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ABSTRACT. We develop a version of the conjugate operator method for an
arbitrary pair of self-adjoint operators: the hamiltonian H and the conjugate
operator A. We obtain optimal results concerning the regularity properties
of the boundary values (H — X F10)™" of the resolvent of H as functions of
). Our approach allows one to eliminate the spectral gap hypothesis on H
without asking the invariance of the domain or of the form domain of the
hamiltonian under the unitary group generated by A (previous versions of
the theory assume at least one of theses conditions). In particular one may
treat singular hamiltonians with spectrum equal R, e.g. strongly singular
perturbations of Stark hamiltonians or simply characteristic operators.
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INTRODUCTION

The conjugate operator method is a very efficient method for studying the spectral
and scattering properties of a hamiltonian H. This method has been initiated by
E. Mourre (see [15], [16]) and developed by many authors e.g. [17], [13], [14], [11],
[12], [2], [4], [5] and more recently (7], [8] (see [9] and [2] for other references).
Al the versions of the theory developed in the preceding references assume either
that H has a spectral gap (see [2] or [5]) or that the domain or the form domain
of H is invariant under the action of the unitary group generated by conjugate
operator A (as in [15], [16], [17], [4]). But the spectral gap hypothesis is quite
restrictive in some applications e.g. it excludes the Stark effect hamiltonians (see
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(9] or [12]) or the simply characteristic operators (see [1]). On the other hand, in
several important cases, it seems difficult to verify the condition of invariance of
the domain or of the form domain of H. This is the case, for example, if H is
simply characteristic with “natural” short range perturbations as in Chapter 14
from [10] (see, however, [3] and references therein for the kind of results that can
be obtained by using the Mourre theory) or if H contains very singular interactions
(see [5]).

Our purpose in this work is to develop a version of the conjugate operator
method for locally regular hamiltonians. More precisely, we prove that for each
pair of self-adjoint operators H, A in a Hilbert ‘space H there is a natural real open
set (which, however, could be empty) such that for each X in this set the boundary
values R(A 3 i0) of the resolvent R(z) = (H — 2)~! of H exist in a certain sense,
and we describe the continuity properties of these boundary values as functions
of A. As a consequence, we eliminate the spectral gap hypothesis without asking
the invariance of the domain or of the form domain of the hamiltonian under the
action of the unitary group of A.

We begin by observing that there is a largest real open set, denoted by
Qf(H), such that for each ¢ € C5°(Qf(H)) the operator p(H) is of class C'(A)
(we use the terminology of [2] which, however, is recalled in Section 1); we say
that H is locally of class C*(A) on Qf(H). Similarly, there are largest open real
sets Q7 o(H), Q4(H) (for 1 < s < 2) on which H is locally of class C1+2(A) or
C?(A) respectively, and Q2 (H) C QA (H) C Qf o(H) c Q{H)if 1 <t < s His
locally of class C®(A) if and only if Q2(H) equal to R.

The next step is to give a meaning to the symbol [H,i4] in this context:
this is the purpose of Proposition 2.1. We show that the symmetric form defined
by 2R(H f,iAf) on the domain D(A) N HZ(H) (where HA(H) is the space con-
sisting of all the vectors that have a compact support included in Qf (H) in the
spectrum representation of H) has a unique extension to a continuous symmetric
form denoted [H,iA] on HA(H). The equality [H,iA] = HiA - iAH holds (in
the form sense) only on the subspace D(4) N HA(H). If ¢ € C(Qf(H)) then
w(H)[H,iAlp(H) is a continuous symmetric operator in #. So, we can define
the set u”(H) of the real numbers A € Qf(H) for which there are a function
@ € C(Q4(H)) with ¢()) # 0 and a number o > 0 such that

(0.1) o(H)[H,iAlp(H) > ap®(H).

We say that A is locally strictly conjugate to H on pA(H). Let us set il o(H) =
pA(H) N QL (H) and pf(H) = pA(H)NQA(H) for 1 < s < 2. So, the main
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ingredient for the study of the spectral and propagation properties of H, namely
the Mourre estimate (0.1), has a meaning in our context.

Let us denote by {H,}ser the Sobolev scale associated to A (that is described
in details in the next section). By interpolation we obtain the Besov spaces K =
(M1, H)1y2,1-

Our first aim is to prove that H has nice spectral properties in pf' o(H).
By using the Virial Theorem one sees that H has no eigenvalues in pfo(H).
Moreover, if we denote C+ = {z € C | Sz > 0} we get the following theorem
usually called the Limiting Absorption Principle.

THEOREM 0.1. Let H, A be self-adjoint operators in the Hilbert space H.
Then the map z — R(z) € B(K,K*), which is holomorphic on the half-plane Cy.,
extends to a weak* continuous function on Cy U uf o(H). In particular, H has
no singularly continuous spectrum in pit o(H).

The most important particular case is that when H is of class C'*°(A4). Then
we clearly obtain a result which extends those referred to above. Note that we
assume neither that H has a spectral gap (i.e. the spectrum of H can be equal to
R) nor that the domain or the form domain of H is invariant under the unitary
group generated by A. We have explained before why this fact is interesting and we
mention that our result allows the treatment of simply characteristic operators and
of the Stark effect hamiltonians under quite general conditions (these applications
are treated in [18]; see also [19]). Unfortunately our proof of Theorem 0.1 does
not extend to hamiltonians H of class C!*1(A) (this class would be optimal on the
Besov scale C5P(A), cf. [2]).

The preceding theorem can be stated as follows: the map A — R(X £
i0) € B(K,K*) is locally weakly* continuous in uf, o(H). Let us remark that
B(K,K*) C B(Hs,H_s) for each s > 1/2. Then it is natural to study the conti-
nuity properties of the B(H,, H_.)-valued function A — R(A +10); this is the aim
of the next theorem.

THEOREM 0.2. Let H, A be self-adjoint operators in the Hilbert space H, let
1/2< s <1 and set @ = s~ 1/2. Then the map A — R(A£i0} € B(H,H_,) is
locally of class A% on pf, (H).

This result is optimal on the Sobolev scale {#.}, on the Lipschitz-Zygmund
scale {A®} and on the scale C*(A) (represented here by 2, ; (H)). This optimality
is proved in [6] (see also [18]).

In order to illustrate these considerations we reconsider the preceding partic-
ular case. If we assume that H is of class C5+1/2(A) then we obtain a result similar
to that of [6] (see also [16), [13]), but without any condition on the spectrum or on
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the domain or the form domain of H. Finally, we note that by making a Fourier
transform (as in [7] and [18]) we may deduce local decay estimate.
Let us denote by II. the spectral projectors of A associated to Ry =

{z € R | £z > 0}. Now we intend to describe the propagation properties of
H.

THEOREM 0.3. (i) Let s be a real number such that 1/2 < s < 1 and set
a=8—1/2. Then for X € pf, ,(H) we have Io(H — A Fi0)"H; C He_1,00 ond
the map A\ = Il (H — A Fi0)™! € B(Hs, Ho-1,00) i5 locally weakly* continous on
M‘f+a(H)'

(i) Let B be a real number such that 0 < B < a. Then the map A —
Nx(H — AFi0)" € B(Hs, Hoo1-p) is locally of class AP on uf,  (H).

This result is optimal on the same scales as in the case of Theorem 0.2. If we
consider the particular case when H is of class C5*1/2(A) we see that our result is
better than the results of [16], [13], [7] in the sense explained before. We note also
that we can deduce certain propagation estimates as in 7] (see also [18]).

The paper is organized as follows. In Section 1 we give a detailed description
of all the spaces which appear in our results. In Sections 2 and 3 we introduce
the local regularity classes, we make some elementary remarks concerning these
classes, and then we show that the Mourre estimate has a natural meaning in this
context. In Section 4 we recall the regularization technique introduced in [4] and
we prove some preliminary estimates. The Sections 5 and 6 are devoted to the
proof of the Theorems 0.1, 0.2 and 0.3.

1. NOTATIONS

1.1. Let (E,| - ||) be a Banach space, 0 < & < 1 and let f : R = E be a bounded
continuous function. We say that f is of class A% if there is a finite constant C
such that:

su§|if($+£) - f(@)|| € Ce*, Vee({0,1).
z€

So, A® is just the space of Holder continuous functions of order a. f is of class
A (0 < a < 1) if and only if it is continuously differentiable and its derivative
f is of class A®. We recall also that a function f is Dini-continuous if

1

[ sup | f(z +¢€) — F(@)|E < .
. z€R 3

Finally, if f is of class C* and f’ is Dini-continuous we say that f is of class C*19.
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1.2. Let A be an unbounded self-adjoint operator in the Hilbert space #. For
real 5 > 0 we denote H, the Hilbert space D(]A|*) endowed with the graph norm
lulls = [[(A)*ul], where (4) = (1 + A%)Y/2. If s < O then H, is defined as the
completion of H for the norm || - ||s. For each 0 < ¢t < s we have strict dense
and continuous embedding: H, C H, C H = Ho C Hy C H_s. We always
identify H with its adjoint space H* (by Riesz lemma) and so we obtain a canonical
identification H; = H_;.

We also introduce the Besov space K defined in terms of the behaviour at
infinity of its elements in the spectral representation of A. We shall denote by
E 4(r) the spectral projector of A associated to the set r < |z| < 2r. Then f € K
if and only if

£l = 1511+ / 1EAMAISE < o0,
\/_
K equipped with this norm is a Banach space such that H, C KX C H continuocusly
and densely for each s > 1/2 hence H C K* C H.., continuously.

1.3. We shall introduce certain regularity classes of operators with respect to the
self-adjoint operator A in H. Let W, = ¢'4” and denote by W, the automorphism
group on B(H) induced by A and defined by W, T = e~ *47TeA" for T € B(H).
Clearly the function 7 — W,T € B(H) is strongly continuous. If this function
is strongly (resp. in norm) of class C* for some k € NU {0}, then we say that
T if of class C*(A) (resp. CK(A)). If T is of class C*(A) then the sesquilinear
form [T, A] = TA — AT (with domain D{A)) extends to a bounded operator in H
denoted A[T] and given by iAT = & |,_oW,T, where the derivative exists in the
strong topology. If no confusion can arise we identify A[T] = [T, A].

Let 0 < a < 1. We say that T € B(H) is of class C}*%(A) if the function
T = W,T € B(H) is of class A'** or, equivalently, if T' is of class C*(4) and

sup {e”*(W, —1)A[T]| < oo. Now if T € C'(A) and the function 7 — W, AT €
O<ex<1
1

B(#) is Dini-continuous, which is equivalent to [ ||(W. — 1)AT||% < oo, then we
0

say that T is of class C**%(A). Note that in this case one has:

1
J{LER .
£ [
0

Finally, let H be a self-adjoint operator in the Hilbert space H and let 0 <
a < 1. We say that H is of class C*(A) (resp. CL(A), C**0(A) or C**T=(A4)) if
there exists z € C \ o(H) such that the resolvent (H — 2)~! is of class C*(4)
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(resp. CL(A), CFO(A) or C*+>(A)). This property is independent of z and if H
is bounded then it has the same regularity class as its resolvent.

2. LOCAL REGULARITY CLASSES

2.1. It is easy to show that for each ¢ € C§°(R) the operator ¢(H) has the same
regularity class as the self-adjoint operator H. This makes natural the introduction
of the following local versions of the preceding regularity classes {cf. Chapter 8 in
[2]). Let Q2 be an open real set. We say that the self-adjoint operator H is locally
of class CY(A) in , if for each ¢ € C$°(Q) the operator p(H) is of class C1(A).
If Q € R, we say that H is locally of class C*(A4). One similarly defines the local
classes C*+*(A) for 0 < @ < 1 or C*+0(A).

The difference between the local regularity classes and the global classes is
illustrated in the following example. Let # = L?(R), H = h(Q) the operator of
multiplication by the homeomorphism h . R > R, and let A= P = —-iﬁ. Ifhisa
locally Lipschitz function then the operator H is locally of class C*(A). But since
[(H —-2)"4iP] = [W(h-2)"?)(Q), H is of class C1(A) if and only if the derivative
R’ satisfies an estimate of the form |h'(x)| € c(1 + A?(z)).

Unfortunately, if H is more complicated than the operator considered in the
previous example (a Schrodinger hamiltonian for example) it seems difficult to
show that ¢(H) € C'(A) without knowing that (H — z)~! € C'(A) (i.e. that H
is of class C1(4)). However the local regularity classes are important for technical
reasons, and this is due to the fact that these classes are preserved by the C>
functional calculus (see Proposition 3.3).

2.2. Let us fix two arbitrary self-adjoint operators A, H in the Hilbert space H.
Then one may easily show that

QP (H) = {) € R | H is locally of class C*(A) in some neighbourhood of A}
is the largest open real set on which H is locally of class C*(A). One may similarly
define the largest real open sets Qf, ((H) and Q#(H) on which H is locally of class
C0(4) or C*(A) respectively. Obviously we have for each 1 < s < t < 2:

QMH) ¢ Qf(H) € Qyo(H) C O (H).

Note that we always have R\ o(H) C Qf(H).
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Let E be the spectral measure of H. For each f € H let supp f be the
H

smallest closed real set A such that E(A)f = f (i.e. the support of the measure
E()f11?). Then

HAH) = {f € H | supp f is a compact subset of Qf‘(H}}
H

is a linear subspace of H, densely embedded in the closed subspace E(Qf(H))H.
Clearly HA(H) = |J E(K)H, union over all compact subsets of Qf (H). We shall
K

equip HA(H) with the natural inductive limit topology associated to this repre-

sentation. For example, a sequence {f,} converges in HA(H) to some f if and

only if there is a compact set X C Qf (H) such that supp f, C K for each n and
H

fn— fin H.

PropPOSITION 2.1. (i) D(A) NHA(H) is a dense subspace of HA(H).

(i) The symmetric sesquilinear form defined by 2R(H f,iAf) on D(A) N
HA(H) has a unigque extension to a continuous symmetric form on HA(H); denote
by [H,1A] this extension.

(iii) If ¢1,¢2 are bounded Borel functions on R such that supp @1, supp s
are compact subsets of U (H), then o1 (H)[H,iA)po(H) is a continuous sesquilin-
ear form on H, and so it is identified with a bounded operator on H. If ¢ €
CS (4 (H)) and ¥(z) = = on a neighborhood of supp ¢ U supp @2 then

(2.1) p1(H)[H,1Alp2(H) = o1 (H)[$(H),14]p2(H).

In particular, if ¢ € CP(Q{(H)) 4s a real function then the continuous symmetric
operator o(H)[H,1Ale(H) is given by

(2.2) o(H)[H,iAlp(H) = [Hy®(H),i4] - 2R(Ho(H)[p(H),iA]).

Proof. Step 1. Assertion (i) follows from the following more precise fact: if
U is an arbitrary open subset of Qf (H) and f € E(I)H, then there is a sequence
{fn} of vectors in H such that supp f, is a compact subset of U and f, € D(A)

for each n, and f, — f in H. Cl!foose 6 € C§°(R) with 0(0) =1 and set 6, (z) =
B(z/n); then 8,(A) — I stronglyonH. Nowlet o1 S o2 € - € on < - € 1 be
an increasing sequence of functions of class C§°(U) such that ¢, (z) — 1Vz € U.
Then ¢,(H) — E(U) strongly on H and so ¢,{H)8,(A) — E(U) strongly on
H. Since @, (H) is of class C*(A), we have ¢, (H)D(A) C D(A). So it is sufficient
to take fr, = @n(H)0.(4)f.
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Step 2. For each ¢ € C§°(Q{(H)) we define a continuous quadratic form
Qy on H by setting Qyu(f) = (f,[v(H),iA]f). Let U be an open real set whose
closure is a compact subset of Q4(H). Assume that f € E(U)H and ¢(z) = z on
U. Then the number Qy(f) does not depend on %: indeed, if {f,} is a sequence
as in Step 1 then f, € D(A) and Y(H)* fn = (H) fu = Hf,, hence

Qu(f) = lim Qu(fn) = lim {(W(H)"fu,iAfn) + (Afn, $(H)fa)}

So, if we consider the restriction of @y, to E(U)H, we obtain a continuous quadratic
form on E(U)H independent of 4. We denote by € this restriction. Mareover,
if f € D(A)N E(UYH then Qu(f) = 2R{(H f,iAf)} because:

Qu(f) = {f,[W(H),iA)f) = ($(H)" f,iAf) + (Af,¢(H)f) = 2R(H f,1Af).

Finally, observe that if I/; € U; are open sets with the same properties as U, then
Qu, is equal to the restriction of Qu, to E(U;)X (which is a subspace of E(U,)H).

Step 3. Now the existence of a continuous extension of the quadratic
form 2R(H f,iAf) to HA(H) is obvious: if f € E(U)YH with U as above, we
set (Hf,iAf) = Qu{f). The uniqueness follows from (i). Formula (2.1) is clear by
the preceding construction. The continuity of ¢ (H){H,iA]p2(H) on H follows,

for example, from (2.1). 1

The most important particular case of the preceding considerations is when
H is locally of class C1(A), Le. Qf(H) =R Then HA(H) = H.(H) is the dense
subspace of 1 consisting of the vectors f such that supp f is compact. So, if H
is locally of class C*(A) then [H,iA] is a densely deﬁrﬁ—:d symmetric sesquilinear
form in H with domain H.(H). If H is of class C1(4) then this form has a unique
continuous extension to D(H) (H(H) is a dense subspace of D(H), the later space
being equipped with the graph topology).
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3. MOURRE ESTIMATE

For each A € R we set E(), &) = E((A—¢,A+¢)). Then by Proposition 2.1 for each
A € Qf(H) there is g9 > 0 such that Ve € (0, 29) the operator E(\, )[H,i4]E(), )
is symmetric and bounded in H and is zero on the orthogonal complement of the
subspace E(A,e)H. Hence there is a > —oo such that E(),e)[H,i4|E()¢) 2
aE(A,€). The supremum of the numbers a such that the preceding inequality
holds for some & > 0 is denoted by pf(A). So one may consider the set u(H)
of the numbers A € Qf(H) such that pf(\) > 0 or, equivalently, the set of
the numbers A for which there are ¢, > 0 such that (A — ¢, A +¢] C Qf(H)
and E(),e)[H,1A]E(),e) 2 aE() £). We say that A is locally strictly conjugate
to H on the real open set u”(H). We set pf o(H) = pA(H) N QL (H) and
pd(H) = pA(H)NQZL(H) for each 1 < s < 2. We may similarly define the open real
set i (H) of X € Qf(H) for which there are €,a > 0 with [\—¢, A+¢] C QA(H) and
a compact operator K in H such that E(X,e)[H,iA]E(),€) > aE(M €) + K. The
difference between the sets 4 (H) and 2 (H) is described in the next proposition.
Note that u*(H), i*(H) are open real sets such that u4(H) C A (H).

PROPOSITION 3.1. The set i*(H)\ p*(H) is discrete and closed in jA(H),
and it consists of eigenvalues of H of finite multiplicity.

One may prove this result by the method of Section 7.2.2. in [2]. We also
mention the following Virial Theorem:

ProposITION 3.2. If f is an eigenvector of H associated to an eigenvalue
A€ Q{(H), then (f,[H,iA]f) = 0.

Proof. Let ¢ € C§°(Q4'(H)) real with ¢(z) = = on some neighborhood of
A If f € D(H) and Hf = Af, then supp f C {\}. By Proposition 2.1, with the
H

notation A, = (¢'A” —1)/7, we get:

PROPOSITION 3.3. Let V be an open real set such that o(H) C V, and let u
be a C* diffeomorphism of V onto an open real set U. Then H is locally of class
C*(A) (resp C*O(A4) or C*(A)) on V if and only if u(H) is locally of class C*{A)
(resp C'0(A) or C5(A)) on U. Moreover, if A € QA(H)NV then Pl (w(N) =
w'(N)pg;(X). In particular, if u is increasing then pA(u(H))NU = u(pt(H)NV)
and this property is valid also for /Lﬁo or uf.

Proof. Step 1. The first assertion of the proposition is obvious. We shall
give only the proof of the formula pf}(H)(u()\)) = u/(A)pf()). Note first that this
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is easily shown if u is linear: indeed, we clearly have pf_,(A — d) = p&()) and
P (eX) = cpfh(N). So, if 8 = H — A and v(z) = (' (X))~ Hu(z + A) — u())), it
is sufficient to prove that pf‘( §(0) = p2(0); note that v(0) = 0 and »'(0) = 1. By
changing the notations, we are reduced to the case A = 0 € QA(H) NV and the
function u has the properties u(0) = 0,4'(0) = 1. Under these conditions we have
to show that pf},;,(0) = o7 (0).

Step 2. Let Vo C QfY(H) NV be a neighborhood of 0 and set Uy = u(Vp).
Fix a real function ¢ € C§°(Up) such that ¥(z) = 1 near zero and set ¢ = ou. So
p € C§*(Vy) and (z) = 1 near zero. If v € C§°(V;) and v(z) = u(z) on supp ¢,
then

Ylu(H))[u(H),1AJ(u(H)) = (H)[2(H),iAlp(H).

Set £(z) = v(z)z™!, then £ € C(Vp) and £(0) = 1. Then if n € CE°(Vp) and
n(z) = z on suppv, we have v = £n. Hence:

P(u(H)u(H), 1Al (u(H))
= @(H)E(H),1AIn(H)o(H) + o(H)E(H)n(H), 1A]p(H).

Now, by using the fact that n{z) = z on supp ¢, we obtain:

Y(u(H))[u(H), i Al (u(H))
= C(H)E(H), 1Al Hp(H) + o(H)E(H) - 1)[n(H),1Alp(H) + o(H)[H,iAlp(H).

Let E be the spectral measure of H, set E{¢) = E(0,¢) and let E, be the spectral
measure of u(H). Then we have E, (J) = E(u™'(J)) if J is a Borel subset of U, so
for £ > 0 small enough we have E(s) = E,(J.) where J. = u((~¢,¢)) is an open
interval containing zero and which shrinks to {0} as ¢ — 0. Now assume that ¢ is
so small that ¢(z) =1 on (—e,£). We get:

E(e)[u(H),iA]E(e) = E(e)[H,1A]E(e) + E(e){(€(H) — 1){n(H),14]E(e)
+ E(e)[¢(H),1A]HE(e).

We have (|E(e)(§(H)—1)|} < sup{|&(z)—1}/|z| < €} € Ce for some constant C and
[|HE(e)|| € €. So the last two terms in the preceding equality have norms bounded

by Ce for a constant C. Now we get pf;)(0) = p£(0) by a straightforward
argument. |

COROLLARY 3.4. Assume that H is locally of class C'(A} and that u: R —
U is an increasing C™ diffeomorphism of R onto the open real interval U. Then
the operator u(H) is locally of class C'(A) on U and we have pf(H) ou=uph.
In particular, p(u(H))NU = u(u?(H)).
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4. REGULARIZATION WITH RESPECT TO A

4.1. We keep the notations introduced in Section 1.3. In [4] (see also [6] and [8]) a
functional calculus was associated to the operator 4 (acting in the Banach space
B(#)) which allows one to approximate an operator § € B{%) by operators of
class C*°(A) in a way which is convenient for our further developments. We shall
recall here only the facts that we shall need later on (for details see the preceding
references). For ¢ € S = S(R) (Schwartz’s test function space) define a linear
continuous operator ¢¥(A) : B(H) — B(H) by

+o0o +o0
$(A)S] = / WIS = [ Wnswdrdr

Then & 3 ¢ = ¥(A) € B(B(H)) is a homomorphism and (y(A4)(S))* = ¥+[S*]
with ¥+ (z) = ¥(—z).
For each ¢ € R\ {0} we set ¥(eA) = ¢°(A) where *(2) = ¥(ez). Then
+oo ~
Y(eA)S] = [ W(er)[T|¥(r)dr, so the mapping € - ¢(cA)[S] € B(B(H)) is

-0

strongly continuous and s-li_l% P(e A)[S] = ¥(0)S for each § € B(H). Clearly
P(A)[S] is of class C(A) and A*Y(A)[S] = 9y (A)(S] if & € N and ¢y (z) =
z*y(x). So if ¥(0) = 1 then for each ¢ # 0 the operator ¥(e.A)[S] is of class
C*(A) and tends strongly to § as ¢ — 0. Moreover, this convergence holds in
norm if and only if S is of class C2(A4). The map £ — 9%(e.A)[S] is of class C>
in norm on R\ {0} and Sxy(e4)[S] = A (cA)[S] = e~ i (cA)[S] where
Ui (z) = 259 *) (z).

4.2. Let us fix a symmetric operator § € B(H). We choose now a real function
€ € Cg°(R) such that £(0) = £'(0) = 1 and set S(e) = £(.4)[S] for each £ € R\ {0},
S5(0) = 5. Then S(g)* = S(—¢) and s—eli_% S(e) = S(0) = S (but not in norm in
general, since S is not supposed of class C3(A)). The operator S(¢) is of class
C>(A) for each € # 0, the map ¢ — S(e) € B(H) is of class C* in norm on
R\ {0} and for each € # 0 one has:

(41) 5'(6) = <-5(6) = <76 (CA)[S] = A€ (cA)[S]

Moreover, if we set n(z) = (¢(z) — £(—z))/2z if £ # 0 and n(0} = 1 which is of
class C§°(R) and n = nt, we get easily for each € # 0

(4.2) 3S(e) = —ieAn(e A)[S).
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We noticed before that the operators S{e) do not converge to S in norm (un-
less S is of class C2(A)). By using (4.2) one may easily show that Eh_r)r%) ie13S5(e) =
Al[S] as sesquilinear forms on D(A); but A[S] is not a bounded operator in gen-
eral and the family ie713S(g) is norm convergent in B(H) if and only if S is of
class C1(A). We shall describe these convergence properties in the context of the
local regularity classes. We recall for this that the operator #(S}[S,1A)8(S) is well
defined and belongs to B(H) for each bounded function # such that suppf is a
compact subset of Qf(H) (see Proposition 2.1).

LEMMA 4.1. Let § be a real function in C§°(Q,5(S)) aend set @ = 6(S).
(i) For each real ¢ the operator ®S(e)}® is of class C'(A). The map £ —
(A, ®5(¢)®] € B(M) is norm continuous on R.
(ii) The map € — ®S(e)® € B(H) is norm C on R and one has

lim |85 (e)® — @[5, A)@|| = 0.
In particular:
(4.3) lim, le~1S®S()® + $[S,i4)®| = 0.
Moreover, N, := ||[®(5(e) - 8)®, A]||+||25"(e)®— B[S, A]®|| is integrable on (0,1)

with respect to the measure ¢~ 1de.
(iii) If 0 < @ < 1 and 6 € CP(0F, (S)) then N, = O(e”).

Proof. (i) If ¢ = 0 then 5(c)® = S®? is of class C{A) (by hypothesis),
while for € # 0, ®S5(e)® is the product of three operators of class C*(A), so it is
of class C1(A). Then for each £ # 0 we have:

[@S(e)®, A] = A[@S(e)®] = [, A]S(e)® + ©S(e)[®, A] + e ®E1)(e.A4)[S]®-
The three terms in the right hand side are C* functions of € on R\ {0}. So,

in order to prove the norm continuity property on R it suffices to show that
|A[@(S(e) — S)®]|| = 0 as € = 0. If we set &, = W(—0)®, we get:

+oo
Al®S(e)®] = / W(re) A[® e 58| E(7)dr.
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By writing ®,:5%,. = (®rc — )%, + ®5(®,. — ) + &5® and since 25P =
+00 -
J ®5®¢(r)dr (because £(0) = 1), we deduce that:

-+0o0
AB(S(e) - 5)8] = / (W(re) — 1) A[2SBIE(r)dr
+00 -
(4.4) + / W(re) Al(®ye — )5S, JE(r)dr

+o0
+ / W(re) A[BS(®, — B)E(r)dr.

The norm-convergence to zero of the right hand side of (4.4) as € — 0 is assured
by the dominated convergence theorem.

(if) The first part of assertion (ii) of the lemma is shown by using similar
arguments. Indeed, we know that the function ¢ — ®S(e)® is strongly continuous
on R and of class C* on R\ {0}. So, the norm-C* property of this function follows
if we show that ||®S5'()® — ®A[S]®|| — 0 as € — 0. But we have from (4.1):

35" (e)® = AL (e A)[5B] + / W(Ts)-——cI)(TZ_ ud

S@Té(r)g'r

‘I’(‘ra‘)

/ Wire)as 2 =2 2 yar

+e / W(TE)CD(TE) - (I)S(I)(Ti)e* @Tza(r)g'r

TE

The rest of the argument is similar to that in part (i).

Let us now prove the integrability of N over (0,1)) with respect to the
measure £~ *de. As above it suffices to show that || A[®(S(e) — §)®]|| is integrable
over (0,1) with respect to the measure e "'de. Concerning the first terms in the
right hand side of (4.4) we have

(45) | / (W(re) - DA@SEE)dr|| < / I(W(re) — 1)4[@5]]| - [E(r)\dr.
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Hence
1

+co
[ f |(W(re) - 1)ABS8]| - [{(r)ldr

1]

[ arlér)| [ “Ldo|(W(o) — 1)A[85E]|.

—o0

Since £(r) is rapidly decreasing at infinity, it suffices to estimate
1
/ o~ Lo || (W(e) — 1)A[85%]].
0

But the finiteness of this term is equivalent to the fact that A[®S®] is of class
C+9( A) which holds because the function ¢(z) = 26%(z) belongs to C§°(Q4, o (H)).

We must prove the same integrability property for the sum of the two last
terms in the right hand side of (4.4), which is equal to the following sum:

/ W(re)A[(®,e — B)|SB,E(r)dr + / W(re)(@e — B)A[S,oJE(r)dr

—0o0

(4.6)
+ f W(re) A[@S)(®re — B)E(r)dr + [ W(re)BSA[(®,e — B)E(r)dr.

The norm of the first term in the right hand side is obviously estimated by

/ (W(re) = 1)AB] - |15%,]| - [6(7)ldr < C / (W(re) ~ 1)A]| - [E(7))dr.

So, the desired integrability property of this term follows as above (because AP €
C*9(A)). The last two terms in the right hand side of (4.6) are similar to the first
term. It remains to show that the second terms in the right hand side of (4.6) has

the same property . For this we rewrite it as follows:

+oo

/ (= &_c) - (AW(re)[Se])E(r)dr

—00
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By writing W(re)A = L LW(re), we obtain after an integration by parts that

edr
the above expression is equal to:
+oo

/ (W (re) AB) (W (re) S, )E(r)dr + / ‘I’-*EW(TE)(Scp,E)Z(T)gT

-0

(4.7)
- [ @- oW AT = 31 £+ s,

— o

with {(z) = (x€)'(z). L3 is obviously similar to the first term in right hand side
of (4.6). So, it suffices to control the contribution of £; + £» which is obviously
equal to

+o0
Li+ Lo = / W(re) AB — ABIW(re) (S )E(r)dr
=
(48) - [ AaWire)(s8,) @) - Erar

" 70[% * A‘I’] W(re)(S@-e)(7)dr

The first term in the right hand side of (4.8) is similar to the first term in the right
hand side of (4.6) and the second term in the right hand side of (4.8) is equal to:

Al@] ( wa(re)sa(r)gr> o = A[D]¢1(eA)[S]®.
Hence
/1 A2lé: (AS]2 ] = / A2l A€ (c A)[S]@ S
5
- / IA[B]AE (e.4)[S]Bde < oo.

Finally the integrability of the last term in the right hand side of (4.8) follows
from the fact that ® is of class C1*%(A4) (see Section 1.3).
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(iii) We shall now prove that if the operator S is locally of class C'T*(A)
with 0 < o < 1 on a neighborhood of supp # then ||[®(S(e) — S)®, A]}| = O(e%).
This follows easily from the preceding arguments. For example the first term in
the right hand side of (4.4) is treated as follows. By using the fact that @ is of class
Cte(A) (ie. ||[(W(o) —1)A[252]|| € Co®) and the fast decay of £ at infinity we
may bound the right hand side of (4.5) by const-c*. Similarly we prove the same
property for all other terms and also for ||25'(c)® — &[S, A|2||. »

5. LIMITING ABSORPTION PRINCIPLE

This section is devoted to the proof of Theorem 0.1. More explicitly, we shall prove

that if H, A are self-adjoint operators in the Hilbert space H then the boundary

values R(A +1i0) := lirpw R(X +ip) exist weakly* in B{(K,C*) locally uniformly in
p—

X € pfyo(H).

5.1. Let v : R — U be an increasing C'*°-diffeomorphism of R onto some
open real bounded interval U. Then u(H) is a symmetric bounded operator in H.
According to Corollary 3.4, X € pft o(H) if and only if u{}) € uf, o(u(H)). Now
let f € H and denote by o the measure ||E(-) f||*. Then

FOu = (6, = A=) ) = [ ——olee)

R

Fu(Ap) = (f, (w(H) —w(X) —ig) 7' f) = fma(dﬂ«')-
R

Let K be a compact real set. We prove that lin}_0 F(\, ) exists uniformly in
u—s
A € K if and only if l-if?}o Fu (X, p) exists uniformly in A € K. Indeed, we have:
N

1 —u(A)—u(A)(x 3)
F“(A”‘)"u'mp( um) / o = a0 = ] O — N A

But

u(z) — u(\) ~ ¥z = 3)
@) — w0 — W =) — 3| S

lu(z) — u(A) — w'(M)(z - A
lu(z) — u(M) - v/ (X)]z = Al

<C

with a constant C independent of A € K and ¢ > 0. So by the dominated
convergence theorem the limit as 2 — +0 of the second term in the last member
of the preceding equality exists uniformly in A € X, which finishes the proof.
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The conclusion of the preceding remarks is that we can assume without loss
of generality that H is a bounded self-adjoint operator in H (otherwise we work
with w(H) instead of H).

5.2. Let E be the spectral measure of the operator H and let Xy € u{‘_,_O(H ).
We know that one may find strictly positive numbers ap, §y > 0 such that [A¢ —
80, Ao + 80 C uf o(H) and E(Xo,b0)[H,1A)E(X, do) = aoE(Xq, do). In particular
for each d,a such that 0 < § < 8§ and 0 < a < ap, and each real function
0 € C([ho — 8, Mo + 8]) we have O(H)[H,iA|0(H) > apb?*(H).

Let H(e) = &(eA)H where the function £ is as in Subsection 4.2. Then
by using (4.3) we see that for each number » > 0 there is &; > 0 such that
e~ ISTH"(e)T 2 0gT? — v for |e| € €1, where T = 8(H). If p € C§°((Mg ~ o, Mo +
do)) then the preceding function # may be chosen such that 6(z) = 1 on suppy
so 8¢ = . By pre and post-multiplying the preceding inequality by ¢(H) we
then get e~ Sp(H)H*(e)p(H) > agp?(H) — vp?(H) for 0 < |e| < e1. Finally, by
choosing v = @g — a, we see that there is g > 0 such that for 0 < & < e;:

(5.1) Slp(H)H" (e)p(H)) > acp?(H).

5.3. Let us fix a point Ap € uf' ((H), strictly positive numbers dp > & > 0 and
ap > a > 0 and a function ¢ € C§°(R) such that: [Ag — &g, Ao + 6] C pio(H),
supp @ C (Ao — 8o, Ao + do), ¢(z) = 1 on the neighborhood of [Ag — §, Ao + 6] and
0< p(z) <1. Weset @ = p(H) and &+ =1 — 2, and we define H, for any real
€ by:

(5.2) H.=H(1-9%*+®H(c)®.

We list now some properties of these operators which are immediate conse-
quences of the results of Subsection 4.2 and of the fact that & is a self-adjoint
operator that commutes with H:

(ay Ho=H,H}! =H_., Ve e R;

(b) 3e; > 0 such that SH.* > ae®? for all 0 < € € e3;

{c) the mapew— H, € B(’H,) is of class C* in norm on R and its derivative
at 0 is given by Hj = ®[H, A]®;

(d) there is a finite constant C such that ||H, — H|| € Cl|e| for real .

We stress the fact that, due to the term H({1 — ®?) the operator H, is not of

class C*(A) in general. The term ®H(e)® is of class C1(A), in fact, it is even of
class C1*9(4), but it is not of higher order even if € # 0 (because of the factor &).
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5.4. From now on we shall always denote by A an element of the interval [Ag —
d, Ao + 6] and by p a positive real number; then we set z = A + iu. We recall
that our aim is to prove that for each f,g € K, #l_i’ril_o(g, (H — 2)71f) exists. But
(g (H—2)"1fy={g,(H —2)7'®*f) + (g9, (H — 2) 'L f) and the second term in
the right hand side is clearly an analytic function of 2z in a complex neighborhood
of the interval |A — Xo| € 4. So, it suffices to show that “Erg_o(g, (H — z)7'®%f)
exists for each f,g € K, uniformly in X € [Ao — 4, Ap + 9]

5.5. The aim of this step of the proof is to show that for each z as above and
for ¢ > 0 sufficiently small, the operator H, — z (with H, the operator defined
by (5.2)) is invertible in B(#) and its inverse G.(z)} satisfies certain estimates
uniformly in g.

We state the next lemma in a slightly more general setting. We consider
an arbitrary bounded symmetric operator H and a function ¢ € C§°(R) with
0 < ¢(z) < 1and ¢(z) = 1 on a neighborhood of a compact interval [Ag—§, Ag+6].
The notations @, and z = A + iy have the same meaning as above.

LemMA 5.1. Let {H.}ogege, be a fomily of bounded operators such that:
;i_t’%He = Ho = H in norm in B(H) end SH.* > ac®? for some fixed number
a>0andall 0 < e <e,. Then there are constants C' < co and €9 > 0 such that
for all Ay, e with { A~ X |[< 8, 1> 0,0< e < ey and u+e > 0 the operator
H, — z is invertible in B(H) and its inverse G. = Gc(2) = (H: — 2)7! has the
property SGe 2 0 and satisfies the estimates:

(5.3) 1G]l < Clu+e) ™ +C,
(5.4) IGAIP < Clu + &) S, G f) + CIFIR,
(5.5) IG2£I? < Clu+ &) SUf, G ) + ClI £

For the proof see [15] or Lemmas 7.3.2 and 7.3.3 from [2].

The special form (5.2) of the operators H, allows us to get new properties
of G.. From now on the constant &g is that found in Lemma 5.1 and we assume
0<e<eg, A=A €4, > 0. The constant C is different from place to place
but is always independent of A, g, u (subject to the preceding conditions).
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LEMMA 5.2. (i) There is a constant C, independent of X, e,u, such that
[Ge®+]| < C and [|2+G|| < C.

(ii) For each A, e, u one may find operators K, = K. (2) end L. = L.(z) such
that @G.(1 — @) = K.® and (1 — ®)G.® = ®L,, and such that [|Kc|| + || Ll <
C < oo for some constant independent of A, &, y.

Proof. We have

Ge(1—®) = Ge(H — He + H, — 2)(H — 2)"' (1 - @)
= G.(H - H(e))3(H — 2)™ (1 - @) + (H — 2)"1(1 - &).

Lot 1 € C§°(puf o(H)) such that ¥y = ¢. Then ®y(H) = (H)® = & and if we
set

Ko = G @y(H)(H — H(e))w(H)(H - 2)7}(1 - &)

then we obtain G.(1—®) = K. @+ (H —2)"'(1 — &). From (5.3) and Lemma 4.1
we clearly get || Kie|l € € < oo, for some constant C independent of A, ¢, x. This
proves the assertions concerning G, with K, = ®K;. + (H — z)"1(1 — @). For
G¢® the proof is similar and one may take

Le = (1= ®)(H — 2) o (H)H — H(e))p(H)DG. 8 +1]. n

5.6. Since the operator H, is not of class C'(A), the operator G, is not of class
C'(A). We shall see below that #G.® behaves better from this point of view.
Observe first that we have, in the sense of sesquilinear forms on D(A),

(5.6) [4,2C. 3] = [A, ]G + BC.[A, 8] + B[4, G.]P.

The last term in the right hand side is a well defined continuous sesquilinear form
on D(A) because @ is of class C*(A) and so ®D(A} € D(A) and the operator
induced by @ in D(A) is bounded. The first two terms in the right hand side
in (5.6) are bounded operators in #. Hence ®G.® is of class C*(A) if and only
if ®[A,G.]® is a bounded operator in H. In order to prove this fact we recall
a method of computing the sesquilinear form [A,T)], with domain D(A), for an
arbitrary T € B(H). Set A, = (ir)~1(1—¢"47) for r # 0 and note that A% = A_,.
Then for all f,g € D(A) we have

(f,[A,Tlg) = (Af,Tg) — (Tf, Ag)
m <A-'rf: Tg) - <f= TATQ) = _}_%(f) [AT,T]Q>‘

=1li
=0
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Here [A,,T] are bounded operators. So, the boundedness of the form [A4,T] is
a consequence of the existence of the weak limit w-li_%[A,,T] in B{H). On the
other hand, even if {4, T)] is not a bounded operator, the expression ®[A,T|®
makes sense as sesquilinear form on D{A) (because ®D(A) C D(A)) and we
have (f, ®[A,T|®g) = 1%(f,@[A,,T]<I>g) for each f,g € D(A). So ®[A,T|® is a
bounded operator in H if w-li_% B[A,,T)|® exists in B(H).

LeMMA 5.3. (i) The sesquilinear form ®[A, H.]® (with domain D(A)) is a
bounded operator in M and we have

O[A, He|® = s-lim $[A,, H|P = [A, H®?(1 — &%)]

57 —[4,8]H®(1 — &) — H®(1 — $%)[4, ®] + B[4, DH(c)]9.

(i) The sesquilinear form ®[A, G¢|® (with domain D(A)) is a bounded op-
erator in H and we have

(5.8) B[A, G.|® = (8G. + K.)®[H., A|®(L. + G.).

Proof. (i) According to the preceding discussion it is sufficient to show that
s }g}r}) ®[A,, H.|® exists and equals the last member of (5.7) (note that each term
in the last member of (5.7} is a bounded operator). Since & and ®H ()P are of
class C*(A), it is sufficient to treat the term H(1 — ®2?) = H®* from (5.2). But
we clearly have (A, being bounded):

®[A,, HOL|® = [A,, HB?®4) — [4,, 9| HED- — HBOL[A,, ]

Since H®?®1 = H®%(1 — &%) and & are of class C*(A), the right hand side is
strongly convergent and this proves (i).

(i1) As before it suffices to show that s- 11_11)1% ®[A,,G]® exists and is equal to
the right hand side of (5.8). Since A, is bounded and ®G, = (G, + K )@, 5. D =
®(Le + G®), by Lemma 5.2, we have:

B[A,,G.)® = DG, [H,, A,|Gc® = (3G, + K.)B[He, A |B(Le + Ged).

Now the result follows from (i). &

5.7. We need one more identity that we shall establish in the next lemma.
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LEMMA 5.4. The map € — G, is norm C* on [0,eq] and the operator ®G.®
is of class C'(A) for each e € [0,&q]. If we set G. = £G. and

M, =®[H,Al® - dH'(c)® + ®[®(H(e) — H)D, Al®,
then we have:
PGP + [A, G D) = K. ®|H,, AlPL. + ([A, 8] + KEQ[HE,A]Q)GECD

+ OG([A, B] + ®[H,, A|®L.) + DG, M.G. .

Proof. The differentiability of G. is easily ohtained from the identity G, —
Geo = —G(H, — Ho)G,, and the estimate ||G.|| £ Cu~! + C. We observe that
G. = —G.H.'G.. The property #G.® € C*(A) follows from (5.6) and Lemma 5.3
Then (5.9) follows from (5.6) and (5.8) by observing that M, = ®[H,, A|®~H..

(5.9)

LEMMA 5.5. Let {f.} be a family of vectors in H such that £ — f. is strongly
C! and f. € D(A) for cach e. Set F, = (&f.,G.8f.). Then ¢ — F, is of class
C* and its derivative F! satisfies:

Fi = (fe, KP[H,, A]OL. fo) + (2f, — A®fe + B[A, H|OK! fo, G f,)

5.10
(%10 +(Ge®fe, ®f. + ABfe + BHe, A]OL. fe) + (GI 2 fe, McGe®fe).

Let i(e) = ||fl] + |Afell + || fell. Then there is a constant C independent of ¢,
such thot I, satisfies the following differential inequality:

611) | EL < OIAE + 1Ml 1) + 022 R 1+ St 7

Proof. (5.10) is a straightforward consequence of {5.8). Note that ®Af. +
(A, @]fc = A®f., because f. € D(A) and ®D(A) C D(A). From (5.7) and 4.2
it follows that ||®[H., A]®|| is bounded by a constant independent of & € (0, &),
A and g. Since we have a similar bound for [|K,|| and ||L.|| and ||A®f.| <
[Afell + [IA, ®]|| | fell, we see that there is a constant C; {independent of A, e, )

such that
| FLIS Gl £ell? + i) (IGe®@Fell + 1GI R Fell) + M| - G2 el - GE @ fe -
On the other hand, (5.4) and (5.5) imply:

C 1
G @) < %} F |2 +Cllofe|l

where G is either G. and G;. The last two inequalities clearly imply (5.11) (for
a new constant C). 1
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5.8. We are now in a position to deduce the main estimates of the theory.

PROPOSITION 5.6. There is a constant C, independent of A, e, u, such that
|G II/2V) = ||Gell ko icr < C. In particular for each s > 1/2 there exists C; < 0
such that ||Ge||®) := ||Gella,~nz < Cs. Moreover, one may choose C such that:

(5.12) IGelicar + I Gellaesn- < Ce™E.
(5.13) IGellpt,—s2t + 1Gellzsai, < Ce™.

Proof. By following the proof from Section 4.6 of [6] we get |(2f,G.®f)| <
C||fllx for all f € K (note that :{OHMsHe‘l de < oo, as has been shown in

Lemma 4.1 (b)). This gives ||®G.®||(*/2)) < C for (another) constant C. Then
|Ge||0/21) £ C is consequence of Lemma 5.2 (i). The other estimates are proved
as in Section 4.6 of {6].

Theorem 0.1 is an easy consequence of the Proposition 5.6, see Section 4.7
in [6].

6. REGULARITY OF THE BOUNDARY VALUES OF THE RESOLVENT FAMILY

In the previous section we have shown the existence of the boundary values R(\ £+
i0) in B(K,K*) if X € pfo(H). But for each s > 1/2 we have B(K,K*) C
B(Hs,H-s). We shall now prove that for 1/2 < s < 1 the map A = R(A £1i0) €
B(Hs,H_s) is locally of class A% on uf', (H), with a = s —1/2.

This section is devoted to the proof of this assertion. We keep the notations
of the preceding section and we assume that [Ag — 8g, Ao +do] C ufti o (H). Clearly
it suffices to show that the map A — ®R(A +1i0)® € B(H,, H}) is of class A® on
[/\0 — 6, 0 + 5] Let

F. = F(\€) = 6(c A)BG.D0(c A) = 0(e A} (H. — X — ip) "1 ®6( A)

where 6 € C$°(R) with 8(0) = 1, A € Mo — 6, do+8] C pf o (H), 0> 0, € € (0,&0).
The assertion that we want to prove is a simple consequence of the following
estimate

() (8

d
£ Ce Ve,

—F.
de

d
- &

|

Indeed, by applying the Proposition A.l of {6] to the function [Ag — J,Ao +
0] x (0,e0) 2 (Ne) = {f,F(Xe)f) for f € M, one sees that the map A —
(fy FOL0) ) = (f, @R(A+iu)®@f) is of class A% on [Ag — §, o + 6], uniformly in p.



THE CONJUGATE OPERATOR METHOD FOR LOCALLY REGULAR HAMILTONIANS 319

So, if we make u — +0 we obtain that the map A — (f,®R(} + i0)®f) is of
class A% on [Ao — 8, Ap + 6], and the desired assertion follows from the polarization
formula and the Banach-Steinhauss theorem.

Now we shall prove the estimate (6.1). For this we calculate the derivative
with respect to ¢:

F! = A0 (e A)BG,0(cA) + (e A)BG.BH(cA) + 0(e A) DG, DA (c A).

By Lemma 5.4, ®G.® = A[®G.®|] + R, with R, is the right hand side of the
identity (5.9); and since A[®G.®| + ARG, = ®G.PA is valid in the sense of
sesquilinear forms on D{A), we have

(6.2) eF! = p1(cA)PG . DY(cA) + 0(c A) PG, Dpa(eA) + e8(cA)R O(cA)

with the notations ¢ (z) = z(#'(z) — 0(z)) and @2(z) = z(¢'(z) + 6(z)). The first
two terms in the right hand side of (6.2) are similar, so it suffices to estimate only
the first term (for example):

(6:3) (A %p1(cA)2G:20(cA)(4) | < CI{A) "1 (eA)]| - [|@GD{A) ™|

where C is a finite constant independent of A,e,u (as above). Since for each
0 < s € 1 we have |jp1{eA)(A)*|| € Ce® as £ — 0. So by taking into account the
estimate (5.13), the right hand side of (6.3) is dominated by a constant independent
of A&, i times £971/2 = % for each ¢ € (0,e0). It remains to show the same
estimate for e R.. For this we recall the explicit form of R,:

R. = K BA[H|®L, + (—Al®] + K. SA[H.)3)G.®

6.4
(6.4) + BG.(—Al®] + PAH]®)L. + PG M.G. 5.

Then by Lemma 5.2 there is a constant C (independent of A, ¢, u) such that:
leKDAH] L) < Cel|RA[H)B|.

By Lemma 5.2 and relation (5.7) the right hand side of the preceding estimate is
dominated by a constant (similar to C') times ¢ and this is better than we need
because & < 1/2 < 1. The second and the third terms in the right hand side of
(6.4) are similar, so we have to estimate the second term for example:

lle(A)~*(—A[®] + K. 2AH|®)2G,(4)"°]|
< e(A) T (—A[®] + K DAH D) - [|2G(A)*|.
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By the same argument as above, the right hand side is bounded by Ce'/? (with a
constant C' which is independent of A, £, 1) and this is better than we need because
o < 1/2 < 1. Finally by the same argument there is a constant C independent of
A, €, 1 such that

e{A) T G MG 2(A)°|| < el{A)°BC|| - [|Me| - |G- 2{A) ="
< Cee™ || M, || = C|| M|

Now we apply Lemma 4.1 (jii): the fact that [Ag — 8o, Ag + 8o] C pf, . (H) implies
that ||M|| = O(e®), so the right hand side of the preceding estimate satisfies the
desired estimate. In conclusion, we have {[e(A)75F/{A)~5|| = 0(e?).

It remains to prove a similar estimate for (d/dA)F..For this we derive (6.2)
with respect to A and, by taking into account the relation %G’E = G? we obtain:

(6.5) %EF; — 1 (A)BCPB0(= A)+0(c A)DC2bipa (e A) +eb(e A) («(%RE) 8(c A).

As above we get

—8 d —s —14o
) Sertiay| = o),
in other terms
_. d s —2ta
||<A> «Lraye] = ofe2+=)

By integrating with respect to € over an interval (£, £0) and by taking into account
that o — 1 < 0 we obtain

d

(A)" < Fe(A)7%| = O(e™H*).
[

Thus (6.1) is proved and so the proof of Theorem 0.2 is finished. &

The proof of Theorem 0.3 is rather similar: one uses the estimates that we
have established in Section 5 and the techniques of the proof of Theorem 6.7 from
[8]. Details can be found in [18].
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