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ABSTRACT. The present article focuses on the congruence prohblem for holo-
morphic maps into flag manifolds associated with C*-algebras and the equiv-
alence problem for tuples of elements of a C*-algebra in the Cowen-Douglas
class. The former problem is formulated and solved for a quite large class
of holomorphic maps that includes the kind of maps needed to address and
solve the latter problem. Along the way towards manageable answers to both
these problems we also study in detail the behavior of holomorphic families
of elements with closed range of C*-algebras.

KEYWORDS: C-algebra, Cowen-Douglas theory, flag manifolds.

AMS SUBJECT CLASSIFICATION: Primary 47C15, 47B20; Secondary 47A13.

INTRODUCTION

In the present note we propose a generalization of the Cowen-Douglas class of
Hilbert space operators that includes the classes previously introduced in [8], [9]
and [7]. It must be said, however, that this objective is somewhat peripheral to the
main issue we will elaborate on. The primary purpose of our investigations is to
classify holomorphic maps into flag manifolds of a C*-algebra up to an equivalence
relation called congruence. The specific way we address this problem relies on [17],
[18] where preliminary steps towards a manageable description of the geometry
underlying any flag manifold of a C*-algebra were taken. Nevertheless, we should
point out that the congruence problem also originates in [8], the influential article
that set the stage for nearly all subsequent developments of the Cowen-Douglas
theory.
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One hallmark of the Cowen-Douglas theory is the considerable evidence it
provides in support of the view that a great deal of concepts and techniques cus-
tomarily encountered in classical complex geométry may be naturally defined and
fruitfully handled in the framework of operator theory. In [17], [18], as well as
in this note, we tried to promote the same view. As a highlight of our approach
we could mention that many of the forthcoming definitions and results are formu-
lated in the setting of general C*-algebras. We pause to outline the features of
each section in this article.

In Section 1 we introduce the kernel and range projections of elements with
closed range of a C*-algebra. The main goal is to investigate the kernel or range
projections of holomorphic families of elements having closed range. Under favor-
able circumstances we prove that the projection-valued maps defined in this way
satisfy a non-linear first-order differential equation. The precise meaning of that
equation is explained in Section 2, where we briefly describe the canonical complex
structure of flag manifolds associated to C*-algebras. Section 2 is mostly concerned
with various criteria for holomorphic maps into flag manifolds and some of their
consequences. In Section 3 we explore the relationship between tuples of clements
of a C*-algebra in the Cowen-Douglas class and projection-valued holomorphic
maps. We explain how the equivalence problem for tuples in the Cowen-Douglas
class can be reduced to the congruence problem for projection-valued holomorphic
maps. We also exhibit a test for the congruence of holomorphic maps in terms
of their order of contact. In Section 4, the congruence theorem is generalized for
holomorphic maps into the flag manifold of a C*-algebra. The article ends with
a section on a class of tuples of Hilbert space operators that are quite tractable
along the lines of the previous sections, and that generalizes the Cowen-Douglas
class.

Before going on, we want to make a final general ohservation about the sub-
ject matter of this article. It was motivated by and grew out of prior contributions
aimed to widen the scope of the Cowen-Douglas theory. Precise references, hints,
and clues will be indicated at the right place and time.
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1. KERNEL AND RANGE PROJECTIONS

1.1. Throughout this article we will be dealing with idempotents in unital C*-
algebras. Recall that if U is a C*-algebra and e € 2, then ¢ is an idempotent

whenever e?

= e. A self-adjoint idempotent is briefly referred to as a projection.
In case 2 is fixed, we will let £(2) and P() denote the set of all idempotents and
projections in %, respectively.

Although the sets £(2A) and P(A) could be quite small, however there are
classes of C*-algebras that contain an abundance of projections, as for instance the
class of von Neumann algebras. The simplest example is by far provided by the
algebra L£{#H) of all bounded linear operators on a Hilbert space H. Any projection
in £(H) occurs as a projection operator onto a closed subspace of H, so indeed
L(H) bhas a lot of projections. The next definition and the conventions we are
going to adopt are basically motivated by this geometric situation.

DEFINITION. Let e be an element of a C*-algebra 2.

(i) An idempotent e € £() is called a kernel idempotent of a provided that
ae = 0 and any z in % satisfying az = 0 is such that z = ex. If, in addition, e is
self-adjoint, then it is called a kernel projection of a.

(ii) A projection p € P(2) is said to be a range projection of a provided that
po = a and any x in U satisfying za = 0 is such that zp = 0.

For an excellent account of various existence of projections axioms for C*-
algebras we refer to [2].

1.2. It should be mentioned that an element a of an arbitrary C*-algebra 2 may
have none or plenty of kernel idempotents but no more than one kernel, or one
range projection. In case the kernel and the range projections of a given element
o € U exist, they will be denoted by x(a) and p(a), respectively. If a* stands for
the adjoint of a, then the existence of x{a), or p(a), is equivalent to the existence
of p(a*), or x{a*). More precisely, one easily shows that

(1.1) pla’) =1 - &(a),
and
(1.2) k(™) =1~ pla).

A particularly neat condition that ensures the existence of x(a) and x(a*) may be
formulated in terms of the spectrum o(a*a) of a*a as follows.
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DEFINITION. We say that an element a € 2 has closed range if zero is an
isolated point in o{a*a) U {0}.

The next two remarks illustrate the point.

(i) Suppose a € 2 has closed range and let Eyp(a*a) be the spectral projec-
tion of a*a associated with {0}. Then Eg(a*a) is the kernel projection of a and,
consequently, by means of the analytic functional calculus we have

(1.3) o) = 5 / (¢ —a*a)"de,

i€l=¢

where 0 < ¢ < inf{g(a*a) \ {0}}.

(ii) Since o(a*a) U {0} = o(aa*) U {0} for any a € A, we clearly get that a
has closed range if and only if a* has closed range. Thus we conclude that when
an element ¢ has closed range both the kernel projections «(a) and x(a*), as well
as the range projections p(a) and p{a*)}, exist.

For some other details concerned with the class of elements having closed
range we refer to [21], Section 3.

1.3. The next lemma simply asserts that any idempotent e € £(2) bas a range
projection. Although we could prove this result based on the above comments, a
straightforward approach is at hand ([21], Lemma 2.15).

LEMMA. If e € £(), then there is a unigque projection p € P(2) such that

(1.4) ep=p, pe=e.

Proof. 1f (1.4) holds, then pe* = p and pe = e, hence p[1 —(e* —e}] = e. Since
e* — e is skew-hermitian, we get that 1 ¢ o(e* —e). Therefore, p = e{(1 —e* +¢)7 %,
and so the uniqueness of p follows. On the other hand, if e € £(}, then an easy
verification shows that p = e(1 — e* + €)™} is a projection satisfying (1.4). 8

The previous proof prompts us to introduce the map
(1.5) T E®) = PR), w(e)=e(l-e*+e)™ !, e &),

which will play an important role in our further discussions. For the time being
let us just observe that p = w(e) is the range projection of any given e € £(2).
Indeed, by (1.4) we know that pe = e, and clearly ze = 0 implies zp = zep = 0.
We also notice that in case e is a kernel idempotent of an element ¢ € %, its range
projection m(e) is the kernel projection of a. In particular, because obviously e is
a kernel idempotent of e+ = 1 — e, we get that m(e) is the kernel projection of e=.
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1.4. We now return to the class of elements having closed range. Suppose a € 2
is such an element. We first observe that

[a”a + k(e)]a* = a*[aa” + x{a*))-

On the other hand, by Subsection 1.2 we know that x(a) = Eg(a*a) and x(a*) =
Ep(aa*). Therefore, both a*a+x(a) and aa* + «{a*) are invertible. Thus, it makes
sense to define

(1.6) (a) = a*faa* + x(a*)]"! = [a*a + #{a)] ta*.

The next two properties of ¢(a) are readily verifiable {see also (1.1} and (1.2)
above):

(1.7) Ha)a =1 - «(a) = p(a"),

(1.8) at(a) =1 —x(a*) = pla).

The element «(a) will be referred to as the generalized inverse of a. From (1.6) we
also obtain

(1.9) k(a)(a) =0, fa)s(a*)=0.

1.5. Our main goal in this section is to investigate families of elements having
closed range. Specifically, we are going to consider continuous, differentiable, or
holomorphic families, and to study the behavior of the corresponding kernel and
range projections.

To begin with, let €2 be a topological space, and let A : £ ~ 2 be a continuous
map such that A(w) has closed range for every w € Q. Furthermore, let X, R, and
A" be the 2-valued maps defined by

(1.10) K(w) = r(Aw)), Rw)=p(AWw), A"(w)=(AW)),

for all w € Q.
From (1.6), (1.7), and (1.8) above we clearly get the next result.
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ProrosITION. The following conditions are egquivalent:
(i) K is continuous on Q.

(ii) R is continuous on §).

(iii) A" is continuous on Q.

It should be mentioned that without some other additional assumptions none
of the above conditions holds. In order to state and prove some continuity criteria
we need a new tool.

1.6. In the same setting as before, assume that the point w € Q is fixed and let
B, : 2 — 2 be the map defined by

(1.11) B.(\) = K(w) + ANw)A(N), Aef

The map B, is continuous, and by (1.7) we clearly have B,(w) = 1. Therefore,
there exists an open neighborhood A,, C Q of w such that B, () is invertible for
any A € A,. Thus, we may define another map F,, : A, — A by

(1.12) F,(\) = [B.(W]T K (w), A€ A,
Below we summarize a few nice properties of this map.

LEMMA. Formula (1.12) defines an idempotent-valued continuouws map, such

that

(1.13) Fu(MK (W) = Fu(w),
(1.14) K(w)Fu()) = K(w),
(1.15) FLVK() = K(3),

for every A € A,,.

Proof. The continuity of F,, and equality (1.13) are obvious. From (1.9) it
follows that K(w)B,(A) = K(w), hence

(1.16) K(W)[B.(V)]™! = K(w).

This equality clearly implies (1.14), as wel! as the desired equation F,,(A)? = F,,(}).
Finally, by (1.11) we have that K (w) = B,(A)— A" (w)A(A}, and (1.12} yields
an alternative expression for F,,()), namely,

(1.17) Fu(X) = 1 - [B, V)] AN () AY),

which takes care of (1.15). u
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1.7. We are now in a position to formulate two tests for continuity.

PROPOSITION. Each of the conditions (i), (ii), and (iii) in Proposition 1.5 1s
equivalent to:

(iv) for every w € Q there exists an open neighborhood A, C A, of w such
that F,,(X) is a kernel idempotent of A(X) for all A € AL,.

Moreover, if there exists a faithful tracial linear functional T on a *-ideal J
of A and K(w) € J for all w € Q, then any of the conditions (i), (it), (iii), or (iv)
is equivalent to:

(v) the function 7o K is locally constant on .

Proof. The fact that (iv) implies (i) follows from a remark at the end of 1.3.
More precisely, we conclude that K () = n(F,())) for every A € A/,. Formula
(1.5) and the continuity of F,, on A!, clearly prove that K is continuous on A/,
and therefore, K is continuous everywhere.

Suppose next that (ii) holds true, and for a given w € Q let A, C A, be an
open neighborhood of w such that

(1.18) IR(X) - R(w)|l < 1,

for any A € A[,. As a first step towards the proof of (iv) we claim that
(1.19) ANEL (N =0, AeA..

The proof of (1.19) goes as follows. Since R{A)A()) = A(A} we get that
(1.20) 1 -RMAMNF,(A) =0, Xe€A,.

On the other hand, let us observe that (1.8), (1.11), (1.12), and (1.14) lead suc-
cessively to
R(w) AN Fu () = A)A™w) AN FL(X) = Aw)[Bu(N) — K(w)]Fu(N)
= A(w)[K(w) - K(w)] =0.
The last relation and (1.20) show that

(1.21) {1 - [R(}) = R(w)}ANF,(A) =0,

and now (1.19) follows easily since (1.18) implies that 1—[R(A)— R(w)] is invertible.

To conclude the proof of (iv) all we need is to show that A(A)z = 0 implies
z = F,(A)z. To this end it is enough to take into account that A(A)z = 0 implies
z = K(A)z, and then, based on (1.15), to observe that indeed z = F,(A\)z.
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It remains to prove that under the additional assumptions stated in the
second half of our proposition, condition (v) is equivalent to any of the other four
conditions. The fact that (i) implies (v) is obvious, so let us suppose that (v)
holds. Let w be a point in €2, and let A, C Q and F, : A, — U be defined as in
1.6. Without any loss of generality we may assume that A, is connected. Define
next P : A, - A by P = noF,, where 7 is the map given by (1.5). The continuity
of F,, clearly implies the continuity of P on A,,. By Lemma 1.3 we know that

(1.22) POF,(\) = F,(\), F,()P(A) =P(\), IeA..
On the other hand, based on (1.15) and (1.22) we get
(1.23) PA)K(X) = PQA)F,(AK(X) = F,(AMK(A) = K()),

hence K (A) < P()) for all A € A,,. By (1.12) and (1.22) we also have that P(\) € J
for any A € A,. Since P is projection-valued it follows that 7 o P is constant on
A,. But P(w) = K(w), so 7(P()\)) = 7(K (X)) for all A € A,. Finally, using the
faithfulness of 7 and the fact that K()) < P(A) we conclude that K(A\) = P(}),
for every A € A, so that K is continuous on A,,.

The proof is complete. 8

1.8. Proposition 1.7 could be equally well used as a test for differentiability.
Specifically, assume that Q is a differentiable manifold, and let A : @ — 2 be a
differentiable map such that A(w) has closed range for every w € . By (1.11) and
(1.12) we deduce that any map F,, : A, — 2 is differentiable. A brief inspection
of the proofs above suffices to conclude that the continuity of the kernel projection
map K : 2 — 2 ensures its differentiability on (.

We encounter a more interesting situation in case Q is a complex manifold
and A : @ — %A is a holomorphic map. Again the continuity of K implies a
stronger property, namely, X turns out to be real-analytic, but of course it is out
of question to hope that K is a holomorphic 2-valued map. The special property
inherited by K in this case has an interesting geometric significance that will be
fully explained in Section 2. All we can do right now is to derive that property.
So, let us assume that A : & — 2 is holomorphic. By applying the 8 operator to

(1.24) AW)K(w) =0, weQ,
we get

(1.25) AWK (w) =0, weQ,
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where 0K is an -valued differential (0,1)-form. On the other hand, (1.25) and
Definition 1.1 clearly imply

(1.26) 0K (w) = K(w)dK(w), we,

where the product of 2-valued maps and 2-valued forms is defined in the standard
fashion.

It is worth noticing that under the same assumptions the range projection
map R : Q — 2 behaves in a very similar fashion. If A : @ — 2 is holomorphic,
then R is a real-analytic map, and from

(1.27) R(w)Aw) = Alw), we,
we get

(1.28) [PR(W)A(w) =0, weQ,
hence

(1.29) [OR(w)|R(w) = 0.

On the other hand, since R(w) = R(w)?, we have

OR(w) = [BR(w)|R(w) + R(w)BR(w),
50 (1.29) is equivalent to
(1.30) OR(w) = R(w)OR(w), w € .

A more detailed discussion centered on equations (1.26) and (1.30) is carried
out in the next section. Before concluding the present section we want to point
out that Proposition 1.7 and the comments made at 1.8 extend [11], Theorem 2.2
and {21], Theorem 3.4.
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2. FLAG MANIFOLDS OF C*-ALGEBRAS

2.1. Our goal in the sequel is to outline a few geometric properties of the space
of increasing n-tuples of projections in a C*-algebra . Such spaces will be called
flag manifolds of the given algebra 2, for the obvious reason that the classical flag
manifolds might be alternatively described in this way.

We first recall that £(?) and, consequently, P(%) are partially ordered sets;
if e and f are two idempotents in 2, then e £ f whenever ef = ¢ and fe=-ec.

DeFINITION. Let n 2 1 be an integer.
(1) An n-tuple e = (g1, €2, ..., €e,) of idempotents in 2 is called an extended
n-flag of A provided that

(2.1) e1< e € < en.

(ii) An extended n-flag p = (p1,p2,---,Pn) is said to be an n-flag of A in case
every entry p;, 1 €1 € n, is a projection in 2.

The sets of all extended n-flags of A and of all n-flags of 2A will be denoted
by En(2A) and P, (), respectively.

2.2. Both £,(2) and P, (A) are closed subsets of A", the n-fold direct product of
2. Actually, even more is true, namely, £,(%) is a complex submanifold of 2",
whereas P, (%) is merely a real-analytic submanifold of %4®. The interested reader
can find plenty of details concerning the differential geometry of £, (%) and P, (%)
in [5], [16], [17] and [18]. From now on we will refer to the spaces £,{%) and
P,.(A) as the extended n-flag manifold, and the n-flag manifold of 9, respectively.
In the simplest case n = 1 we get the spaces £(2) and P{21), alternatively called
the extended Grassmann manifold, and the Grassmann manifold of . Specific
properties of these spaces are discussed in [6], [15], [19], [21], [25] and [26].

2.3. Although P, (%) fails to be a complex submanifold of £,(2), however P, ()
inherits a canonical complex structure from the complex manifold &£,(21). The

point is that £,() turns out to be a covering space of P, (). The covering map
IT: Ea(A) = Pp() is given by

(2.2) ey, e2,...,€n) = (w(e1),m(ea),...,m(en)), (e1,€2,...,€n) € En(H),

where 7 : £() — P() is the map already defined by (1.5). Since the latter is an
order preserving map, the former is well-defined.
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The just introduced map IT : £,(A) — P, (A) will be referred to as the Gram-
Schmidt map. This map supplics the main device we need in order to prove the
existence of a natural complex structure on P,(2). The quickest argument one
might invoke was suggested to us by Harald Upmeier, and it amounts to applying
a theorem of Godement to the appropriate manifolds and maps (see (4], 5.9.5 and
(22], Theorem 8.14). In effect, we get the next result.

PROPOSITION. The Gram-Schmidt map is a real-anolytic submersion.

2.4. The relevance of this result comes from the fact that the kernel of the tangent
map

(2.3) dlI(e) : T.En{A) — Tn(c)Pn(Ql)

is a complez subspace of the tangent space T.£,(%), for every ¢ € £,(2), and,
moreover, the tangent bundle TE,(2A) splits into a direct sum of two complex
subbundles

(2.4) TEL(A) =K & K,

where the fiber K, of K at any point e € £,(%) is the kernel of dIl{e).
By relying once again on Godement’s theorem we arrive at the next conclu-
sion.

THEOREM. There exists a unigue complez structure on the flag manifold
Pn() such that the Gram-Schmidt map I1 : E,(A) — Pr(A) is a holomorphic
map.

2.5. The above developed reasoning has an inherent drawback. Theorem 2.4 gives
the ground for the existence of a complex structure on the flag manifold P, (%),
but it shortly fails to make this structure a practical tool. For a complete under-
standing of the complex structure on P, (2) we have to describe the subbundles
K and K’ in a manageable way. This specific goal has been accomplished in [18]
where a straightforward proof of Theorem 2.4 was given. More precisely, the proof
is based on an explicit description of the canonical complex structure of the flag
manifold, very much in the spirit — if not the letter — of the approach initiated
by Wang ([24]) and by Borel and Hirzebruch (3] in their studies on classical flag
manifolds. An excellent account on the subject can be found in [23].

2.6. In view of our further purposes we need a criterion for determining the
holomorphic maps from a given complex manifold  to the flag manifold P, (2).
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Specifically, we assume that ) is a finite or infinite dimensional complex manifold
and P,.(2) is equipped with the canonical complex structure described above. For
the sake of completeness we will next indicate two criteria for holomorphic P, (2)-
valued maps. The first one follows from Theorem 2.4 and from the general fact
that a holomorphic submersion has a local holomorphic right-inverse about any
given point, with a prescribed value at that point (see, for instance, [22], Corollary
8.3). The holomorphic submersion we are interested in is the Gram-Schmidt map
IT: £, (A) - Pa().

THEOREM. Suppose P: Q — P,() is a smooth map. Then P is holomor-
phic if and only if for every point w € §} there ezists an open neighborhood A, C 0
of w and a holomorphic map F, : A, = £,(¥) such that F,(w) = P(w), and
(2.5) P(A)=Mo F,(}), X€A,.

In particular, this theorem shows that a holomorphic P,(%)-valued map is
a real-analytic 2A™-valued map.

2.7. A more reliable criterion has been proved in [18], Theorem 3.3 and Corol-
lary 3.4. It is exclusively stated in terms of the & operator acting on smooth
WA-valued maps. Quite expectably, a characterization of anti-holomorphic Py (2)-
valued maps is also available by means of the & operator.

THEOREM. Let P = (P, Ps,...,P,) : Q = P,(4U} be a smooth map. Then
P is holomorphic if and only if
(2.6) OP;(w) = Py(w)BP;(w),
for allw € Q and every 1 € i € n, and P is anti-holomorphic if and only if

(2.7) 8P,(w) = Pi(w)8P;(w),

forallw e Q and every 1 < i < n.

2.8. The last theorem generalizes some results from [15], [21], and [25], where
holomorphic maps into the Grassmann manifold P(2) are considered. An im-
portant feature of Theorem 2.7 is that it provides a componentwise test for holo-
morphic or anti-holomorphic maps, and, consequently, it enables us to reduce the
general study of such maps into flag manifolds to the study of holomorphic or
anti-holomorphic maps with values in a Grassmann manifold.
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In this regard let us assume for a while that n = 1, and let P : @ — P(%)
be a holomorphic map, that is,

(2.8) HP(w) = P(w)0P(w), we.

The kernel projection map K and the range projection map I defined in Section 1
provide two examples of projection-valued maps satisfying Equation (2.8).

Actually, these two examples are quite typical, in the sense that every holo-
morphic map P :  — P(2) is locally given either as the kernel projection map,
or as the range projection map, of a holomorphic family of elements with closed
range. The simple proof of this remark follows from Theorem 2.6. Specifically,
for any given P : © — P(2) satisfying (2.8) and for any w € Q we can find a
holomorphic map F,, : A, — &£(2) defined on a neighborhood A, C © of w, such
that

(2.9) P\ =w(F,(\), A€ A,

Therefore, P|A, equals the range projection map corresponding to F, : A, —
£(2). On the other hand, if we let FF : A, — £(2) be the holomorphic
idempotent-valued map defined by

(2.10) Fr\)=1-F,()), Xe€A,,

then a straightforward computation based on Lemma 1.3 easily implies that P(A)
is the kernel projection of FX()) for every A € A,,.

2.9. We next want to find a few other conditions equivalent to (2.8) above, as well
as some consequences of these conditions. First, we notice that P(w) = P(w)?
implies

9P (w) = [OP(w)]P(w) + P(w)0P(w), we€Q,
hence (2.8) is equivalent to

(2.11) [OP(w)]P(w) =0, we€ .

By taking now the adjoints, from (2.8) and (2.11) we get two new equivalent
conditions, namely,

(2.12) 8P(w) = [fP(w)]P(w), w €,
and, respectively,

(2.13) Pw)dP(w) =0, wel.
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Equation (2.13) and Theorem 2.7 can be employed to check that the map
(2.14) PL:Q— ), Pw=1-Pw), we,
is an anti-holomorphic projection-valued map. Indeed, by (2.13) we get

APt (w) — PH(w)0P(w) = —8P(w) + [1 — P(w)|dP(w)
= —P(w)8P(w) = 0,

for all w € Q, hence P is a solution of Equation (2.7). This striking behavior of
P could also be explained by relying on formula {1.1) and the comments made
at the end of Subsection 2.8. Since at least locally we have

(2.15) P(-) = s[A(-)],

where A(-) is a holomorphic family of elements with closed range, it follows that
(2.16) PL(-) = plAL )],

and clearly A(-)* is an anti-holomorphic Y-valued map.

2.10. In order to derive some consequences of (2.8), until the end of this section

“we will suppose that Q is finite-dimensional and connected. Moreover, we assume
that w € Q is fixed, and let A, C Q be a coordinate neighborhood centered at

w with the coordinate functions (A, Az,...,Am). Let ZT denote the set of all
m-tuples I = (41,43,...,im) of non-negative integers, and in case I € Z7 is given,
let

[l =41 4da+ - +im, =4l il

In addition, we set
D' = (8/0M)(8/0X)" -+ (8/8Am)™™,

and
D = (8/0%,)(8/03s)"2 - - (8]8hn ).

The next result points out an important property of every given holomorphic
map P : Q — P(%), that clearly resembles the behavior of an arbitrary A-valued
complex-analytic map.
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THEOREM. The set D,(P) = {DIP(w) : I € Z*} of all the derivatives of
P at w with respect to the complex coordinate functions completely determines the
map P : Q — P(A).

Proof. Since P is real-analytic and §? is connected, P is uniquely determined
by its restriction to A,,.

Without any loss of generality we may assume that A, is sufficiently small
such that the power series expansion

(2.17) P(\) = S /1tmD’D’ Pw)(r - w) (R - @)’
I.J

holds for every A € A, and, moreover, the series above converges absolutely in 2A.
Therefore, all we have to prove is that the set D, (P) suffices to recover all the
possible derivatives of P at w. To this end we first notice the obvious relations

(2.18) D’Pw) = [D'PWw))", Jezm.

Furthermore, from equations (2.8), (2.11), (2.12) and (2.13) we get the less obvious,
but important relations

(2.19) 1 - Pw)D’ P(w) = 0 = (D7 P))Pw), |J]>1,
(2.20 PW)D P(w) =0 = [DIPW)][1 - P(w)], 1] >1,
as well as

(2.21) D'D’P(w) = [D'P(w)][D’ P(w)] - D’ P)[D'PWw)], [I|=1=|J].

The reader can either supply the elementary proofs of these relations, or find
complete arguments in [15], Section 1 or {21], Section 3.

By a repeated use of (2.21), in conjunction with (2.19) and (2.20), we con-
clude that every derivative D! ﬁJP(w), for arbitrary I,J € Z7, may be expressed
as a sum of monomials of the form

(i) £[D" P@)][D” P(w)] - [D™ P(w)][T”* P(w),
or

(i) £[D” P@)][D* PW)] - [D* P(w)][D* P(w)),
where

L+Ih+--+=I and L +Jo+  +Jp=J

This remark and (2.18) complete the proof of our theorem. &
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2.11. There are at least two consequences of Theorem 2.10, and of its proof, that
deserve a special attention. First, we want to notice that the complex-analytic
part of the power series (2.17), namely, the map F, from A, to 2 given by
(2.22) Fo(A) =Y _1/ID'Pw)(A - w)!, A€ A,
I
is an £(§)-valued map satisfying the following conditions:
(i) Fu(MP(A) = P(}),
(i) P(A)Fu(X) = Fu (),
(iii) Fo (M) P(w) = F(X),
(iv) P(w)Fu(A) = P(w),
for any A € A,,. In particular, F,, also satisfies (2.9). Borrowing a term introduced
in [21] we will refer to any holomorphic map F, : A, — £(Q) subject to conditions
(i)-(iv) above as a frame of P about the given point w. This terminology is aimed
to stress on the geometric significance of Equation (2.8) that becomes transparent
in case % = L(H), where H is a complex Hilbert space. As a matter of fact, right
now we are very close to one of the major themes of the Cowen-Douglas theory.

Specifically, let us suppose that P : Q@ — P{L(H)) is merely a continuous map
such that

(2.23) dim{P(w)H] =k, weQ,

for a given integer k. Any such map P determines a continuous vector bundle K
over ), where the fiber K, of K at every point w € Q is given by

(2.24) K. = Pw)H.

With the aid of the generalized Grothendieck’s lemma proved by Malgrange ([13]),
one may show that K is a holomorphic vector bundle if and only if P is a smooth
map satisfying (2.8) (for details, see [15], Proposition 1.1).

2.12. The next result summarizes a second consequence of Theorem 2.10.

PROPOSITION. Suppose that ¢ : U — B is a unital C*-algebra homomor-
phism, and let P : Q@ — P(A) and Q : @ — P(B) be two given holomorphic
projection-valued meps. The following two conditions are equivalent:

(i) o(P(-)) =Q(-);

(i) there ezists a point w € Q such that
(2.25) ¢(D'P(w)) = D'Q(w),
for every I € ZT!.

The easy proof is left to our reader.
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3. INTERACTIONS WITH THE COWEN-DQUGLAS THEORY

3.1. The preceding sections already displayed two of the three interrelated objects
encountered in the framework of the Cowen-Douglas theory, namely, the class of
holomorphic maps into a Grassmann manifold and its natural companion, the
class of hermitian holomorphic vector bundles. The third equally important item
is provided by Hilbert space operators in the Cowen-Douglas class (see (8], [9]).
Though this concept was first defined only for operators or tuples of operators on
a Hilbert space, the basic features of the Cowen-Douglas class can he described in
a more general setting. The initial data we need consist of a C*-algebra 2 and a
bounded connected open set @ C C™.

DEFINITION. ([21], Definition 3.10). An m-tuple % = (a1,0az2,...,0m) of
elements of 2 is said to be in the class B(§2, A) whenever the following conditions
are satisfied:

(i) zero is an isolated point of the spectrum of the element
(31) Aw) = (w1~a1)*(wr—a1)+{w2—a2)*(wa—a2)+ -+ (Wi — m ) (Wi — @),

for every w = (w1, wz,...,wm) in Q;
(ii) the map P : Q — P() defined by

(3.2) P(w) = Eo[A(w)], weqQ,

is continuous, where Ep[A(w)] stands for the spectral projection of A{w) associated
with {0};
(iii) if @ € A and aP(w) = 0 for every w € Q, then a = 0.

3.2. We next point out a few properties of the class B($, 2).
First, let us notice that given (a1,as,...,am) € B($2, ) we have

(3.3) a;P(w) =w;Plw), 1<i<m,

for each w = (w1,ws, ... ,wm) in . In particular, from (3.3) and condition (iil) it
follows that (a1,a2,...,an) is a commuting m-tuple. Therefore, it makes sense to
consider the Taylor spectrum o(ai,as,...,am) of such an m-tuple. Condition (i)
implies that the domain Q is contained in o(a;,as,... s Om,)-

Furthermore, based on some comments made in the first paragraph of Sub-
section 1.8, from the continuity condition (ii) we get that P : Q — P(2) is a
real-analytic map. In fact, much more is true, namely, P is a holomorphic map
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from € to the Grassmann manifold P(A). A quick proof goes as follows. By (3.3)
we clearly have
[PAW)P(w) =0, we.

Since 0 = O[A(w)P(w)] = [FA(W)]P(w) + AW)[BP(w)] we get A(w)[@P(w)] =0,
and because P(w) is the kernel projection of A(w) we obtain

(3.4) OP(w) = P(w)8P(w), w €.

Theorem 2.7 completes the proof.
The additional properties of P may be used to show that

(3.5) B(,2) ¢ B(A,%)

for every non-empty connected open set A C Q. Since conditions (i) and (ii)
behave well with respect to restrictions, only condition (iii} remains to be checked.
Specifically, assume a € 9 is such that aP(A) = 0 for every A € A, where the
map P : Q — P(A) corresponds to an m-tuple (a1,az,...,a8r} in B{Q,A). By the
identity principle of real-analytic maps we get that aP(w) = 0 for all w € 3, hence
a=0.

3.3. For the sake of completeness we next recall the original definition of the
Cowen-Douglas class (see (8], [9] and [11]). One starts with a set @ C C™ as
above, a complex separable infinite dimensional Hilbert space H, and an integer
k> 1.

DEFINITION. An m-tuple % = (a1,as,...,a,) of operators on H is said to
be in the Cowen-Douglas class B (Q, L{H)) if the following conditions are satisfied:
(i) the operator D(w) : H — H @ C™ defined by

D =(w—a1)f@e; + (w2~ a2} Rea+ -+ (wm —am)EBem, £EH,

has closed range for every w = (wy,wa, .. .,wn) in £, where {e1,€2,...,€x} is the
standard basis for C™;

(ii) dimker D(w) = &, for all w € §;

(iii) V{ker D(w) : w € Q} = H, where V stands for the closed linear span of
a collection of sets.

The reader could easily verify that B(Q, L(H)}) C B(2, L(H)). Actually,
each condition in the last definition leads to the condition in Definition 3.1 carrying
the same label. The only nonobvious fact is the continuity of the projection-
valued map P defined as in (3.2). Since P{w) = s{D{w}), w € £, condition (ii)
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above enables us to take advantage of the last test for continuity formulated in
Proposition 1.7. As a x-ideal J we may take the ideal of all trace-class operators
on H.

3.4. A pretty large part of the Cowen-Douglas theory is concerned with the
search for simple and complete invariants of tuples in the Cowen-Douglas class.
The relevant notions are given below.

DEFINITION. Let 2 and £2 be as above.
(i) Two tuples A = (a1,az,...,am) and b = (b1,b2,...,bn) in the class
B(Q,9A) are called unitarily equivalent if there exists a unitary u € 2 such that

(3.6) uasu’ =b;, 1<ig<m.

(ii) Two holomorphic maps P and @ from Q to P(2) are called congruent if
there exists a unitary u € 2 such that

(3.7) uPwiu* = Qw), we Q.

3.5. It is not surprising that the following result holds. Once again we entrust, our
reader with the details of the proof. For a more general statement and a complete
proof we refer to [21], Theorem 3.12.

ProPOSITION. Two tuples in the Cowen-Douglas class B(2,2) are unitarily
equivalent, if and only if the corresponding holomorphic projection-valued maps
provided by Definition 3.1 are congruent.

Thus, the equivalence problem for elements in the class B(Q,2) reduces to
the congruence problem for holomorphic maps into the Grassmann manifold P(2).
On the other hand, let us also observe that the latter problem has a natural
extension to holomorphic maps into a flag manifold, an extension that apparently
goes beyond the class B(Q, ). We will address this topic in Section 4 of this
article.

The approach we are going to pursue relies on some other ideas and results
already developed in the study of holomorphic maps into a Grassmann manifold.
Our subsequent presentation mostly follows ([1], [14], [15], and [21]). The main
concept we will employ goes back to Griffiths ([12]}, and its role in the classification
of holomorphic maps has been beautifuly explained in [8].
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3.6. We need a few preliminaries. Let P : @ — P() be a given holomorphic
map, and assume X C %A is a fixed subset containing the unit of 2. For every point
w € Q and any a € Z; U {oo} we introduce the set

(38) %P, %) ={D Pw)y'zD'Pw): I,J € 2, |I|,|J| € a, 2,y € X},
+

and let AZ = A(P, %) be the closure of the *-subalgebra of U generated by
®2(P, %). Since P is a holomorphic map, from (2.19) and (2.20) we get that each
2 is a *-subalgebra of the compressed algebra P(w)AP(w), for every w € Q.
Moreover,

AL CAL S C AT,

and P(w) € A0 is the common unit of all these algebras.

The next definition supplies a substitute for the Cowen-Douglas class
By, L(H)).

DEFINITION. Let k > 1 be an integer. A pair (P, X) as above is said to be
in the class A (€2, ) provided that the following two conditions are satisfied:
(i) A is a finite-dimensional C*-algebra for each w €
(ii) if k,, denotes the cardinal of any maximal collection of mutually orthog-
onal minimal projections in A, then

(3.9) ko <k, we.

The pair (P, X) is said to be in a general position in case the next additional
condition is fulfilled:

(iii) if a € A and aP(w) =0 for all w € Q, then a = 0.

Before proceeding with a more detailed description of these new objects, we
should explain the relationship between the classes Ai(Q,2) and B (Q, L(H)).
Accordingly, suppose that (aj,asz,...,am) is an element of Bx(Q, £(H)), and let
P : Q — L(H) be the holomorphic map associated with (a1,a2,...,am) as in
Subsection 3.3 above. This map yields the first entry of a pair (P, X) in the class
Ak(Q, L(H)). The second entry is the simplest one we might choose, namely
X = {1}. The pair (P, X) defined in this way is in a general position.

3.7. The finiteness condition (3.9) in Definition 3.6 has some very strong conse-
quences. We collect them below in a form that meets our forthcoming purposes.
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For the sake of convenience, we first introduce a couple of new notations.
Given an open set A C 0 we let C®(A, %) denote the #-algebra of all smooth
maps from A to 2. For any (P, X) in Ak{$2, A) and every o € Z; U {oo} we set

FYAPX)={AeC®AA) : Alw) € AT, we ).
Occasionally we will write T*(A) instead of I'*(A; P, X). Clearly both C®°(A, %)
and I'*(A) are C*°(A)-modules, where C*(A) is the algebra of complex-valued
smooth functions on .

The next technical result is a strengthened version of [1], Theorem A and
[15], Theorem 2.4.

THEOREM. Suppose (P, %) is a pair in Ax(Q,™A). Then there exists a non-
empty open set A C Q such that:
(i) AL = AL for any A € A,
(ii) the set {(A,a): A€ A, a € A} is the total space of a smooth *-algebra
bundle over A;
(i) of @ : [°(A) = C°(A, Q) is a C°(A)-linear *-algebra homomorphism
such that

(3.10) &(P(D'D’ A)P) = &(P)[D'D’ &(A4)|8(P),
for all A€ T*~Y(A) and any I,J € Z7 with |I},{J| < 1, then
(3.11) &(P(D'D’ A)P) = &(P)[D'D’ &(4))(P),

for all A€ T'°(A) and any I,J € ZT.

We do not intend to present a proof of this theorem. The main idea is to
carry out a parametrized version of the standard construction of a matrix unit
system of finite-dimensional C*-algebras. With a careful choice of the set A we
can find a collection of partial isometries in I'*°(A) whose values at every point
A € A yield a matrix unit system for $°. This part of the proof takes care of
assertion (ii). The point is that the algebra I'*~1(A) contains enough elements
to manufacture such a colection of partial isometries. Assertions (i) and (iii) are
basically additional dividends.

3.8. The next definition introduces a global, and, respectively, an infinitesimal
equivalence relation in Ag{€2,2A).
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DEFINITION. Let (P, X) and (Q,9) be two elements of A(Q2, ), and sup-
pose that ¥ : X — 9) is a given bijection with ¥(1) = 1.

(1) The pairs (P, X) and (Q,2}) are called unitarily equivalent if there exists
a unitary u € ¥ such that

(3.12) uP(-Ju* = Q(-),
and
(3.13) uzu® =y¥(z), z€X

(ii) Assume w € £ and & € Zy U {co} are fixed. We say that (P, %) and
(@,9) have order of contact o ot w if there exists a unitary v € 2 such that

(3.14) vD’ P(w)y*zD! P(w)v* = D’ Q)b (y)* $(z)D! Qw),

for any z,y € X and all I, J € Z7 satisfying |1|, |J| < e

Clearly two unitarily equivalent pairs have order of contact a at w for any o
and every w. A very nice feature of the Cowen-Douglas theory is that the finite
order of contact o = k at every point suffices to reach the unitary equivalence, in
case both (P, %) and (@, ) are in a general position and the algebra 2 shares a
specific property with algebras of Hilbert space operators. In this regard we may
conclude that the set &% (P, X) defined as in (3.8) yields a complete collection of
unitary invariants of an element (P, %) of A,(Q,2A).

3.9. It remains of course to introduce the reguired property of 2 and to explain
how it works. We begin with some conventions.
We will say that a set & C 2 is a separating subset of A if

(3.15) {ea€A:as=0, s € &} ={0}.

Further, assume & and ¥ are two separating subsets of %, and let 8 : G — ¥ be
a given bijection. We say that 8 is inner, or semi-inner, if there exists a unitary
u € 2 such that

(3.16) usu* =6(s), s€ G,

or, respectively, if there exists a unitary v € A such that

(3.17) vt*sv* = 0(t)*0(s), s,teB.



FLAG MANIFOLDS AND THE COWEN-DOUGLAS THEORY 351

Finally, the algebra 2 is said to be inner whenever each semi-inner bijection be-
tween two scparating subsets of 2 is inner.

It is a very elementary exercise to check that the algebra L(H) is inner. At
the same time the innerness of a C*-algebra allows us to use condition (iii) in
Definition 3.6 at its full extent.

3.10. We conclude this section by stating the congruence theorem for the class
A (Q, ). Earlier versions of this theorem, stated and proved only for the algebra
L(M), may be found in (8], [10], [14] and [15].

THEOREM. Let (P, X) and (Q,9) be two elements of the class Ai(,2) in
general position, and assume that A is an inner algebra. The following two condi-
tions are equivalent:

(i) (P, %) and (Q,9) are unitarily equivalent;

(ii) (P, %) and (Q,9) have order of contact k at every point w € Q.

There is no need to proceed with a proof of this theorem, because in the next
section we are going to formulate and prove a more general result. We will confine
our attention for a while to a few prerequisites. All the specific technicalities are
handled along the pattern already displayed in Section 3.

4. A GENERALIZATION OF THE CONGRUENCE THEOREM

4.1. The title of this section and the brief comment made just after Proposition 3.5
give a fairly good description of our next goal. We want to extent Theorem 3.10
to the case of holomorphic maps into a flag manifold. The task is not at all so
obvious as one might first think. At first glance the second half of Section 2 could
be somewhat misleading. In order to understand the structure of a holomorphic
map P = (P, Py,...,P,) : = P,(), we must study the joint behavior of its
components. This will be made clear shortly. Throughout this section 2 and
are the same as in Section 3.

4.2. Our first objective is to find a suitable extension of Definition 3.6. To this end
welet P = (P, Ps,...,P,): Q — P,(2) be a given holomorphic map and assume
that X C U is a fixed subset containing the unit of A. We let {a) = (a1, ag, ..., an)
denote an n-tuple whose entries are from Z, U {oo}, and let 1 <! < n be a given
integer. For every point w € 2 and any () and ! as above we next introduce the
set

(P, %) = {D” Py(w)y* 2D Pyw) : 1 < 4,5 < I, | <y |J] € 0,5 € X},
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and denote by ‘4{® =! A{* (P, X) the closure of the *-subalgebra of 2 generated
by {&{ (P, %). If (00) = (00,00, ...,00), then each ‘AL is a x-subalgebra of
19({°) and Pj(w) is the common unit of all theses algebras.

It seems to be a right moment to point out that ‘2[5,“> is in general larger
than the algebra A%(P;, ¥). The former depends on all the first ! components of
P and that is exactly what we need. Moreover, let us observe that

(4.1) lg(lee) ¢ 29} ... "), we Q.

Thus, the pair (P, X) determines at each point w € Q a chain of C*-algebras of
length n. Alternatively, we may think of this chain as a filtered C*-algebra. Of
course, the algebra we refer to is "™, and the filtration is provided by (4.1).
It should be noticed that this specific filtration is more refined than another one
that also is at hand. Specifically, ‘Qlf,m) is in general smaller than the compressed
algebra P,(w)™ % Py(w), for any { < n — 1.

Our search for an extension of Definition 3.8 is now over.

DeriNITION. Let (k) = (k1, ka,...,kn) be an n-tuple of positive integers. A
pair (P, X) as above is said to be in the class Ay (Q, %) provided that the following
two conditions are satisfied:

(i) "AL is a finite-dimensional C*-algebra for each w €

(ii) if k!, denotes the cardinal of any maximal collection of mutually orthog-

onal minimal projections in ‘%>, then

(4.2) ki <k and KSR, 4k, 1€I<n-1, weqQ.

The pair (P,X) is said to be in a general position in case the next additional
condition is fulfilled:

(iii) if @ € A and aPy(w) =0 for all w € Q, then a = 0.

4.3. The versatility of the last definition is convincingly supported by the next
straightforward generalization of Theorem 3.7. Before formulating it, we need a
new notation, namely,

TN PX) = {Ac CP(A,2) : Alw) € 'U, weq}

THEOREM. Suppose (P,X) is a pair in Ay (Q,2). Then there exists a non-
empty open set A C Q such that:
(i) ’ng” = (> forany Ae A and any 1 <1 < n;
(ii) the set {(\a) : A € A, a € ALV} is the total space of a smooth
x-algebra bundle over A, for each 1 <1 g n;

J
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(ili) if @ : T4V (A; P X) = C®(A, ) s a C®(A)-linear *-algebra homo-
morphism such that

(43) o(P(D'D’ A)P)) = 8(P)[D'D’ $(4))8(P),

forall1 < 4,5 < n, any I,J € Z7 with |1],|J] € 1, and every A € ‘T (A; P, %),
where | = max{i,j} and (o) = (k1,...,ki—1,k — 1,0,...,0), then

(4.4) ®(P,(D'D’ 4)P}) = &(P)[D'D’ 8(4))8(P)),
Jorall1 <i,j<n, any I,J € Z, and every A € "T{®)(A; P, %).

The proof amounts to the construction of a well-behaved matrix unit system
for the chain (4.1) that depends smoothly on w if w is a point in a conveniently
chosen subset A C €. For some pertinent details on parameter-free constructions
of this kind and on their role in handling chains of finite-dimensional C*-algebras
we may refer to [20], Section 1, or to some sources indicated there. However, since
we deal with a field of chains, we need a parametrized version of the construction
of a matrix unit system. Fortunately, because the chains under consideration
have finite length, the standard approach employed in the usual situation without
parameters can be pursued in its essential fcatures, by merely shrinking the open
sct ) several times.

More precisely, we first select A7 C Q and a collection of partial isometrics
in 1T¢*(Ay; P, X) = T°°(Ay; Py, ¥) whose values at every point A € A; yield a
matrix unit system for 1A (P, %) = AL (Py,%X). This initial step is the same
as in the proof of Theorem 3.7 for the pair (P1,X) € A, (Q,9). Next we select
a subset Ay C A; and a collection of partial isometries in 20} (Ay; P, ¥) whose
values at every point A € Ay yield a matrix unit system for 2Qlf\c’o)(P, X), for each
A € Aj. This collection is constructed such that the values at each \ € Ay of
the previously defined partial isometries in T4 (A;; P, %) are sums of matrix
units in this new system. The procedure has an obvious continuation that finally
yields a set A, = A and a collection of partial isometries in nT4e) (A; P, X). The
main point is that along this recurrent process it suffices to use only the maps
EJPj( y*zDIP(+), where |T] < k, [J] € kj, and z,y € X. To be more specific,
the whole construction requires n steps, the I-th steps involves only the first ]
components of P, and the transition to the next step is completely accomplished
by employing the component P,y; and its derivatives D! Py of order |I]| < kyy1.

As soon as the sketched above process ends up, the complete proof of Theo-
rem 4.3 is just a matter of careful bookkeeping.

4.4. Although by now everything should be clear, for convenience we include
below the natural counterpart of Definition 3.8.
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DEFINITION. Let (P, X) and (Q,9) be two elements of Ay (2, 9), where
P =(P,P,,...,P,)and Q = (Q1,Q2,...,Qx), and suppose that ¢ : ¥ > Y is a
given bijection with (1) = 1.

(i) The pairs (P, X) and (Q,Q) are called unitarily equivalent if there exists
a unitary « € 2 such that

(4.5) wB(Jut=Q:i(+), 1<i<n,
and
(4.6) uzu* = 9(z), z€X.

(i) Assume w € Q and (a) = (a1, qz,..., @) are fixed. We say that (P, X)
and (Q,9)) have order of contact o at w if there exists a unitary v € 2 such that

=J * * =J *
(4.7) vD” Pj(w)y*zD’ Pi(w)v* =D Q;(w)y(y) ¥(z)D’ Qi(w),
forany z,y € X, every 1 <4, <n,andall[,J € Z7 satisfying |1| < a4, [J] € a5

4.5. The following result ends our search for a generalization of the congruence
theorem.

THEOREM. Let (P, %) and (Q,9) be two elements of the class Ay (2, 21)
in general position, and assume that 2 is an inner algebra. The following two
conditions are equivalent:

(i) (P, %) and (Q,D) are unitarily equivalent;

(ii) (P, X} and (Q,D) have order of contact (k) at every point w € €.

The main ingredient of the proof is provided by Theorem 4.3 above. In fact,
that theorem lies at the very heart of the understanding of the inner structure
inherent to any element of Ay (2, ). The congruence theorem simply converts
Theorem 4.3 into a tool.

Proof. All we have to show is that condition (i) implies condition (i).
Condition (ii) asserts that for each w € 0 there exists a unitary v, € 2 such
that

(4.8) 4,07 Pi(w)y*zD! Py(w)}, = D’ Q;(w)e ()" 4(zx)D! Qi (w),

forany z,y € X, every 1< 4,5 < n,andall I,J € Z7 satisfying |I] < ki, |J| € k5.
By % we denote a prescribed bijection from X to 9), as in Definition 4.4.
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Let A C Q be the open set provided by Theorem 4.3. We define & :
D) (A; P, X) = C®(A,2) by
(4.9) (AN =vad(\w}, AeT&NAPX), AeA
Although we do not assume that v, depends smoothly on A € A, however, as-
sertions (i) and (ii) in Theorem 4.3 imply that ® is a well-defined C°*°(A)-linear
*-algebra homomorphism. Moreover, by (4.8) and based on some remarks made
in Subsection 2.10 we get that ® satisfies (4.3). Therefore, & also satisfies the
stronger condition (4.4). Since ®(P) = Q, from (4.4) we have

=J * i * =J *

(4.10) vaD” Pj(A)y*eD! Bi(N)v} = D" Q;(M\(y) v (2)D'Q:i(N),
forcach A€ A anyz,y € X,and 1 4,5 < n,and all I,J € Z7.

We next choose a point w € A and consider the sets

G ={zD'P(w):z€X, 1<ign, €I},
and
T={y(@)D'Q;(w):ze X, 1<ig<n, I €2}
The reasonings developed at the end of Section 2 yield the important conclusion
that condition (iii) in Definition 4.2 implies that & is a separating subset of 2.
This is the place where we really take advantage of the specific properties of a
holomorphic map into the flag manifold Pp(%). Since ¥ alike is a separating
subset of A, by (4.10) we deduce that the map 8 : & — ¥ given by
8(zD! P(w)) = zp(z)DIQi(w),

is a semi-inner bijection. It is the right time to employ the innerness of 2. Con-
sequently, there exists a unitary u € 2 such that

(4.11) wzD! Py(w)u* = 9(z)D? Q;(w),
for any z € X, every 1 €4 < n, and all I € Z7.
If we take z = 1, then (4.11) and Proposition 2.12 show that

(4.12) uPi( W =), 1<€igmn,

hence condition (4.5) holds true. On the other hand, let us notice that from (4.11)
and (4.12) we have

(4.13) [uz — ¥ (z)u*|D! Po(w) = 0,
for any z € X and all I € Z7. Since {D!P,(w) : I € Z7} is also a separating
subset of A we get
(4.14) uz = P{z)u*, ze€X,
a relation equivalent to (4.6).
The proof of the congruence theorem is complete. §
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5. OPERATORS WITH THE HOLOMORPHIC SPANNING PROPERTY

5.1. In the next section we will examine a multidimensional analog of the class of
operators singled out by M.J. Cowen ([7]). More precisely, we are going to derive
a generalization of {7], Theorem 0.5 from the just proved congruence theorem for
holomorphic maps into a flag manifold. Our intention is to explain the meaning of
the order of contact in a geometric situation. We should first establish the setting,.

Throughout this section we will let 2 denote the C*-algebra L(H), where H
is a fixed separable infinite dimensional Hilbert space. In addition, we assume that
Y’ and 2" are two bounded and connected open subsets of C™. Given a commuting
m-tuple (a1, az,...,an,) of operators on H and two points w’ = (Wi, wh,...,wl,) €
0 and " = (w{,wy,...,wiy) € R, we let D(w'): H - H®C™ and D"(w") :
‘H — H ® C™ denote the operators defined by

D'(W)=(w—a)®er+(wh—a2){@er+ -+ (w), —am) ®em, {EH,

D"(w")E = (wy —a1)é®er + (wy —a3) ®ez+ -+ (W, —an} Qem, £E€H,

where {ej, ez,...,€,} is the standard basis for C™.
Finally, let k¥’ and k" be two given positive integers. The next definition is a
straightforward extension of 7], Definition 0.2.2.

DEFINITION. A commuting m-tuple a = (ay, a3, ..., amn ) of operators on H is
said to be in the class By (', Q') whenever the following condition are satisfied:
(i) the operators D'(w’) and D”(w") have closed range, for any w’ € Q' and
wll e QII;
(ii) dim ker D'(w’) = k' and dim ker D"(w"”) = k", for every w’ € ' and
wl! E Q"_
(iii) V[{ker D'(w'} : ' € Q'} U {ker D"(w") : " € Q"}] = H.

5.2. We follow [7] in saying that the elements of By (€, Q") are tuples with
the holomorphic spanning property. The terminology is motivated by the very
specific behavior of two projection-valued maps natually associated to such tuples.
Explicitly, assume 2 is a tuple in By 1o (,Q7) and let P’ : ' — P(2A) and
P" . Q" — P(A) be the maps defined by

(5.1) Pw') = s(D'(w), P"(w")=s(D"w"), (,w’)exqQ"
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From conditions (i) and (ii) in Definition 5.1 and based on Proposition 1.7 we
easily get that both P’ and P” are continuous. Moreover, since D' and D" are
holomorphic operator-valued maps, we may use Theorem 2.7 and an obvious ad-
justment of the computations made in Subsection 1.8 to conclude that P’ and P"
are in fact holomorphic maps into the Grassmann manifold of 2.

Let us also notice that the operators a;, as, ..., an, and the projections P'(w’)
and P"(w") interact in a peculiar way. If ' = (w,wh,...,w),) € Q' and w" =
(wi,wy,... ,wl) € Q" are given, then
(5.2) o P'(w') = wjP'('), 1<5<m,
and
(5.3) aj P'(w") = wiP"(W"), 1<j<m.

In particular, the obvious relation [a;P'(w")]*P"(w") = P'(w')[a3P"(w")] yields

the equality (&} — w}/)P'(w')P"(w") = 0. Thus we get

(5.4) PW)P' (W) =0, (,u")e® xQ",

at least in case there exists 1 < § € m such that @, # w;. Since the two maps
P’ and P" are continuous we easily deduce that (5.4) holds for arbitrary points
w' € Q and " € Q.

Relation (5.4) has some nice consequences. First, it implies that the sub-
spaces

(5.5) H' = viker D'(v') : ' € '},
and
(5.6) H" = viker D"(w") : " € O}

are orthogonal. This observation enables us to state the spanning property (iii) in
Definition 5.1 in a more precise form, namely,

(5.7) H=H &H"

On the other hand, relation (5.4) provides the simple but necessary condition that
makes the next construction meaningful. Specifically, let Q = @' x Q" and let
P = (P, P;) : Q — P2(A) be the map given by

(5.8) Pi(w) = P(v'), Pyw)=P )+ P' ("), w=W, ")eq.
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We really need (5.4) in checking that P is a well-defined map from  into the flag
manifold Py(2). Moreover, since the two components Py and P of P inherit the
special properties of P’ and P”, we get that P is a holomorphic map into Pa(2).
There is an obvious asymmetry in the just carried out construction. We first
employed P’, and then P”. Nevertheless, the other way around seems to be legit-
imate as well. We get something different, of course, but not completely different.
The point is that we are allowed to replace (a1, @z,--.,am) by (a},a3,...,a5).
To be more specific, we should observe that {a1,a2,...,am) is an element of
Bio g (¥, Q) if and only if (a},a3,...,a},) is an element of By 1/ (Q”, Q). This
simple remarks motivate an additional asymmetric condition that we are going to
impose. From now on, without any other special mention, we will assume that

(5.9) K2k

Under this assumption, the particular choice of an order of preference in the pre-
viously done makeup of P° gains a better relevance.

5.3. So far we assigned to every m-tuple (a1, az,...,am) in By (', Q") a holo-
morphic map P : Q — Po(%), where, as before, ! = @' x Q. A second related
item is the set X = {1,a1,82,...,0m}-

PROPOSITION. The pair (P, X) is in the class Ay (R, A), where (k) = (K',k").

Proof. We have to check the three conditions in Definition 4.2. To this end,
assume w = (v',w"”) € Q is fixed, and observe that the compressed algebras
Py (w)AP; (w) and Py(w)AP;(w) coincide with the finite-dimensional C*-algebras
L(Range P'(w')) and L{RangeP’(w’) & Range P"(w")), respectively. This remark
clearly yields conditions (i) and (ii) in Definition 4.2. Condition (iii) follows from
the spanning property (5.7). 1

5.4. Let us now assume that % = (a3,az....,ay) and b = (b1, by, ..., bm) are two
elements of the same class By 5~ (@', Q"). We will say that the two tuples are
unitarily equivalent whenever there exists a unitary u € 2% such that

(5.10) uau* =b;, 1<igm.

We next let (P, %) and (Q,9) denote the pairs in A, (2, ) corresponding to
and b, respectively. There is a natural bijection % : X — 2), defined by

(5.11) $(1)=1 and o(a)=b, 1<i<m

With all the prerequisites provided by Subsection 5.2 at hand, it is really easy to
observe that in terms of these notations the following result holds.
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PROPOSITION. Two tuples (a1, eo....,0m) and (b1,ba,...,by) " in
Bir o (U, Q") are unitarily equivalent if and only if the associoted pairs (P, X)
and (Q,9) in Auy(Q,2) are unitarily equivalent.

The last proposition allows us to take full advantage of the congruence the-
orem for holomorphic maps into a flag manifold. It remains, of course, to explain
when two pairs (P, X) and (@, 2)) as above have order of contact {k) at every point.
Some of the notations used below were previously introduced in Section 4.

5.5. We proceed with a brief examination of the *-algebras 19{%) and 2989 ye-
lated to the pair (P, %) constructed as in Subsection 5.2 from a given m-tuple
(@1,a2,...,am) in By g (¥, 9"). The point we want to make is that these two
algebras are generated by two very simple sets of operators, patently smaller than
the sets employed in the general situation analyzed in Section 4. All we have to
do is to take into account formulas (5.2) and (5.3).

More precisely, suppose w = (w',w") € Q is fixed, and let I = (¢1,42,...,%m)
be a given tuple in Z7'. From (5.2) and (5.3) we get

(5A12) ajDIP'(w') — w.;-DIP'(w') +ijDI(j)P’(w’),
and, respectively,
(5_13) a;DIP"(w”) — w}'DIP”(w") —I-’ijDI(j)P”(w”),

where 1 € j £ m and I(j) = (41,...,4j-1, max{é; — 1,0},4541,...,%m). By taking
now the adjoints, we get
(5.14) B'P'(W)a; =& D P'(w) + 45D U P(W),
and, respectively,
N prre . o piry, v . =) ey
(5.15) D P'(w")e; =D P"(w")+ ;D P"(w").
A repeated manipulation of the last four formulas, in conjunction with the general
constructions made in Section 4, leads to the next result.

PROPOSITION. Suppose w = (w',w") € Q is given. Let (P,X) be the element
of Ay (2, 2) associated with an m-tuple (a1,@z,- .., am) in By (', Q"), and let
12[5‘,"') and ZQL(.,k) be the *-algebras corresponding to the pair (P,X), where (k) =
(k' k"Y.
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(i) The *-algebra ‘U is generated by the set
(5.16) (D7 P (W )DIP(W) < 1], 1] < K.

(ii) The x-algebra 2%(”36)' is generated by the set (5.16) above, together with
the sets

(5.17) (D7 P (w")D P (") : 1], 171 < K7},
and
(5.18) (D) P' (W) DI P"(W") 1< 5 < m, I <K, [T <KD

5.6. We now return to the situation considered in Subsection 5.4. Besides the
notations already used there, we let P/ and P” denote the projection-valued maps
associated with (ay, aa,...,am) by formulas (5.1). Their counterparts correspond-
ing to (b1, ba,...,bn) are denoted by @' and @”. The next result is basically a
consequence of Proposition 5.5. Once again, the details are trustfully left to our
reader.

ProposiTiON. Suppose w = (W', w”) € @} is given. The following two condi-
tions are equivalent:

(i) (P, X) and (Q,9) have order of contact {k) at w;
(il) there ezist two partial isometries v), and v), in U such that

(5.19) v(",*vfd = P'(w"), v('j*v,": = P"(w"},
(5.20) vovl, = QW) vl = Q" (W),
(5.21) WD P (DT P (W), =D Q@ W)DIQ W), I, || S K,

(5.22) /D’ P DI P (Wl =D QMW DIQ (W), I, 1T < K,
and

o, D P'(w")a; D! P"(w")uly" = D Q' (w')h;D' Q" ("),

(5.23)
1<j<m, [k, <K
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An obvious advantage of this proposition despite the long list summed up in
condition (ii}, is that it substantially reduces the number of requirements accom-
panying condition (i). A less obvious advantage will be explained in a moment,
after some preliminaries.

5.7. Assume once more that A = (a1,a2,...,8m) in Bi g (', Q") and w =
(W' ,w") in 2 are given. We next define three subspaces of H by

(5.24) K@) ={(eH (v -)'¢c=0, JeZT, |J| =k +1},
(5.25) Ko@) ={¢eH (" -2*)E=0, JeZP, |J|=k" +1},
and

(5.26) Ko () = K, () & K (a),

where H' and H" are given by (5.5) and (5.6), and
(wl - m)'} = (w; - al)jl (wIZ - a‘?)jz o (w;‘n e am)jm7 J= (jl)j2) (R 1jm))
(W" = A) = (W — a]) (wf — a3)? - (Wi, — @b V™, T = (1,02 dm).
For a later use, we collect below some properties of these subspaces.

First we notice that a straightforward computation based on formulas (5.12)
and (5.13) yields the following relations:

(5.27) (W -AYDIP(W) =0, I,JeZP, [[|<K, |J=k+1,

-

(5.28) (W -2 DIP(W)y =0, I,JeZP, [I|<K", |J|=k"+1.
In their turn, these relations show that

(5.29) V{RangeD'P'(w') : T € Z7, |I} < k'} C KL (A),

and, respectively,

(5.30) v{RangeD'P"(w") : I € Z7, |I| < K"} C K"().

As a matter of fact, in each of the last two relations the indicated inclusion is an
equality. For a complete proof we refer to [15], Section 4 where the reader can find
all the missing details.
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The just mentioned facts imply that K.,(2) and X7/ () are finite-dimensional
subspaces of H. Furthermore, K,(2) is an invariant subspace of each aj, 1 € j <
m, and K (%) is an invariant subspace of any @, 1 < j<m. f1<j<mis
fixed, we will denote by

a; |G () K, () — Ko, ()
the restriction of a; to K, (%), and by
a3 | K () = K () — K5 ()
the restriction of a} to K(2). In addition, we let
K () a5 | K5 () + Ko (@A) — KL, ()

denote the operator given by restricting a; to X!/(a) and then projecting onto
KL (20).

5.8. We are now ready to use Proposition 5.6 at its full extent. Before stating the
next result, it is worth recalling the general setting. We start with two elements
A = (a1,0z2,-..,0m) and b = (b1, ba,...,by) of class By (€, 2"), and then we
consider their corresponding pairs (P, X} and (@, ) in Ay (Q,2A), where (k) =
(k' k") and @ = x Q".

PROPOSITION. Suppose w = (w',w") € Q is given. The following two condi-
tions are equivalent:

(i) (P, X} and (Q,D) have the order of contact (k) at w;

(ii) there exist two isometries ul, : K[,(A) — KL (b) and v : K"(A) — K" (b),
such that

(5.31) g [a L (W]uy,™ = b;1K,(6), 1<7<m,

(5.32) g [as KL (W)uy,” = b5[KL(B), 1<ji<m,

and

(5.33) g, (Ko, ()]s L (A)]ug ™ = KL, (b)6;1K0(B), 1< 5 <m.

Proof. It will be enough to show that condition (ii} in Proposition 5.6 is
equivalent to condition (ii) above. In case relations (5.19)—(5.23) are satisfied, we
define u/, and v/ by

(5.34) u,[D'P'(W)E] =D'Q(W)e, ¢eH, T€ZT, [I|<K,
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and, respectively,
(5.35) ul [DTP"(w")E] = DIQ"(w")E, ¢eM, IeZ?, [I|<k .

Relations (5.31)-(5.33) follow by a repeated use of (5.2) and (5.3). It goes without
saying that along the way we have to use all the facts mentioned in Subsection
5.7.

The converse is also handled in a straightforward manner. If u;, and ]
subject to conditions (5.31)—(5.33) are given, then we should first check that they
satisfy (5.34) and (5.35) above, and then we define v/, and v, by

(5.36) v, = Q' (W )ug, P'(w'),
and, respectively,
(5:37) o = QWP (W").

The only additional observation we need in order to verify all the relations (5.19)-
(5.23) is that the operators a; and b; in (5.23) may be replaced without any harm
by K.,(A)|a;|K2 () and K. (6)|b;|K!5(b), respectively. &

5.9. We conclude Section 5 with the following theorem concerning the unitary
equivalence of tuples in By p (', ).

THEOREM. Two m-tuples A and b in By, (', Q") are unitarily equivelent
if and only if condition (ii) in Proposition 5.8 is satisfied.

Proof. All we need to do is to use Proposition 5.4, Theorem 4.5, and Propo-
sition 5.8. B

As it was mentioned at the beginning of Section 5, the last theorem gen-
eralizes [7], Theorem 0.5. Yet we would like to believe that its proof sketched
above makes a good advertisement for the possible applications of the congruence
theorem.

Research supported in part by NSF Grant DMS-9301187.
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