | <e1, n2 1
liek ;11 < 25 A + 11729133, n

Vv

1.
By Lemma 2.4 and Lemma 3.1, there exists n; € N such that, for any n > n; we
have:

QT AM| < vy;

IT™hi0t,|| <1, 1<p<g.

Now we set a* = a® + T™h!, i} = ¢l

choice of R! )

+A )b7. For any i € {2,...,k}, by the

n1,J

, we get:
Aat AW = Adt -I_g{,j >1

Next, we approximate (f*7);5,. Let ’Ri(z) be a reducing subspace for R, or-
thogonal to the reducing subspace generated by {A.a', A.a;,3 < ¢ < k} such that
mult(R, z:1») 2 1 on o and such that span {R’;‘(Ri(z} N(AH) ), neZ} = ’R.im.
By Proposition 3.7, there exist (c2 ;)n>1 in 'Ri@) and k% in H such that:

1779 + Aua® -] = Aua® +T7R2) - (2, + AGB)l < ey n> 15

my
le 41l < rl—(llAfi)bi)ll + 117292, n>l
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By Lemma 2.4 and Lemma. 3.1, there exists ny € N such that, for any n 2 no we

have: )
lQT™A%|| < w1;
IT*h20t,l < vy, 1€p<g

Now we set a? = a% + T"2h2 bl = c2_ . + A2b]. By the choice of R, we get:

24 T
Acdt A = At B, §21,3<i<k
Al - A = At - A, i3 L
Then we proceed by a finite induction. The last step consists in the approximation
of (f%7) ;21
We suppose that a',...,a*"" and bf,...,b] | are constructed. Let Ri(k)

be a reducing subspace for R, orthogonal to the reducing subspace generated by
{A.a*,1 € i € k — 1}, such that mult(R, z:w) 2 1 on o and such that we

have span {Rf(’Rl“) N (AH)"),n € Z} = R1™ . By Proposition 3.7, there exist
(ck ;)nz1 in RI™) and h* in H such that:
1557 + Asa® By = Aulah +T7h%) - (ck; + ADY )l <eny m2
ek 511 < S5 ARG I+ 15%71172), n>1
By Lemma 2.4 and Lemma 3.1, there exists ny € N such that, for any n > n; we
have:
QT™h¥|| < wy;
[T*h* 0ty <1, 1<p<a.

We set aF = a* + T™h* and b} = &
we get:

+ Ak, . § > 1. By the choice of R},(k)

TkyJ

At - Ay = Awa'- AbL, 1<i<k-1

Then we can easily verify that, setting @} := a*,1 < i < k and b{ = I_ﬂ;,j 21 we
obtain:
f9 4+ AtV - Al b = [+ At B - Adt - B
which implies that: ||f*/ + A,a? - &7 — A*aﬁ Bl < e
Moreover, by construction, we have:

Qa1 — )| < w1, [l(a] ~ a")Otpll <w1, 1<p<q.

The proof of this proposition results from iterations of the previous process, tak-
ing (;); a sequence dense in H and (£,)n, (¥n)n some sequences of positive reals
decreasing to 0. 1
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REMARK 4.4. By construction, and by Proposition 3.7, we have:
: . N 1/2 .
lof, - @il <2( T IFl) T 1<i<h
=1

ol < 5 (1 + S 1907, 51

PROPOSITION 4 5. LetT be an a.c.c., ¢ C X, 7. Suppose that mult(R,) 2 k

ono. If {f*,1 < k, 7 2 1} 4s a collection of functions in L'(c) such that
S < o (1 g i € k), and al,...,a% (b)), are in H, then there exist
izl

sequences (a%)m, (Ml)m (1 € i<k, j 2 1) in H such that:

(lim [[[f] + 0’06 - ah,0b, | =0, 1<i<k j2 1
: i A — ; .
Jim_(ak, - a*)0ul| =0, weH, 1<i<k;
, , . 1/2 .
lob -l <2( TUF) T, 1<igk
izl
] ; k 1.5111/2 .
Il <311+ 2 IF9I7) 2
=
L ai, —a' =0, 1<igk.

Proof. We can write:
[F59] + 'O =[] + Aud’OALY + Qa’'OQd .

Using multiplicity on o and Proposition 4.3, we can find sequences (a,)m (1 €
i € k)in H and (¥7.), (7 2 1) in R, such that:

(1)l [[[fY])+ A’ DAY — (A,h,0A07)=0, 1<i<k iz
(2) lim_l(a}, - a')Owl| = 0, weH, T<i<h
(3 lim [|Q(al, — a?)ll =0, 1<i<k
@ kol <2( S Irn) 1<i<k

izl
© 146511 < 2( 7] + z IR, iz

Moreover, for 1 <1 < k, j 2 1, we have:

lim (A.al OAbY)+Qa'nQb = 11m o} D(Qb +A,57 )~Qal, 0QH +Qa’nQY.

m—ro
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But, we can work on the two last items as follows (1 < i<k, 52 1)
Qo'oY — Qal,OQY = Q(a* — ei,)OQY = (o' — at,)uQY

which tends to O when m becomes large by (2). Finally, the approximation is
established with b, = Qb + A,b"],, which gives, via (5),

k
6,01 < 2 A7) + QB ) + 23 192,
=1
that is;

k
15 < 31070+ D10, Gz am1
i=1
Now we give (without proof) a dual version of the Proposition 4.3.

PROPOSITION 4.6. Suppose T € L{H) is an a.c.c. and let o be a Borel set
of £. We also suppose that mult(R) > n ono. Let {f*7,i>21,1<j<n} bea

collection of functions in L'(o) be such that:

Zl]fi’jl|1 <o forenyje{l,...,n}

i>1

and let o' € R, b7 € H,1 < j < n,i > 1. Then there exist sequences (al,)m in R,
(60,)m in H such that:

Jim [[f99 + 0t AV a0l ABL[| =0, 1<j<n,ix];

lim_[1Q.(6, — )] =0, 1<i<n
lim |lwO(b, — b)|| =0, weH,1<j<n
m—0o0

REMARK 4.7. Moreover, if p is a real satisfying 0 < p € 1/2. we have:

; . . /
v Thn) " 1<ien
okl < %(IIG’IHZII/‘”II”Q), i>1
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We now give a dual version of the Proposition 4.5:

PROPOSITION 4.8. Let T be an a.c.c., o C N7 . Suppose that mult(R) = n
ono. If {f*7, 1€ j<n, 121} is a collection of functions in L'(o) such that

Sy < oo, and Y, ...,b" @', i = 1 are in H, then there exist sequences
i>1

(bl )m (L€ j<n), (al)m (5 2 1) in H such that:

( lim ||[f%7] + 0’00 - e, 00, =0, 121, 1<5<n;
m—oo
lim [wO(b), — b} =0, weH,1<j<n;
moee Y |
IG—el<2( Tl T, 1<isn
i>1
. . n » .
latll < 3(llafll + X FI2), iz
- . J=1
LB, — b — 0, 1<5<n.

Now we give a new result for a certain triangulation of an absolutely contin-
uous contraction.

T
THEOREM 4.9. Let T € L(H) be an a.c.c. such that: T = ( 01 ; ) rela-
2
tive to some orthogonal decomposition H = H, ® Ho. Then we have:
7 =En, UEL, and Er=EL UEL.

Proof. What we have to do is to show that for any F' € LYT\EL, ), || F|l1 < 1,
the class [F] is such that there exist two sequences (t,)n, (Un)n in H; with

lim ||[F] — upOun|| = 0;
n—o00
lim ||u,0w| =0, w € Hy.
n—oo
For this, it is sufficient to prove that given € > 0, wy,...,wy, € H,, there exist
u,v € Hy such that:
{ I[F] — wOv]| <e;
[|[uDwg|| < &, g=1,...,p.

Suppose T = EL. up to a Borel set of Lebesgue measure 0. For any A € D, there
exists a sequence (Zn ), in H such that:

lim [|[Ex — 2o 2020 =05
n—20

Hm ||z, 0w| =0, weEH
n—co
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We set ;, , = Py, 2, and #2 , = Py,Zn . Since ||Ey|| = 1, without loss of
generality we may assume that ||z, || = 1 (all n, all A) and also (removing for
each A a suitable subsequence)} that the sequence (122 5D is convergent. Let
A = lim ||z} ,|i. Relative to the choice of the sequences (Zp,2)n we define, for
0<ry 7‘?10? the sets:

Dy:={AeD; ym <7}

Note that if A ¢ D, then:
hmsup |Ex — 23 022 ]| € hmsup [€n,2 0z || € (1 - 7)/2.
Moreover, we have:
Jim ol = fim o s00l, € Ha.

Thus we obtain that NTL{D \ D) C Ef, (where NTL(E) denotes the set of all
nontangential limits of points in E), that is, T\ E}, C NTL(D,) for any 7 €0, 1].

Let «v be a positive real satisfying v < min { 15 4max{||wq|| << } . Since D, is
dominating for T\ Er,, there exist Aj,... A, in D such that ")’A <7v,3=1,...,n

b}

and oy, ..., o, € D such that Z [aj] < 1 satisfying “ [F] - z o; Ey; ” < {5 For

each j =1,...,n we may assume (throwing away if necessary a finite number of
terms in each of the n sequences (x;,):) that l|z? 1l < (where 4" has been
chosen such that y; < 9" <v,1 < j < n) and

£ . .
||E/\j _xi,/\juxi,t\j” <0, 2L 1<5<m

10°
€ . .
11, Bwgll < 1<g<p1<ji<n,iz2 L
We set z,,; := x5, 2} := Py, y,, 22 2 = Py, 7z, and if v := (21,...,v,), we set
n
Ty = Z \/ajx"j"r” = Z Vajxujix = P'H.xxlla - P?igxua e P'Hlxua T2 =
=1 i=1
Py, %,
We get:
iid 3e
”[F] = 2 o5z, 0z, || < —;
j=1 10
€
iz, Dw,l < 7 g=1,...,p

Since ||z2|| < 7 by construction, we get:

£ €
”ﬂ:,lijq” < Z +7ma.x{||wa|,q = 1,‘-4,13} < §1q =1...,p
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Since AT h = A,k for any h € H,, and since {z,, — 2} || = |22 || < < 5 we
can easily conclude that:

<E
5.

T k)
Hil oAt
H Z o Auzy, DALy, ~ Z o; A, OA
J=1 =1

Using the vanishing condition satisfied by the sequence (x; »;); we can find v such
that:

n
” Z a;Qr,,0Qz,, — Q1,0Q7,
j=1

< £
10
(see for example Proposition 1.3, Part III in [6]). For such a v, we transform
>, oAtz O0ATz) in A% (z}+7)-b where T € H1,b € R4, with the following
7=1
inequalities: ||70w,|| < §,1 < ¢ € p and [|Q*70ZL|| < 5. In fact we get:
IF] = (2, + 7)OPy, (@7, +8)] < €
Iz + T)0wgll <e  1<g<p.

If T # E%. (up to a Borel set of Lebesgue measure 0) we set T=MoT,
where ¢ = T\ EL. Relative to the decomposition H = L*(c) & H1 ® Ha, we have
the following representation of the operator T

M, 0 O
0 Tl *
0 0 T,

By construction ErE = T since we have E% = B} UEr = oU EL. If we set
ffl = M, @ T3y, by what precedes, we get:

B = E;—;1 U Er, =oUEp UEL, =0UEr.
Thus we get B} = Ef, U E%, . Using the equality Xr+ = X7 and £, 7 = X7, (see
Proposition 3.5 in [5]) and the equality EY.. = EL . U EL, ., we easily get:

E). = Erllvl U EIT2 for any triangulation of 7. @

T
We can add that for any triangulation of an a.c.c. T such that T = ( 01 ; )
2

relative to some orthogonal decomposition H = H; ® Ha, we have:
E*,T = 2*,T1 U E*,Tz and Xg¢ = ZTl U ETZ‘

The above equalities are trivial consequences of Lemma 1.4 in [3]. The flavour
of these results is that the boundary sets E%. and E} behave well with respect
to (arbitrary) triangulations. With regard to the sets X7, this behaviour is not
completely settled. The inclusion Xp, U X7, C Xr is always valid, with equality
if Ty or Ty is Cy. (cf. Proposition 3.5 and Corollary 6.4 in [5]}, but the question
wether the equality holds in general is still open.
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5. MAIN RESULTS

Recall that T' is in the class A, x, if and only if T = E¥% (see Theorem 4.6 in [5]).
The following result shows how much the multiplicity of R* on T\ E%. (equal to
the multiplicity of R on T\ E}) “pushes” the operator into the class A ,.

THEOREM 5.1, Let T' € L{H) be in the class A such that mult{R*0) 2 n on
T\ E%. Then T belongs to the class Ay p.

. Proof. Of course if T = E%. the conclusion holds since T is in the class Aj x,.
So we consider the case where the Borel set T\ EY. has positive Lebesgue measure.
We first show how to, approximately and simultaneously, transform elements of
the type [f7] + aDb’ in the form GO0 Let f’,...,f be in LY(T), £ > 0, and
bl,...,b" a in H. We split the f7,1 < j < n into pieces: f7 = fI + fi_+ f2,
where o = T\ E}, and o' = E}. \ (X7) (C .1, ). Then we get for 1 < j < n:

() + a0t = ([£3) + ao08) + (2] + 0108]) + [f&, ) + 2008,

where we refer to notation in preliminaries. We first deal with [f7) + apQb) =
(f2]+AMoagmAMOb] +QonynQMeb) . Using multiplicity on o and Proposition 4.8,
we can find two sequences {ag m ) and (b{,’m)m in Hg such that:

(1) lim (7] + ao0¥) — ao,mBB ]l =0, 1<5 <y

(2)  Jim Jlwo(,., - ) =0, weH, 1<j<m;
1 ®) 1t~ 3l < 21501, m>L1<<n
(@ Taoml <3(leoll + 33 121E7),  m>1

In fact, using Proposition 4.8, we get that the vanishing condition (2) is obtained
for any w € Hy, but since wEI(bg,m - b)) = QwDQ(bé,m — b)) where (b&m - bY);
tends weakly to 0 and using Lemma 2.2, we get the vanishing condition (2) for
any w € H. Next we use the fact that ¢’ C Z, 1, and Proposition 3.10 to find
sequences (a1,p)p and (b{‘p)p in Hq, (1 < j < n) such that:

((5)  lim [[f2.]+@100] — (a1,08] )l =0, 1<j<ny

(6) plingo l{a1,p — a1)Owl|| = 0, w € H;
. ; ; ; .
(@) 160 < 20083 + L7217, 1<ji<n

®) o — eyl <33 17201 p>1
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Finally, we use the property of the set Xz. Using Proposition 3.9, we can find

sequences (z4)q and (y)e in H, 1 < j < 7, such that:
((9)  Jim [[[f3] - 209l =0, 1<i<m
(10) q&r&o ||z,0w|| = 0, w € H;
] (11)  lim Jwoyl] =0, weH,1<j<my
(12) il < e 2 g21,1<5<m
(18) Jlagll € z e % a2

We now put the pieces toge’cher- from (1), (5), (9) and the initial decomposition
of the elements [f’] + a0¥ (1 < j < n) we easily deduce the existence of integers

M, P, @ such that for any m > M, p > P, g > @ we have:

I[£7) + a0 — (ao,mObh m + a1,,08 , + 2,0y} + a10B)] < 7, 1

VAN

€ .
Z: an

We can write, for any 1 < j < n:

0,m T 1y + 01,08, + 2,042 + a106] = (ao,m + a1, + 2g)O(B , + b1, +3)

»

+ (- alpnb’ +a1|jb)—(a0m+a1,p]myq—xqm(b{)m+ )

)

Moreover we have:
0108} — a1,,06) 1, = (81 = 01,5) 08 + @108 ~ B, m)-
Now we use relations (2), (6), (10), (11), and we choose successively,

p>P sothat ||(ar— a1,k < 2

m>M sothat ||(a1,008 —8,,)<>, 1<j<nand

. . . 6 .
¢>Q sothat [[{ao,m +a1,)00ll +l|2e0(b0m + 01,0 < 50 1<i<n

Thus, upon setting §7 = ¢, ¥ = z, in X, b= b{’p, G = a1, in Hy, b) = b&m,
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Qo = 0g,m in Hp (1 < j < n) we have:
’Mﬂhﬁmhq%+a+am%+a+ym<alg
; 1/2 .
63 — 5311 < 211 57]112, 1<jgn;

& ~ ]| < 3 z 17911173,

J ol < 3(llaoll + z 1#117%);
15711 < 2()1ed || + ufﬂul“),

7] < 1F71372,

I < 3 1712

\ j=1

o
AN/
St
ZAN/AN

=

—
3

Now we use this result to start the standard self improving process, which leads to
the property A; ,,. Let us take (£,,)m a sequence of positive reals decreasing to 0
such that e, < 1/2™ m > 1. Suppose we have found vectors do m, G1,m, Tm, EJ'

b’1 m» U, such that: ||[£7]— (&), m +d0 m+mm)D( —Hr’ mt BN < em, 1€ 5 < n;

then, by the above, we can find vectors &g ;ms1, @1,m41, Emit, b{) M1 b{ 1) ym_|_1

such that:
1] = @rim + Bom + En)OE, 1 + B + )
+ @iim + Bom + Fn)O(B]  + B + 55
—(@1,m+1 + TGome1 + $m+1)D(5{,m+ +E% sme1 T @jm+1)” < Em+1
with the following control of the norms:
(18,1 = 8 mll < 2637, 1<

[@1,ms1 — @1ml < 3nen!’;

l1@0,m+1]l < 3(|@o,m + Fo.m |l + next?);
18 mgall < 20080 0 + Tl +622),  1<i<n;

I ]l < ne"{z;

”ym+1” < Em 3 1€jign
Since [|Zomll < [Eml| < nept?; and since |[7] || < I < €22,,1 < j < n, we
obtain:
1/2

l@o,m+1ll < 3([[@0,mll + 2nes,);

77 7.7 1/2 .
1]l < 2008 ll + 262/20), 1<5<m;

m—1 i
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We then get Cauchy sequences (Ef,’m)m and (@1,m)m {1 < 7 € n), which converge to
Bé and @; respectively. The sequences (Zy,)m and (32, )m converge to 0. Moreover
(Eji,m)m, (G0,m)m; {1 € j < n), have weak cluster point b), @, respectively. Using
mixed continuity of (z,y) — 20y we can write:

[F] = @ +a@)o@ +5), 1<j<n
which ends the proof. 1

Since T € Ay, is equivalent to T* € A, 1, the following theorem is easily
deduced:

THEOREM 5.2. Let T € L(H) be in the class A. If mult(R*5) > n on T\ E5.,
then T belongs to the class A, 1, where R™S is the unitary part of the minimal
isometric dilation of the Cy. part ot T*.

Remark that the condition 7" does not belong to the class Ay, ; means that
the Borel set T \ E}. has a positive Lebesgue measure. Indeed, T in the class A
belongs to the Ay, ; if and only if T = E}. and E}, = {(,¢ € EL.}.

Now we give another sufficient condition for an operator T' in the class 4 to
be in the class A,;1. Recall that if T is Cy. then T € Ay, ; (see Proposition 4.5 in

[5])-

THEOREM 5.3. Let T € L{H) be in the class A If mult(R¥1) > k on
Ei\ X, thenT € A . '

Proof. Of course, if E;\ X7 = 0 then T' € Ay,,1 and the conclusion holds. So
we consider the case where E; \ Xp has positive Lebesgue measure. Let f1,..., f*
be in L(T), € > 0, and a',...,a*,b in H. We split the functions f* (1 < i < k)
into pieces: f* = fi+ f, + fi. where o = E;\ Xr, and o' = T\ (¢ U X7). Then
we get for 1 < i <k,

[ +a'0b = ([fi] + ai Q) + ([fi.] + ab0bo) + [fi,.] + aiDbo,

where we refer to notation from the preliminaries. By Proposition 4.5, we know
there exist sequences (a} ,,)n and (bn)n in Hi, (1 < i < k) such that:

( (1) RILIEO ”[f;] + aiubl - ai,nDbl,n“ = O’ 1 < g < k;

(2)  Jlim [|{ai, —ef)Ow] =0, weH, 1<i<k
{ . R .
(3) llai, —aifl < 2i£15"% 1<i<kn2

(@ osal <3(ierl+ S I51E2),  n>1
i=1
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Next we use the fact that o' C L, and Proposition 3.12 to find sequences (af ,)p
and (bop)p in Ho (1 €4 £ k) such that:

((5)  lim (If5])+ajObo — af ,bopl| =0, 1< i<k

(6) plinc}o lwO(bo,p — bo)|| = 0, wE H;
¢ _ _ : )
() llabpll < 2(llabll + 1 £2:12), 1gigkp2];

koo
(8) o —bo,ll <33 (B Res

\

Finally, we use the property of the set X7 and Proposition 3.9 to find sequences
(x%,)m and (¥m)m in H such that:

((9)  lim [|[f},] - 20pmll =0, 1<i<k;

(10)  lim {7, 0w} =0, Ii<kweH;
¢ (11) n!l_rgo |lwDyml|| = 0, w € H;
(12) gkl < i, 157, m21,1<i<k;
k i 1/2
L(13) lym|l < Z:l “fxT“1 ) m 2 1.

We now put the pieces together. Let us take N, M, P such that, for any n > N,
m > M, p > P, we get:

£

I1F¥] + a0b — (4} , Dby, + a} ,Tbg p + T4, Oy + @i 0B )| < i

We can write for any 1 < 7 € k that a‘i’nDblln + O.B’p[]buip + 2t Oy + ai0bp is
equal to the following expression:

(_ai,nmbﬂ,p + aiDbO) - (ai,n + ag,p)Dym - xan(bl,n + bo,p)
+ (ai,n + af;,p + xin)D(bl,n + bo,p + Ym)-
Moreover, we have:
aiDbO - ai,nﬂbg’p = (a‘zl - a'il,n)DbU + ai,nm(bﬂ - bO,P)‘
Now we use relations (2), (6), (10}, (11}, and we choose successively,
n>N sothat |[|(a} —al,)0bo| < z
p>P sothat ||(a},C(b — boy)] < fI and

i . . [
m>M sothat (@, + b0l + 200010 + b0l < 5.
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Thus we have found vectors Ei,gl in Hi, 30,66 in Hg, 7, yin H, (1 <4 < k) such
that:

(1I[f9] + of0b — (@ +@ +Z)0(Ho + b1 + Pl <&, 1<i<k
I3 - ail < 2011 1<i<k,
l1bo — Bol| < 3Z||f’|l”2,

J @bl < 2(I|ao||+||f1||”2) 1<i<k
2] < 3(l1eall + z 1)

E ) < 10 1<i<k
| 1 < znfltl”.

By a standard self improving process, the proof can now be completed as in the
proof of Theorem 5.1. 1

The following result generalizes Theorem 5.1 and Thecrem 5.3. We give
sufficient conditions for an operator T in the class A for being in the class Ay .

THEOREM 5.4. Suppose T is in the class A\ (A, 1UA1 », ). If mult(R*0) 2
n on oo C Do \ X and if mult(R¥) > k on o1 C T. \ Xz where op and o1
are some Borel subsets of T such that oo U oy U Xy = T, then T belongs to the

class Agn.

REMARK 5.5. (i) If mult{R*°) > n on T\ EL and if mult(R?¥1) > & on
pI] \ Xr,then T € Ay e

(ii) If mult(R™°) > n on Eg \ X7 and if mult(R¥1) > k on E; \ Xr, then
T € Ak,n-

Proof of Theorem 5.4. Let us consider {f*/, 1 <¢ <k, 1 <j < n} a finite
sequence of functions in L(T), € > 0, and a?,... ,ak,bl, ...,b%in ’H. We write
fid = fid 4 foi + f;(JT . Once again we have to deal with terms such as

[£9] + a'b? = ([£2J] + ab0w)) + (/3] + a3 0F]) + [f3] + 1008,

1<i<k,1< < n. Using Proposition 4.8, we can find sequences (aéim)m and
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(bﬁ,m)m, in Ho such that,if 1 €7 < k and if 1 € 7 < n we have:

(1) lim (2] + ah0b} ~ (@b mOb =0, 1<i<k 1<j<n;

@ lim Jwn®,, - @)l =0, weH,1<j<n
4 i . k . 1/2 )

®) W~ B <2( LA I) m>1,1<j<m

=
. . n . . .

(4) llabmll < 3(abll + 3 112312, m21,1<i<k

\ =

Using Proposition 4.5, we can find sequences (a’i’p)p and (b{‘p)fJ in ‘H, such that:

((5)  Jim [I[f3) +aiob] - of ,0b] [ =0, 1<i<h 1<ji<n;

(6) lim ||(a} , - a)Ow|| =0, weH,1<igk;

PO P !

¢ ) . N .

(7 llei, —aill <221||f;fﬂi’2, 1<i<kp2

]:
. . & .
| ®) Il <30+ X 122157, 1<j<mp>l.
=

We now use Proposition 3.9 to find two sequences (z}), and (y), in # such that:

((9)  Jim [[f55] - 2j0pjll =0, 1<i<k1<i<m
(10) l_i’m |z} 0w|| =0, weHM, 1Ligk;
g—300
J (1) lim Jleoyll =0, weH,1<FE<n
; LA .
(12) llzglh < X I£3E1572, 1<i<k gzl
] 3=
: i k 7 n1/2 .
L(13) ly2]l < gllf)&,lix ) 1€j<n,¢21

We now put the pieces together. Let us take M, P, such that if m > M,
p>P,g>Q, forany 1 <i< kandany 1 € j < n we have:

i3 im2j i j ; j T - €
(7] + a"0b” — (01,5003, + 6b,mBbY,m + 2,0z + a1 0b)|| < 7.
We can write, 1 <1<k 1<j<n

ah 00, + ab O}, + 250y + i 08 = (0}, + ab m + ©5)0(0 , + b + 1))
+ (“aii,pmbg),m + ang{)) - (ail,;p + ag,m)Dyg - xing(b{,p + b%,m)'
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Moreover we have:
aiob) — o} ,0b) . = (a} ~ a} )00} + al O — b ).

Now we use relations (2), (6), (10}, (11), and we choose (1 € i < k,1 £ j € n):

p>P sothat ||(al —ai 08} < %

m>M sothat ||(al,0(t— 8. < Z

9>Q sothat ||(ai, +ab )Tyl + lesD(b], + b Il < =

Finally we have found vectors ag,'z?g’, in Ho, &,5 in My and 7,7 in H, such

that:

(1[f59] + a'Ob — (@) +81 + 0@ + 5 + F)ll <&, 1<i<k;
a8 - aill <22 1F91Y2 1<i <k
j=1
j 73 k i 1/2 .
5 =Bl <2 3 170", 1<i<m
1=
i i LS C
) 1@l < 3(jabl + 3 17°91°), 1<i<k
]:
T 1 k ij 1/2 .
I < 3(efll + X 1152, 1<j<m
1=
i (| i (|12 :
|Iw|l<21||f’lll , 1<i<k
]=
i K riinl/2 ;
171 < 2 171", 1<j<n
\ =

This result is the core of the standard self improving process, which leads to
property Ay, in the same way as in the proofs of the previous theorems. &

In view of the above results, the following conjecture seems a reasonable first
step towards obtaining necessary conditions for membership in the classes Ag p.

CONJECTURE. If T' € L(H) belongs to the class A, then T € A, if and
only if mult(R*°) > n on T\ EX.

If we were able to prove this conjecture, we could easily prove that:

() Arn = Arx,-

nzl
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