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ESSENTIALLY QUASINILPOTENT ELEMENTS
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ABSTRACT. In this paper we prove that a part of the Riesz decomposition
theory for compact operators holds in maximal generality in the realm of von
Neumann algebras. More precisely, if an element z of a von Neumann algebra,
M is essentially quasinilpotent with respect to an arbitrary norm closed two-
sided ideal of M, then the supremum (in the projection lattice of M) of the
kernel projections of all positive integer powers of 1 — z belongs to the ideal.
It seems to be an interesting question, whether the above statement holds in
arbitrary AW™-algebras.
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In order to extend the classical Riesz theory of compact operators to the elements
' of the norm closed (two-sided) ideal Zs, generated by the finite projections of a
von Neumann algebra M, M. Breuer ([2]) made the following conjecture:

If 2 € I, and if e, € M with n > 1 is the orthogonal projection of z onto
the kernel of (1 — z)™ and if eo is the supremum of the sequence e; < ez < -+ in
the complete lattice of all projections of M, then ¢y, belongs to Zgy,, that is, es
is a finite projection.

Assuming the validity of the above conjecture, a substantial Riesz decompo-
sition theorem was proved in [2] for the elements of Zg,.
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Breuer’s conjecture was proved in (6] in the case of a von Neumann algebra M
acting on a separable Hilbert space. Subsequently, it was proved in full generality,
independently, in (3] and [7]. We notice that, according to [8], Breuer’s conjecture
holds even for every « € M, whose canonical image in M/Zg, is quasinilpotent.

The aim of this paper is to prove that for every norm closed two-sided ideal
T in a von Neumann algebra M and for every 2 € M, whose canonical image in
M/T is quasinilpotent, we have e, € Z, where ¢, is as defined above.

1. LEMMAS ON ESSENTIALLY QUASINILPOTENT ELEMENTS

In this section M will denote an AW*-algebra ([1], Definition 4.2), Z a norm closed
two-sided ideal in M, and z an element of M, such that its canonial image z/Z in
M/T is quasinilpotent. Let us further denote, for every integer n > 1, by e, the
unique projection in M satisfying

{ye M; (1 -2z)"y=0}=e,M.

Of course, e, is the greatest projection e € M with (1 — z)"e = 0. Finally, let
g1=e and gp =€, —en_1, n > 2. Since €; < ep < - -+, it follows that g1, g, ...
are mutually orthogonal projections in M. It will follow from Lemma 1.3 that
gn € I, whenn > 1.

LEMMA 1.1. For all integers k,n > 1 we have:
(i) 2*ent1 = enzhensy + Gn+1;
(ii) gnmkgn = gn-

Proof. For every n > 1,
(1-z)"(1 - z)ent1 = (1 —z)"leyyy =0,
which implies successively that
(1 —2)ens1 = en(l — z)eny:

Tent1 = €nt1 — €n(l — T)ent1 = €nZenis + gny1.
Now, since for every k,n > 1

z* e, — entttle, = (mk - en:ck)xenH = (2% — enzk)(en:zenH + Gn+1)

= (z*ens1 — enzFens1)(enTent + gni1),

part (i) follows by induction on k.
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To prove (ii), since ze; = e;, we have for every £ 2 1 that zFe, = e; and
q12"g) = ez¥e; = e; = g3. If n > 2, using (i) with n — 1 instead of n, it follows

for all £ 2 1 that

k k .
Ten = €en_1T" en + Gr;

gnT en = gn;
gnmkgn =gn- B
LEMMA 1.2. For cvery € > 0 there are an integer & 2 1 and a projection

e € I, such that
11— )t < &

Proof. Let 0 < & < . By the Beurling formula for the spectral radius there
is an integer k£ > 1 with
ll(z")/Z1) < 8.

Now from the spectral theorem (see the proof of Proposition 7.3 in [1]), there
exists a projection e € M, commuting with z*(z*)*, such that

emk(mk)* > Ezke

and
(1 - e)zh(z*)* <e®*(1 - e).
Then
e lle/Z|| < I(ea™(=*)*)/ZI| < (=) /Z)|* < 67,
Hence from

2k
le/zi< (2) <1

it follows that e € Z.
On the other hand,
1 —e)z®|? < [[(1 — e)z™(z®)*|| < **.

Note that the property proven in the above lemma characterizes the essential
quasinilpotentness of z with respect to Z (compare with Theorem 3.2 in [8]).

LEMMA 1.3. There are an integer £y 2 1 and o projection e € I, such that

1
In€Gn 2 79 7 z 1
0

Proof. Let 0 < e < (4)|z||)~. By Lemma 1.2 there are an integer k > 1 and
a projection e € Z, such that

(1 —e)zf]l < .
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For every n 2 1, using Lemma 1.1, we obtain

llgn — gnexkgn(xk)*EQn” = ”gnxkgn(xk)*gn - gnemkgn(:ck)"egnﬂ
< llgn(1 — )2 gn(@*)" gnll + llgnez® gn(2*)* (1 — €)gnll
<@ = e)z®|] - fl=®|| + | - 1 (=*)* (1 - )

: 3 1 1
= 2[|(1 - e)a*||- " || < 2eMlel* < 27 < 5
Hence 1

59n < gnez®gn(z*)"egn < |l2*|?

Choosing now an integer £y > 2||z*||?, it follows for all n > 1 that

Gn€Pn.

1
Gnlln 2 e_’gn- 1
0

2. LEMMAS ON PROJECTIONS

Let us agree to denote
e=e1text---

for e, ey, eq,... projections in an AW *-algebra M whenever e, e», ... are mutually
orthogonal and with supremum e in the lattice of all projections of M. In this
case e is equally the supremum of the partial sum sequence

€1, €1 +ez, €1 + ez +¢€3,...,
which justifies the notation.
LEMMA 2.1. Let M be an AW™*-algebro, e € M @ projection and &y > 1 an

integer. Then there are central projections p1,...,Pegy,Poo tn M with

P+ Pt +Poo =1
such that:
(i) for every 1 < £ < &y there are projections es 1, .., es041 € M with
2+1
De = Zel,lﬂ

k=1

€1 =epe  and is finite,

eer ~epy forl<k</{,

€s.0+1 < €p¢;
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(ii) there are projections ey 1, ..., €40, € M with

£y
Deq ; Z efo,kv
k=1

€p,,1 = €Pg,  and is finile,

€k ~ €py, forl <k < dy;
(iii) there is an infinite sequence of projections €so,1,€00,2,--- € M with

€Poo = €o0,1 T €xn,2 + -,
Eook ~ EPos  fork 2 1.

Proof. By Proposition 4.8 (iii) in [1], eMe is an AW *-subalgebra of M. Ac-
cording to Theorem 15.1 and Proposition 6.4 in [1], there exists a central projection
Poo in M such that ep., is properly infinite and e(l — po) is finite.

By Theorem 17.1 in [1], our statement (iii) holds. Set ¢ = 1—p., so that the
projection eq is finite. We prove inductively that there are mutually orthogonal
central projections qi,¢2,... € ¢, and there are mutually orthogonal projections
f1, fa,... with e = f; such that, for every ¢,

(I=fr—--—fo)ae < eqe; ferr~elg—q— - —qe).

As required, first let f; = e. Since M has generalized comparability (see
Corollary 1 of Proposition 14.7 in [1]), there exists a central projection ¢ < ¢ in
M with

(1-fi)g <eq; (1—fi)lg—a) » elg— q1).

By the last relation there exists a projection f; € M with

1-fi)lg—aq) 2 f2 ~e(g—q1).

Let us now assume that, for some m 2 1, g1,...,8m, f1,-- -, fm, fm+1 have
been constructed. Since M has generalized comparability, there exists a central
projection gm+1 < ¢—q — - ~ g in M with

(I=fi— = fmt1)@me1 < e@my1;
(I-fi— = fm)@—@— = gmp1) > e(g—q1 — - — gms).

By the last relation there exists a projection fy,42 € M with

I-fi—=fnr)g—qr—-- ~Gm41) 2 fmez ~e(g— @ — - — gmia),
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which completes the proof of the induction step.
Let 1 £ ¢ < e(). If we let Pt = qe, &g = fkq,g for 1 £k £ e, Cet+1 =
(1= f1 =+ = fo)ar, it follows that

t+1
§ €ek = Qe = Pu;
k=1

ee1 = fige = eps < eg is finite;

etk = frge~elg—q — - —qe_1)qe =eqe =epp for 1 <k < ¥
ererr = (1— fi—-- — fo)ge < eqe = epy.
Also, if we let pg, = g — @1 — **+ — Q-1 ok = fiPe, for 1 < k < Lo, it follows

that

14
2 :%,k < Pty
k=1

€e,1 = f1pe, = €pe, < eq s finite;
etok = fxPey ~e(@—q1 — - — Gr1)pe, = epe, for 1<k <ty 8
The following known result is included in order to have a convenient reference
in the sequel.
LEMMA 2.2. Let e, g be projections in a C*-algebra A such that, for some
>0, geg 2 eg. Then g < e.

Proof. Since 0 < g — geg < {1 — €)g, it follows from ||g —geg|| < 1 —e< 1
that geg is invertible in gAg. Let a > 0 denote the inverse of geg > 0 in gAg and
set

Then

and from
(I —e)vv* ={1—e)egage =10
it is clear that
vt =evv* e |

LEMMA 2.3. Let M be a von Neumann algebre, e € M a finite projection

and g1,92,... € M mutually orthogbnal projections such that, for some integer
EO ; 1;

1
n€gn 2 79 T = 1.
0
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Ifel = e, €5,...,€;, €M are mutually orthogonal equivalent projections then

o0 &
PIE DI
n=1 k=1
Proof. First of all we notice that, according to Lemma 2.2, g, < e, n 2 1.

In particular, all projections g, are finite. By Lemma 7.3 in [9] or Chapter V,
Lemma 2.2 in [10] it is enough to prove that, for every m 2 1,

m £
’
So<ddh
n=1 k=1

Passing from M to the von Neumann algebra generated by e, .. ., ego TR
9m, We can assume without loss of generality that Af is finite.

Let 2 — 2% be the center valued trace on M (see Theorem 7.11 in [9] or
Chapter V, Theorem 2.6 in [10]). Then for any m > 1,

(Z gn) =Y R <ld (gnegn) = Lo Y (egne)

n=1 n=1 n=1
m b £ ¢ i
(S < S (54).
n=1
thus

m £g
Zgn < Ze;c. ]
n=1 k=1

LEMMA 2.4. Let M be a von Neumann algebra, e € M a projection and
91,92, - - - € M mutually orthogonal projections such that, for some integer {y > 1,

1
9n€gn 2 E_g”’ nzl
Q

Then there are mutually orthogonal projections €] = e, e5,...,€, € M such that
o0 4y
€y €y > ... €y s Zgn—<26;.
n=1 k=1

o0
In particular, Y gn belongs to every two-sided ideal of M containing e.
n=1
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Proof. Applying Lemma 2.1 to e and £ and using the same notations, let us

set
4y

’ .
€y = € = €Pgs + Zele’
£=zx1
2o

Z e for 1<k < by,

i=k—
The projections e; = e,e5,...,e; € M are clearly mutually orthogonal.
Since €12 < epy and eg 2 ~ epy for 2 € £ < £y, we have

£ £0
ey =er +Zeg,g < epy +Zepz Ce=g¢l.
£=2 £=2
For 1 < k < {p, since exr41 < epr ~ err and eprp1 ~ epg ~ eg . for
k+1< €< 4y, we also have

eo £y
7
€ht1 = Chyk+1 + Z €k+1 < €kt Z eek < €
e=k+1 f=k+1

Hence €} > €} > --- > ¢} . Note that

£o Lo

2€k~€pw+zez1+z Z ek

k=2 f=k—1
£o~1 £4+1

= €Poo + ZZBE&+26%.

=1 k=1
!

= epoo + Zm+§:eeo,

Hence, in order to complete the proof we have to show that

B [».o]
(2.1) > GnPoo < Do,
n=1
o] Zo—1 £p—1
(2.2) don > pe= Z Pe
n=L £a=1
and

=) £o
(2.3) D 9nPey < Y o k-
n=1% £=1
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To show (2.1), we notice that according to Lemma 2.2 and property (iii) from
Lemma 2.1, we have gnPoc < €Poo ~ €co,n for all n 2 1, and

00 oo
Zgnpoo ~ Z €oo,n = EPoo-
n=1 n=1

Relation (2.2) holds trivially, because

oo lo—1

£o—1
9n Y Pe< Y Pe
=1 =1

n £=1

Since eg,1 = €Pry, 6,2, - - »Cto,Lo are mutually orthogonal equivalent finite
projections, (2.3) follows from Lemma 2.3. 1

3. THE MAIN RESULT

THEOREM 3.1. Let M be a von Neumann algebra, T o norm closed two-sided
ideal in M andx € M, such that the canonical image of z in M/T is quasinilpotent.
Let us denote, for every integer n 2 1, by e,(z) the null projection of (1 — z)™,
that is the greatest projection e € M with (1 — z)*e =0, and by fn.(x) the range
projection of (1 — z)™, that is the smallest projection f € M with f(1 — z)" =
(1 = z)™. Let exs(z) be the supremum of e;(z) < ex(x} € --- in the complete
lattice of all projections of M, and foo(z) the infimum of f(z) = fo(z) 2 -+ in
the same lattice.

Then exo(z) and 1 — foo(z) belong to T.

Proof. Setting g1 = e1(2), gn = en(2)—en_1(2), n 2 2 and applying Lemmas
1.3 and 2.4, yield

o0
es() = Zgn eZ.
n=1

The statement concerning fo.(z) follows by observing that the canonical
image of z* in M/Z is quasinilpotent and that 1 — foo (2] = eco{z*). 1

REMARK 3.2. In spite of the fact that both ex(z) and 1 — foo(z) are in T
under the most general conditions, Riesz type decomposition theorems like The-
orem 3 in [3], Theorem 3 in [7] and Theorem 4.2 in [8] do not hold generally. A
simple example is the following one:

Let M be the von Neumann algebra of all bounded linear operators on £2,
T = M, s the forward shift s(£;,&;,...) = (0,61,&2,...),andz =1 —s.
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Obviously, the canonical image of 2 in M/T is quasinilpotent. It is easy
to see that both e, (z) and fo(z) are zero, therefore neither do we have that

€oo(Z) V foo(z) = 1, nor that eq(x) and 1 — f(z) are equivalent.

REMARK 3.3. The proof of Theorem 3.1 had a strong AW*-algebra flavour,
so it is guite natural to ask: does it hold for every AW *-algebra M7

The only point where we essentially used the fact that M is a von Neumann
algebra, was in the proof of Lemma 2.3. If Kaplansky’s conjecture on the linearity
of the canonical quasitrace of a finite AW*-factor would hold, then Lemma 2.3
would follow for arbitrary AW*-algebras.

However, we need slightly less than the validity of the general Kaplansky
conjecture.

Namely, let us assume the following

(if M is a finite AW *-factor, generated by the projections
€,g1,---,9m, where gi,...,¢gm are mutually orthogonal
(*) and if, for some ¢ > 0, we have that

9n€gn 2 €gn, 1 < n < m,

. then the canonical quasitrace of M is linear.

Then Proposition 4.6 in [4] would imply that every quasitrace on a C*-algebra
generated by a finite number of projections e,g1,...,9m, where g1,...,gm are
mutually orthogonal and, for some & > 0, gpegn > £gn, 1 € n € m, is linear. This
would suffice to prove Lemma 2.3 for arbitrary AW *-algebras. So, let us ask, does
(%) hold?

We notice that, if under the assumptions from () the C*-algebra generated
by €,91,- .., gm would be exact (see, for example, [5] and [11]), then Corollary 5.13

in (4] would imply the conclusion from (x).
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