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ABSTRACT. By virtue of the chaos decomposition and symbol calculus of
generalized operators generated by quantum white noise, Wick product of
generalized operators is introduced in an physically intuitive way and char-
acterized analytically and algebraically. The set of generalized operators is a
commutative unital involutive associative algebra under Wick product. Some
fundamental properties of the Wick algebra are investigated.
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0. INTRODUCTION

In the mathematical descriptions of quantum field theory, the field operator at a
point of space-time is a highly singular object ([1], [2], [10]), only exists as a gener-
alized operator (operator valued distribution). The product (i.e. composition) of
such operators is nonsense, let alone nonlinear functions of them. However, physics
always necessitates treatment of functions of fields. To this end renormalizations
are inevitable, one method of such procedures — the so called Wick ordering —
has been utilized by physicists for a long time, though their manipulations are
formal ([2]).

We shall try to define nonlinear functions of Bose fields, or more precisely
algebra structures over fields, by virtue of the notion of Wick product within the
framework of white noise analysis.
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In white noise approach to the calculus over free Bose fields ([3]), it is possible
to introduce generalized (including pointwisely defined) annihilation and creation
operators as rigorous mathematical objects within the framework of Hilbert space
plus distribution theory (Gelfand triplet). The generalized annihilation (resp.
creation) operators are continuous on Hida’s testing (resp. generalized) function
space, thus the field operators as linear combinations of annihilation and cre-
ation operators are generalized operators, i.e., continuous from testing functional
space to generalized functional space. Moreover, any generalized operator admits
a unique chaos decomposition ({5]), each chaos is a formal integral kernel operator
generated by quantum white noise (the family of pointwisely defined annihilation
and creation operators). If the formal product of generalized operators is renor-
malized by taking Wick ordering ([2], [10]), i.e., moving every creation operator to
the left of annihilation operators, then the formal product of generalized operators
makes sense as a generalized operator. This is the physical origin of Wick product
of generalized operators. Due to Obata's symbol characterization of generalized
operators ([9]), such Wick product can be characterized analytically.

The paper is organized as follows. In Section 1 we assemble general notions of
white noise calculus and quantum white noise. In Section 2, following ([6], [8]), we
introduce the symbol calculus of generalized operators and prepare some lemmas
including operator’s chaos decomposition and symbol characterization. In Section
3 we introduce Wick product of generalized operators following physicist’s intuitive
and heuristic procedure. In Section 4 we characterize Wick product by appealing to
the symbol characterization of operators, and study some fundamental properties
of Wick algebra involving quantum white noise. Some subalgebras such as the
annihilation and creation operator algebras are observed.

We should mention that Wick product of generalized white noise or Wiener
functionals is extensively studied by many author (see, e.g. (3], [7], [8]) and Wick
product of generalized operators is essentially along the same line, but at the
operator level and possesses its own special features. Also, the present approach
should be compared with Segal's work {[10]).
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1. QUANTUM WHITE NOISE

All spaces in this paper are assumed to be real, this is just for notational simplicity
and comlexification is straightforward.

To recall the general idea and notion of white noise initiated by Hida ([3]),
we follow the presentation of [4], {5].

Let H = L*(R) be the Hilbert space of square integrable (with respect to
Lebesgue measure) functions on R with the standard norm | - |o, £ = S(R) the
Schwartz space of rapidly decreasing C* functions and E* = §*(R), the space of
tempered distributions.

Let A= ——di:; + 12 + 1 be the simple harmonic oscillator on H (note that A
extends to a positive self-adjoint operator on H). For k € N = {0,1,2,...}, put
Ej = Dom A*, then Ej is a Hilbert space with norm |- | = |A¥ - |o. Denote by
E_; its dual space with dual norm |- |_x, E = ﬂ E is the projective limit of Ey

and E* = U E_ is the inductive limit of E_j. By Minlos Theorem, there exists

a unique Gaussmn measure associated with the Gelfand triplet
ECHCE",

satisfying
/eiw,ﬁ)“(dm) e L )
b
where (-,-) is the dual pairing between E* and E.
(E*, 1) is called the white noise space and serves as the basic probability
space in white noise calculus.

Let (L?) = L*(E*, u) with norm |}-||o be the space of square integrable white

noise functionals and
[e ]

a(H) = P H®"
n=0
be the Bose-Fock space over H, then via the well known Wiener-It6-Segal chaos
decomposition, (L?) is isometrically isomorphic to ®(H). Therefore, the second
quantized operator ([1])
r(A) =P A®"
n=0
acting in ®(H) can be lifted to an operator acting in (L?} naturally.
For k € N, put (Ei) = DomI'(4*), then (Ej) is a Hilbert space with norm
- lx = IT(4%) - |lo. Denote by (E_i) the dual space of (E;) with dual norm
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[l - l-x. The projective limit (E) = (\(E%) is a nuclear Fréchet reflexive space
k

and the inductive limit (E)* = | J(E_) is its topological dual. Thus, we obtain a
K
second Gelfand triplet

(B) C (L% c (&)

with dual pairing {-,-)).
(E) (resp. (E)*) is called Hida’s testing (resp. generalized) functional space.
For any h € H, the exponential vector {coherent state)

5(}7,) = e('*h’)—%mg

belongs to (L?). It is well known that {(k) | & € H} is total in (Z2) and k — &(h)
is continuous from H to (L?).

REMARK 1.1. (-, h) should be stochastically approximated in the L2-sense by
{-,€), € € E, or be interpreted as a Wiener integral of h with respect to Brownian
motion over white noise space (cf. [3]).

When developing calculus over white noise space, it is more convenient to
use

Eo = {e(¢) | £ € E}

which is total in (E) as testing vector space.
For any y € E*, the annihilation operator D, is defined by

Dyl@) = Tolz+ tleo, 0 € (B).

It is known that Dy is a continuous derivation on (E), and {D, | y € E*} is a
commuting family. For y € E, D, can be extended to a continuous linear operator
from (E)* to (E)*. In a dual fashion, for any y € E*, the adjoint operator Dy is a
continuous linear operator from (E)* to (E)* and {D} | y € E*} is a commuting
family. For y € E, Dy restricts to a continuous linear operator from (E) to (E).

When y = §(t), t € R, the Dirac delta function, we denote Ds(yy and D3y
by O: and &} respectively. {8;,8; |t € R} is referred to as quantum white noise
and serves as the basis for operator calculus over white noise. Note that when 8;
is considered as an operator on (L?), its domain is just {0} (cf. [1], {10]). This is
the reason for introducing generalized operators.

Quantum white noise constitutes a representation of the CCR:

8:,8)) =0=1[8,8]], [0s,8)=8(s—t)], steR
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2. SYMBOL CALCULUS OF GENERALIZED OPERATORS

Let £ = L((E), (E)*) be the space of continuous linear operators from (E) to (E)*,
elements of £ are called generalized operotors. In particular, both &, and 9} can
be regarded as elements of £. For any T € £, its adjoint T also belongs to £ since
(E) is reflexive. Since Eg = {e(¢) | £ € E} is total in (E), any generalized operator
T is uniquely determined by its behavior on Eg, i.e., by the infinite matrix

{(Te(€),e(m)) 1 §,n € E}.

This leads to

DEFINITION 2.1. For any T € L, its symbol T is defined by

T(¢,m) = e~ CM(Te(€),e(n))), & ne E.

REMARK 2.2. This definition due to Meyer ([8]) differs slightly from the
original definition of Krée ([6]) and Obata ([9]) by the factor e~ which is
adapted to ensure I{£,7) = 1, and is well adapted to the formulation of Wick
algebra.

By direct calculations (cf. [5]), we have

LEMI\’A\A 2.3. For any/’l\’ eL, T:(g,n) = f'(n,{), &,n € E. Moreover:
(i) if K € L((E), (E)*), then

Kb,(¢,m) = €K (), G K n) =nt)K (€. n);
(itl) if K € L((E),(E)), then

§
n(t)

8K (£,m) = e~ & (K (€, n)eém],
if K € L((E)*,(E)"), then

K (€,m) = e~6M _—_[R(£,m)els™);

g
a¢(t)

where 36_6(7)" %(t) stand for Fréchet functional derivatives and L((E),(E)) (resp.
L((E)*,(E)*)) is the space of continuous linear operators on (E) (resp. (E)*).

The following important characterization result is due to Obata ([9]), we
restate it as
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LEMMA 2.4. IfT € L, then
(i) T is analytic in the sense that for any £,&1,m,m € E, the function
(t,8) = T(E + & on+m), (t,s) €R?
is real analytic;
(ii) there exist constant numbers ¢1, ¢z > 0,p € N such that
IT(E, I < cvexp{ea(lély + Inl3)}, &€ E.

Conversely, assume that an R—valued function 8 on E x E satisfies the above
conditions (i) and (ii), then there exists a unique T € L such that T = 9.

REMARK 2.5. In view of the fact that |£[3 < [¢]2, and thus

- 1
e <exp{S(EE+ D)}, peN,
the above result is essentially the same as that in [9].

The chaos decomposition of square-integrable white noise functionals plays
an important role in white noise calculus. Similarly, the chaos decomposition of
generalized operators plays a crucial role in calculus over quantum white noise.
We shall utilize it to construct Wick product of generalized operators.

Note that for any ¢, € (E), ,m € N, the function 7,4 on R x R™ defined
by

(815 -y 8t3tny ey tm) = (05, -+ 05,8y - Brnipr ¥))
belongs to E® @ E®™, therefore for & € (E® @ E®™)* there exists a unique
continuous linear operator
Eim(x): (B) - (B)
such that
(Erm(c)e, ) = (K, 10,8),
here (-,-) is the dual pairing between (E® ® Eg"‘)* and E®! @ E&m.
The symbol of Z; ,, (k) is
Em(k)(€,m) = (x,n® @ €5™).
It is heuristic to write Z; (k) in the formal integral expression ([4]).
Elm(k) = / K(815- s 8tit1, e tm )0 - 05 0y, -+ Oy dsy - dsydty - dE,
Rl xR™
= / (5; £)02 bpd3dt.
R! x R™

This kind of expression already appeared in [1].
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The following result is due to Huang ([5]).
LEMMA 2.6. Every K € L (resp. K € L{(E), (E))) has a unique decompo-
sition
K= zai,m(Kt,m)s
lLm

where Ky m € (E® @ E®™)* (resp. E® @ (E®™)* ) I m €N
The series converges in the sense that
Ko=) Sym(Kim)p, 9€E
L,m
converges in (E)* (resp. (E)). Moreover
Rg,n) = (Kim,n® ®€%™), &€k

i,m

3. WICK PRODUCT

In terms of quantum white noise, the free Bose field operator p(z) may be repre-
sented as

plz) =D, +D,;, z€FE"
Since for any & € E*,D, € L((E),(E)) and D € L((E)*,(E)*), p(z) can be
regarded as an element of £, i.e., a generalized operator.

It is important to construct functions of field operators ([2], [10]) through
certain renormalization procedure. To this end, we shall construct Wick product
of generalized operators.

Firstly, observe that for general z,y € E*, the composition D}D, makes
sense as a generalized operator, but it is not the case for D, Dj. For z1,...,z, €
E*, consider the formal product of field operators (the notation : indicates Wick
product which will be explained below)

p(@1) : -~ p@a) = (DI, + Day) : - : (D3, + D).
This expression is interpreted in the following way:

(1) multiply out formally and express the result as a sum of monomial terms;
(2) for each monomial term, move all creation operators to the left of anni-
hilation operators.

The final result is
Z (HD;:')(HD%‘)
AC{1,2,..,n} i€A JEAS
which belongs to £. This procedure is the so called Wick ordering.
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REMARK 3.1. The expression is well defined due to the CCR.
Secondly, observe that for z,y € E*,

D: = Zia(e) = [o(s)0:ds, Dy =Zoa) = [vit)ait,
R R
hence formally

.D; : Dy = D;Dy = 5110(Z)Eg!1(y) = /E(S)@; dsfy(t)@t dt
R R

= f z(8)y(t)8: 8, dsdt = Z; 1(z @ y).
RxR

More generally, for & € (Egp ® Eéq)*,c € (E@" ® E@j)*: and

Zali) = [ #6000k, S50 = [ ao)ozoudus,
RP x R RixRJ
it is reasonable to define
Spa()  Zes(C) = f WBC(5, B £, 7)0; 03 0bsdsdadid;
Re+i xRe+7

here «®¢ is the tensor product of £ and ¢, symmetrized with the first p + 4 and
last g + j variables independently. It is determined by

(KB, £3PF @ n®TH) = (k,£%7 @ 7®9){(, €%* @ 7).

Obviously, Z, 4(k) : E;;(¢) € L.
Finally, by linear combinations and Lemma 2.6, we propose

DEFINITION 3.2. For any K,J € L((E), (E)*) with chaos decompositions
K = ZEp,q(Kp,q)u J= zsi,j(']i,j)’
7q i3
the Wick product of K and J is defined as

K:J= ZEl,m( Z K ,quisj)
lym

pti=t
9Fi=m

provided the series converges in the sense of Lemma 2.6.

REMARK 3.3. This definition is intuitive from the Wick ordering procedure
and physical point of view. In the next section, we shall characterize this product
in terms of symbols and show that the product : is always well defined and well
adapted to the Wick ordering.
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4. WICK ALGEBRA

Topologize L((E), (E)) (resp. L((E)*, (E)*)) with uniform convergence on boun-
ded subsets of (E) (resp. (E)*). Then, under composition of operators, L((E), (E))
(resp. L((E)*,(E)")) is a non-commutative associative algebra with unit I and
the operation - is separatively continuous. {Dy|z € E*} (resp. {D}j|z € E*})is a
commutative subalgebra of L((E),(E)) (resp. L((E)*,(E)*)), sois {D} | y € E}
(resp. {Dy | y € E}). Moreover, L((E), (£)) and L({(E)* (E *) can be regarded
as each other’s dual.

Equip £ with the topology of uniform convergence on bounded subsets of
(E); then both L((E),(E)) and L((E)*,(E)*) are closed subspaces of £. Note £
is not an algebra in the usual sense, since in general, composition of generalized
operators is meaningless.

In view of Lemma 2.6, £ is generated by quantum white noise {;, 3} | ¢ € R}
in certain sense.

Let © = {f | T' € L} with the topology inherited from £, then © is a locally
convex topological vector space.

PROPOSITION 4.1. © is an algebra under pointwisely multiplicetion, and the
multiplication is separatively continuous.

Proof. Suppose that T, S € ©; it is obvious that T - S is analytic and by

Lemma 2.4, there exist constant numbers a,b,¢,d > 0,p,¢ € N such that

T(¢,n)| < aexp{b(€l} +1n3)},  15(6m)| < cexp{d(iEl; + I3}, &n € E.

Therefore
|T(¢,mS(& )] < acexp{(b+ d)(|€lpvq + Mlpvg)}-
Consequently, T-8 ¢ 0. The separative continuity of multiplication is obvious. 8
Now, the Wick product can be characterized as

ProrosiTION 4.2. For K,J € L, we have

K.J=K-J

Proof. Suppose that K, .J have chaos decompositions

K Z“"‘Pq Pq J= Z'—‘t,j 7.,_7)

qu
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In view of Lemma 2.6, for {,n € E,

K(&n) =Y (Kpgn® @57, JEm) =Y (Jis,n® 0 €%7),

g )

therefore

REn) - JEm =33 (Kpqn® @3- (45,7 @ £7)

im pti=t
gti=m

_ Z Z p‘q®Ji.;H @p+i £®q+j>‘

Lm ptist
q+ij=m

On the other hand, by Definition 3.2 and Lemma 2.8,

K’?J(E,n) — Z Z -Kp,q@n]i,p n@}H-i ® §®9+j>_

im pti=l
eti=m

Consequently
K:J=K-J. 1
According to the above two propositions, the Wick product of any two gen-
eralized operator is always well defined.

THEOREM 4.3. (£, :) is a nuclear Wick algebra in the sense that:
(i) £ is a nuclear space;

ii) : is a separatively continuous bilinear mapping from £ x L to L;

(iii) : is associative and commutative;

(iv) I : T =T, VT € L, where I is the identity operator;
(V)8 :T=8T, 8,:T=T8,VteR TecL:

(vi) (K J=K*:J VK, Je L.

Proof. (i), (ii), (iit) and (iv) are obvious, and (v) follows from Lemma 2.3
and Proposition 4.2. It remains to prove (vi). In fact

(K D) (&) = K = J(n,€) = R(n,€)- T(n, &) = K&, )T (£,0) = K7 - J*(€, 1),
therefore (K : J)* = K* : J*. 1

Note that (L((E), (E)), ) is itself a non-commutative algebra, while the Wick
algebra (£, :) is commutative, therefore (L((E),(E)}, -} cannot be embedded
into (£, : ) even though L{(E), (E))} is a subspace of £. However, there exist non-
trivial subalgebras of (L((E),{E)), -) which can be embedded in (£, :). In order
to characterize them, we shall study operator algebra generated by annihilation
(resp. creation) operators more extensively.
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PROPOSITION 4.4. The following are equivalent:
(i) T € L{{E),(E)) and TO; = ,T, Yt e R;

(i1} T € L admits the chaos decomposition
T= ZEO,m(TO,m)v Ty,m € E*®ma m € N,
m
Proof. (i) = (ii) In view of Lemma 2.3,

Ta,(€,m) = £()T(€, n)
8T (£,m) = e (&M

5o e M)

§ - -
= o lem [ o6, &m
= (6 [e6">5n(t)T(5,n)+T(£,n)£(t)e”}
5
t

- 5_77(.5:?(5, n) + £(T(E,n).

Since T'0; = &, T implies TE = 87:7’, we have

S

5 (t):r(g, =0 Vitck

Thus f(f ,7) is independent of %, and the conclusion follows from Lemma 2.6.
(ii) => (i) Just reversing the above argument, we obtain T0; = 8,7, Vt € R,
and by Lemma 2.6, we have T € L{(E),(E}). &

REMARK 4.5. This proposition is intuitive in view of Lemma 2.6 and the
CCR of quantum white noise.

In a dual fashion, we have

PROPOSITION 4.6. The following are equivalent:
(1) T e LB, (E)*) and T8 = 8;T, Vte R;

(it) T € £ admits the chaos decomposition
T=Y So(Tio)y To€ E®, 1N
1

Combining the above two propositions, we obtain the following well known

fact about the irreducibility of CCR in terms of quantum white noise.
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COROLLARY 4.7. If T € L((E)},(E)) N L((E)*,(E)*), and
T8, =8,T, To9 =0;, VteR,
then there exists a constant ¢ such that T = cl.

Let A ={A € L]| Ad; = 8;A, Vt € R}, then A is a common subalgebra of
(L(E),(E)), ) and (£, :). Ina dual fashion, A* ={A € L | Ad}f =8} A, VtE R}
is a common subalgebra of (L(E)*, (£)*), ) and (£, :). They are referred to as
annihilation algebra and creation algebra respectively, and are dual to each other.
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