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Abstract. This paper is devoted to the study of the discrete spectrum of
selfadjoint operators, which are generated by symmetric operator matrices of
the form

L0 =

„
A B
B∗ C

«
in the product Hilbert space H1 × H2, where the entries A, B and C are
not necessarily bounded operators in the Hilbert spaces H1, H2 or between
them, respectively. Under some assumptions all selfadjoint extensions of L0

in H1×H2 are described and the extension L defined by the given selfadjoint
operator C is singled out. General statements on the discrete spectrum of L
and its accumulation points are proved. Special attention is paid to the case
that C is bounded.
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0. INTRODUCTION

The recent paper [4] is devoted to the investigation of linear operators L0 defined
by 2× 2 block operator matrices

L0 =
(
A B1

B2 C

)
,

the entries of which are not necessarily bounded operators in Banach spaces X1,
X2 or between them, respectively. In [4] sufficient conditions are presented which
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yield the closability of the operator L0. Further, it was shown there that under
suitable assumptions, e.g. that A has a compact resolvent, the essential spectrum
of L0, the closure of L0, coincides with the essential spectrum of the operator

C −B2 (A− µ I)−1B1,

acting in the smaller space X2, where µ is any number in the resolvent set of A.
The investigations in [4] were motivated by various spectral problems in

the dynamics of fluid and plasmas; an example of which is treated in [4] as an
application of the general theory. In the forthcoming paper [5] this theory is
successfully applied to a two-dimensional problem from magnetohydrodynamics,
which is described by a nonelliptic system of partial differential operators of mixed
order, which is not elliptic even in weaker Douglis–Nirenberg sense.

The present paper as well as [1], [2], [3], [9] and [11] continue the investi-
gations of the [4] article in the case when X1, X2 are Hilbert spaces and L0 is a
symmetric operator in the product Hilbert space X1 × X2. Its main part deals
with the question whether the discrete spectrum of a selfadjoint extension of L0,
if this extension exists, has accumulation points at the boundary of its essential
spectrum or not.

In Section 1 we state the general assumptions on the operators A, B and C
which define the symmetric operator

L0 =
(
A B

B∗ C

)
.

Then we describe L0, the closure of L0. Under the condition that L0 is a symmetric
operator with non-zero, equal defect numbers, all selfadjoint extensions L of L0

are characterized. Let L be such a selfadjoint extension. Section 2 contains some
general statements on the discrete spectrum of L and its accumulation points.
The existence of joint eigenvalues of L and A is also discussed here. In Section 3
we additionally assume that C is a bounded (selfadjoint) operator which implies
that the essential spectrum of L is a bounded (compact) subset of R. Let δ be the
upper (lower) bound of some interval which does not contain points of the essential
spectrum of L. Necessary and sufficient conditions are presented under which the
point δ is an accumulation point from the left (from the right) of the discrete
spectrum of L. Finally, in Section 4 the foregoing stated results are applied to an
(n+1)× (n+1)-system of ordinary differential operators of mixed orders occuring
in magnetohydrodynamics.
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1. THE CLOSURE OF L0 AND ITS SELFADJOINT EXTENSIONS

First of all we introduce some notations. For a densely defined closed operator S
in a Hilbert space H we denote its kernel by N (S) and its range by R(S). We
define

nul(S) := dimN (S), def(S) := codimR(S),

these being finite numbers or ∞, and, if both are finite,

ind(S) := nul(S)− def(S)

(see [6], [8]). Recall that S is called Fredholm if nul(S) <∞ and def(S) <∞. If S
is bijective, i.e., N (S) = {0} and R(S) = H, and if S−1 is bounded, we say that
S has a bounded inverse. Let T be an operator function, which is defined on the
open subset Ω ⊂ C and has values in the set of linear closed operators in a Hilbert
space. We call

ρ(T ) := {z ∈ Ω | T (z) has a bounded inverse}

the resolvent set of T and
σ(T ) := Ω \ ρ(T )

the spectrum of T . The point spectrum of T is defined by

σp(T ) := {z ∈ Ω | T (z) not injective} .

An element z ∈ σp(T ) is called an eigenvalue of T and a vector x 6= 0
which belongs to the kernel of the operator T (z) is called an eigenvector of T for
the eigenvalue z. The dimension of the kernel of the operator T (z) is called the
(geometric) multiplicity of the eigenvalue z. The set

σess(T ) := {z ∈ Ω | T (z) not Fredholm}

is called the essential spectrum of T . If S is a linear closed operator in a Hilbert
space, we associate with S the operator function S − z I which is defined on C.
By ρ(S), σ(S), σp(S) and σess(S), respectively, we denote the resolvent set, the
spectrum, point spectrum and the essential spectrum of this operator function,
respectively. Accordingly, we can speak of eigenvalues, eigenvectors and multiplic-
ities of eigenvalues of the operator S.

An operator function T of the form T (z) = T0 + T1(z), z ∈ Ω, where T0 is
a linear closed operator and the operators T1(z), z ∈ Ω, are (everywhere defined)
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bounded operators, is called holomorphic if the operator function T1 is holomor-
phic.

If T is a selfadjoint operator in a Hilbert space and α is a real number,
then T > α means that 〈T x , x 〉 > α 〈x , x 〉 for x ∈ D(T ), x 6= 0. Finally, the
notation T � β means that there exists a real number γ > β such that T > γ,
i.e., 〈T x , x 〉 > γ 〈x , x 〉 for x ∈ D(T ).

Let H1 and H2 be Hilbert spaces. In the product space H := H1 × H2

(endowed with the scalar product 〈 · , · 〉H = 〈 · , · 〉H1 + 〈 · , · 〉H2) we consider a
symmetric operator which is formally defined by a 2× 2 block operator matrix of
the form

(1.1)
(
A B

B∗ C

)
.

In the following it is always assumed that the entries of the block operator matrix
satisfy the following conditions:

(a) A is a selfadjoint, strictly positive operator in H1 (i.e., A� 0) such that
A−1 is compact;

(b) B is a densely defined closed operator from H2 into H1;
(c) the adjoint operator B∗ of B is densely defined and D(A1/2) ⊂ D(B∗);
(d) C is a linear operator in H2 such that D(C) ⊃ D(B) and CB := C|D(B)

is a symmetric operator.

The assumptions on A imply that the spectrum of A, σ(A), consists of posi-
tive isolated eigenvalues with finite multiplicities. The only possible accumulation
point of σ(A) is +∞.

With the matrix (1.1) we associate the following operator L0:

(1.2) L0

(
x1

x2

)
:=
(
Ax1 +B x2

B∗x1 + C x2

)
,

(
x1

x2

)
∈ D(L0) := D(A)×D(B).

Evidently, L0 is a densely defined symmetric operator in H.
We start with a description of the closure L0 of L0. The assumption (D(A) ⊂)

D(A1/2) ⊂ D(B∗) implies that for each z ∈ ρ(A) the operator

(1.3) G(z) := B∗(A− z I)−1

is defined and bounded on H1 (which follows immediately from the Closed Graph
Theorem). The resolvent equation for A yields that G is a holomorphic operator
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function on ρ(A), and G′(z) = G(z) (A − z I)−1. The adjoint operator of G(z̄) is
the continuous extension of the operator (A− z I)−1B, i.e.,

G(z̄)∗ = (A− z I)−1B.

For convenience we introduce the operator

(1.4) J := B∗A−1/2,

which is defined and bounded on H1. Its adjoint operator is the continuous ex-
tension of A−1/2B, i.e.,

J∗ = A−1/2B.

Lemma 1.1. Let the assumptions (a–c) be satisfied. Then for z ∈ ρ(A) the
operator B∗(A − z I)−1B, which is defined on D(B), has a continuous extension
H(z) = B∗(A− z I)−1B. It has the form

(1.5) H(z) = J J∗ + z J (A− z I)−1J∗ = J A (A− z I)−1J∗.

H is a holomorphic operator function on ρ(A), which satisfies

H(z)∗ = H(z̄), z ∈ ρ(A); H ′(z) > 0, z ∈ ρ(A) ∩ R.

Moreover, ∥∥H(z)
∥∥ 6

∥∥J∥∥2

(
1 +

∣∣ z ∣∣∣∣ Im (z)
∣∣
)
, z ∈ C \ R.

Proof. The resolvent equation for A implies that

B∗(A− z I)−1B = B∗A−1B + z B∗(A− z I)−1A−1B

= (B∗A−1/2)(A−1/2B) + z (B∗A−1/2)(A− z I)−1(A−1/2B)

for z ∈ ρ(A). Taking the closures on both sides we obtain

H(z) = B∗(A− z I)−1B = J J∗ + z J (A− z I)−1J∗, z ∈ ρ(A).

By assumption (d) CB is closable and its closure CB is symmetric.
For z ∈ ρ(A) the operator CB −B∗(A− z I)−1B, which is defined on D(B),

is closable, and its closure is given by CB −H(z).
In the sequel the closed operators

(1.6) W (z) := −CB + z I +H(z), z ∈ ρ(A),

which are defined on D(CB), play an essential role.
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Proposition 1.2. Let the assumptions (a–d) be fulfilled and the operator
function W be defined by (1.6). Then for each z ∈ C \ R the operator W (z) is
injective, its range is closed, its inverse W (z)−1 is bounded and

(1.7)
∥∥W (z)−1

∥∥ 6
∣∣ Im (z)

∣∣−1
.

Proof. Let z ∈ C \R be fixed. Using the resolvent equation for A we obtain

H(z) = H(z̄) + 2 i Im (z) J (A− z̄ I)−1A (A− z I)−1J∗.

Taking into account that H(z)∗ = H(z̄) it follows for x ∈ H2 that

Im 〈H(z)x, x 〉 =
1
2

Im 〈 (H(z)−H(z̄))x, x 〉

= Im (z) 〈A (A− z I)−1J∗x, (A− z I)−1J∗x 〉.
We conclude that

Im 〈W (z)x, x 〉 = Im (z) {
∥∥x∥∥2 + 〈A (A− z I)−1J∗x, (A− z I)−1J∗x 〉 },

and ∣∣ Im 〈W (z)x, x 〉
∣∣ > ∣∣ Im (z)

∣∣∥∥x∥∥2
,
∥∥W (z)x

∥∥ >
∣∣ Im (z)

∣∣∥∥x∥∥
for x ∈ D(CB). Hence W (z) is injective, its range is closed and W (z)−1 is bounded
on its domain R(W (z)).

The defect numbers of a densely defined closed and symmetric operator S in
a Hilbert space are defined by

n±(S) := def (S ∓ i I).

Remember that
n+(S) = def (S − z I), Im (z) > 0,

n−(S) = def (S − z I), Im (z) < 0.

Lemma 1.3. Let the assumptions (a–d) be satisfied and W be defined as in
(1.6). Then

def (W (z)) =
{
n+(CB) if Im (z) > 0,
n−(CB) if Im (z) < 0.

Proof. Consider the operator function

W0(t, z) := −CB + z I + tH(z), (t, z) ∈ [0, 1]× (C \ R).

Repeating the proof of Proposition 1.2 for W0(t, z) we infer that∥∥W0(t, z)x
∥∥ >

∣∣ Im (z)
∣∣ ∥∥x∥∥, x ∈ D(CB), (t, z) ∈ [0, 1]× (C \ R).

Since the operator W0(t, z) is injective and the index of the operator function W0,
ind(W0(· , ·)), is (locally) constant with respect to t ∈ [0, 1] for fixed z ∈ C \ R
(see [8], Chapter 4, Theorem 5.22), the function def(W0(· , ·)) is locally constant.
Hence, the assertion follows.
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Theorem 1.4. Let the assumptions (a–d) be fulfilled and the operator L0 be
defined according to (1.2). Let the operator functions G and W be given by (1.3)
and (1.6). Then:

(i) The operator L0 is closable. For z ∈ ρ(A) its closure L0 is given by

(1.8) L0 = z I +
(

I 0
G(z) I

) (
A− z I 0

0 −W (z)

) (
I G(z̄)∗

0 I

)
,

or, spelled out,

(1.9)
D(L0) =

{(
x1

x2

)
∈ H | x1 +G(z̄)∗x2 ∈ D(A), x2 ∈ D(CB)

}
,

L0

(
x1

x2

)
=
(

A(x1 +G(z̄)∗x2)− z G(z̄)∗x2

B∗(x1 +G(z̄)∗x2)− (W (z)− z I)x2

)
.

The operators which are given by the right-hand side of (1.8), (1.9) do not depend
on the choice of the point z ∈ ρ(A). The operator L0 is symmetric and the defect
numbers of L0 and CB coincide, i.e., n±(L0) = n±(CB).

(ii) If n+(CB) = n−(CB), then all selfadjoint extensions of L0 in H are given
by the formulas

(1.10) L
Ĉ

= z I +
(

I 0
G(z) I

) (
A− z I 0

0 −W
Ĉ

(z)

) (
I G(z̄)∗

0 I

)
,

(1.11) W
Ĉ

(z) = −Ĉ + z I +H(z),

or, spelled out,

(1.12)

D(L
Ĉ

) =
{(

x1

x2

)
∈ H

∣∣∣x1 +G(z̄)∗x2 ∈ D(A), x2 ∈ D(Ĉ)
}
,

L
Ĉ

(
x1

x2

)
=
(

A(x1 +G(z̄)∗x2)− z G(z̄)∗x2

B∗(x1 +G(z̄)∗x2)− (W
Ĉ

(z)− z I)x2

)
,

where Ĉ varies in the set of all selfadjoint extensions of CB in H2, and z ∈ C \R.
The selfadjoint operators which are given by the right-hand side of (1.10), (1.12)
do not depend on the choice of the point z ∈ C \ R.

Proof. For z ∈ ρ(A) we denote

Kz :=
(

I 0
G(z) I

)
, K+

z :=
(
I G(z̄)∗

0 I

)
.
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(i) Since L0 is a densely defined symmetric operator, it is closable and its closure
L0 is symmetric. It follows from [4] that L0 is given by (1.8) and (1.9). Taking
into account that the operators Kz and K+

z have a bounded inverse, we infer

def (L0 − z I) = def (A− z I) + def (W (z)) = def (W (z)), z ∈ C \ R.

Hence, by Lemma 1.3 the assertion follows.
(ii) Assume that n+(CB) = n−(CB). If Ĉ is any selfadjoint extension of CB

in H2, it is easy to verify that the operator L
Ĉ

is a selfadjoint extension of L0.
Conversely, let L̃ be a selfadjoint extension of L0 in H. Since Kz and K+

z

have a bounded inverse, we can write the resolvent of L̃ in the form

(L̃− z I)−1 = (K+
z )−1

(
P (z) Q1(z)
Q2(z) R(z)

)
K−1

z , z ∈ C \ R,

where P (z), Q1(z), Q2(z) and R(z) are bounded operators, which are defined
everywhere. Now take any selfadjoint extension Ĉ of CB in H2.

Using the relations

(L̃− z I)−1y = (L
Ĉ
− z I)−1y, y ∈ R(L0 − z I),

and

R(L0 − z I) ⊃
{
Kz

(
(A− z I)x

0

) ∣∣∣x ∈ D(A)
}

=
{
Kz

(
y

0

) ∣∣∣ y ∈ H1

}
,

we infer that
P (z) = (A− z I)−1, Q2(z) = 0, z ∈ C \ R.

Taking into account that

(L̃− z I)−1∗ = (L̃− z̄ I)−1, z ∈ C \ R,

we obtain that Q1(z) = 0, z ∈ C \ R. The Hilbert identity for L̃ yields that

(1.13) R(z2)−R(z1) = (z2 − z1)
(
R(z1)R(z2) +R(z1)G(z1)G(z̄2)∗R(z2)

)
for z1, z2 ∈ C \R. It follows that the range of the operator R(z) is independent of
z ∈ C\R. Let us denote this range by M . From the invertibility of (L̃− z I)−1 we
conclude that the operator R(z), acting from H2 to M , is invertible for z ∈ C \R.
Put

−R(z)−1 = W̃ (z) = −C̃(z) + z I +H(z), z ∈ C \ R.

Since the operators H(z), z ∈ ρ(A), are bounded, all operators C̃(z), z ∈ C \ R,
have the same domain M . A straightforward calculation yields that

C̃(z2)− C̃(z1) = (z2 − z1)
(
I +G(z1)G(z2)∗

)
+
(
I −R(z1)−1R(z2)

)
R(z2)−1.

Using (1.13) we infer that all operators C̃(z), z ∈ C \ R, coincide. Let us denote
their general value by C̃0. Taking into account that

R(z)∗ = R(z̄), z ∈ C \ R,

we obtain that C̃∗0 = C̃0. Hence, C̃0 is a selfadjoint extension of CB .
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Remark 1.5. If A is not a strictly positive operator, but if there exists a
real number γ such that A� γ, then Theorem 1.4 holds also.

2. ON THE SPECTRUM OF L AND ITS ACCUMULATION POINTS

In addition to the conditions (a–c) we assume in the following that

(e) C is a selfadjoint operator in H2 such that D(C) ⊃ D(B).

Obviously, the condition (d) is satisfied. It follows that the operator L :=
LC , defined according to Theorem 1.4, is selfadjoint. The corresponding operator
function W := WC is defined by

(2.1) W (z) := −C + z I +H(z), z ∈ ρ(A).

Relation (1.10) yields

Theorem 2.1. Let the assumptions (a–c, e) be fulfilled and L := LC , W and
G be given by (1.12), (2.1) and (1.3). Then the spectra of L and W are connected
by the relations

σ(L) ∩ ρ(A) = σ(W ), σp(L) ∩ ρ(A) = σp(W ), σess(L) ∩ ρ(A) = σess(W ).

If x =
(
x1

x2

)
is an eigenvector of L for the eigenvalue z ∈ ρ(A), then x2 is an

eigenvector of W for the eigenvalue z and x1 = −G(z̄)∗x2. Conversely, if x2 is an

eigenvector of W for the eigenvalue z, then x =
(
−G(z̄)∗x2

x2

)
is an eigenvector

of L for the eigenvalue z. In particular, the multiplicities of the eigenvalues of L
and W in ρ(A) coincide.

Remark 2.2. Let the assumptions (a–c, e) be fulfilled and the operator
function W be given by (2.1). Then the spectrum of the operator function W is
a subset of R and W (z)∗ = W (z̄), z ∈ ρ(A). For each z ∈ ρ(A) ∩ R the operator
W (z) is selfadjoint. The partial multiplicities of each eigenvalue of W are equal to
1, i.e., the mapping z →W (z)−1 has only simple poles at each eigenvalue of W .

Proof. The first two assertions follow by Lemma 1.1 and Proposition 1.2.
The third one follows from estimate (1.7), which yields that z →W (z)−1 has only
simple poles.

In the following the selfadjoint operator

(2.2) Q := C − J J∗ = C − (B∗A−1/2) (B∗A−1/2)∗,

which is defined on D(C), plays an important role. Obviously, Q 6 C.
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Proposition 2.3. The operator function W , defined by (2.1), has a repre-
sentation of the form

(2.3) W (z) = −Q+ z I + V (z), z ∈ ρ(A),

where the operator function

(2.4) V (z) := −J J∗ + J A (A− z I)−1J∗ = z J (A− z I)−1J∗, z ∈ ρ(A),

is holomorphic, each operator V (z) is compact, and

V ′(z) = J (A− z I)−1A (A− z I)−1J∗ > 0, z ∈ ρ(A) ∩ R.

In particular, W is a holomorphic operator function, and

W ′(z) > I, z ∈ ρ(A) ∩ R.

Furthermore, σess(W ) = σess(Q) ∩ ρ(A) and

σess(W (z)) = {z − λ | λ ∈ σess(Q)} , z ∈ ρ(A).

Proof. Observe that the resolvent equation for A implies that for each z ∈
ρ(A) the operator (A−z I)−1 is compact, since by assumption (a) A−1 is compact.

We are now ready to state Theorem 2.2 in [4], p. 9 in the case that the
underlying spaces are Hilbert spaces. To avoid some technical argumentation and
for completeness we reprove the result in this special case.

Theorem 2.4. ([4]) Let the assumptions (a–c, e) be fulfilled and L := LC ,
Q be given by (1.12) and (2.2). Then:

(2.5) σess(L) = σess(Q).

Proof. By Theorem 2.1 and Proposition 2.3

σess(L) ∩ ρ(A) = σess(W ) = σess(Q) ∩ ρ(A).

It remains to show that any point µ ∈ σ(A) belongs to σess(L) if and only if it
belongs to σess(Q). To this end fix µ ∈ σ(A), take the orthogonal projection Pµ

onto the eigenspace M of A with respect to the eigenvalue µ, choose a number
0 < δ < µ such that µ − δ ∈ ρ(A), change the upper left block A in (1.1) to
Aµ−δ = A−(µ−δ)Pµ and consider the new selfadjoint operator Lµ−δ (:= Lµ−δ,C)
defined in the same manner as L.
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Observe that D(Aµ−δ) = D(A). In view of the compactness of A we know
that rank(Pµ) <∞. Since

(2.6) Lµ−δ − L =
(

(δ − µ)Pµ 0
0 0

)
on D(A)×D(B) and (δ− µ)Pµ is a bounded operator, it follows that D(Lµ−δ) =
D(L) and (2.6) remains true on D(L). Hence, rank(Lµ−δ − L) = rank(Pµ) < ∞.
By Theorem 2.1, Remark 1.5 and Proposition 2.3 we infer that

(2.7) σess(L) ∩ ρ(Aµ−δ) = σess(Lµ−δ) ∩ ρ(Aµ−δ) = σess(Qµ−δ) ∩ ρ(Aµ−δ),

where

(2.8)
Qµ−δ = C −B∗(Aµ−δ)−1B = C −B∗A−1B +

(
1
µ
− 1
δ

)
B∗PµB

= Q+
(

1
µ
− 1
δ

)
(B∗Pµ)(B∗Pµ)∗.

Since M ⊂ D(A) ⊂ D(B∗) and rank(Pµ) < ∞, we obtain rank(B∗Pµ) < ∞
and therefore rank(Qµ−δ − Q) < ∞. Hence, σess(Qµ−δ) = σess(Q). Since by
construction µ ∈ ρ(Aµ−δ), the theorem is proved.

Corollary 2.5. Let the assumptions (a–c, e) be fulfilled and L := LC , W
and Q be given by (1.12), (2.1) and (2.2). Then each point z0 ∈ (R \ σess(Q)) ∩
σ(W )∩ ρ(A) is an isolated eigenvalue of L of finite multiplicity. All accumulation
points of σ(W ) belong to σess(Q).

Proof. By Theorem 2.4 each point of the set (R\σess(Q))∩σ(L)∩ρ(A) is an
isolated eigenvalue of L of finite multiplicity. By Theorem 2.1 the same is true for
the set (R \ σess(Q)) ∩ σ(W ) ∩ ρ(A) and accumulation points of σ(W ) are at the
same time accumulation points of σ(L). Since accumulation points of σ(L) belong
to σess(L), Theorem 2.4 yields that there are none of those in the set R\σess(Q).

Remark 2.6. The last assertion of Corollary 2.5 means in particular that
each point z0 ∈ σ(A) \ σess(Q) is not an accumulation point of σ(W ) (or σ(L)).

Suppose that µ ∈ σ(A) ∩ (R \ σess(Q)) is fixed. Since A−1 is a compact
positive operator, µ is a positive isolated eigenvalue of A with finite multiplicity.
By Theorem 2.4 there are only two possibilities: µ ∈ ρ(L) or µ is also an iso-
lated eigenvalue of L with finite multiplicity. Denote as above by Pµ the (finite
dimensional) orthogonal projection onto the eigenspace M of A with respect to µ.
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There exists a number ε > 0 such that the punctured disc around µ with
radius ε belongs to ρ(A). The resolvent of A has a representation of the form

(2.9) (A− z I)−1 =
1

µ− z
Pµ +Rµ(z), 0 <

∣∣ z − µ
∣∣ < ε,

where Rµ is a holomorphic operator function on
{
z ∈ C |

∣∣ z − µ
∣∣ < ε

}
, satisfying

Rµ(z)∗ = Rµ(z̄). Rµ is called the reduced resolvent (or the regular part of the
resolvent) of A at the point µ. The operator Sµ := B∗Pµ is defined and bounded
on H1, and the operator B∗PµB, which is defined on D(B), has a bounded clo-
sure, which is given by Sµ S

∗
µ. Finally, let us introduce the holomorphic operator

function

(2.10)
W̃µ(z) := −C + z I +B∗Rµ(z)B

= −C + z I + J ARµ(z) J∗,
∣∣ z − µ

∣∣ < ε.

We call W̃µ the regular part of W at the point µ. Observe that

(2.11)
W (z) = W̃µ(z) +

1
µ− z

Sµ S
∗
µ

= W̃µ(z) +
1

µ− z
J APµ J

∗, 0 <
∣∣ z − µ

∣∣ < ε,

and that W̃ ′
µ(z) > I for z ∈ R,

∣∣ z − µ
∣∣ < ε.

According to (1.3) we can write

G(z) =
1

µ− z
Sµ + G̃µ(z),

where G̃µ(z) is the regular part of G(z). Observe that

G(z̄)∗ =
1

µ− z
S∗µ + G̃µ(z̄)∗

and

(2.12) G(z)Pµ =
1

µ− z
Sµ, PµG(z̄)∗ =

1
µ− z

S∗µ.

Theorem 2.7. Let the assumptions (a–c, e) be satisfied and L := LC be
defined by (1.12). Assume that µ ∈ σ(A) and µ /∈ σess(L). Let us denote by Pµ

the orthogonal projection onto the eigenspace M of A with respect to µ. Let Sµ

be defined by B∗Pµ and W̃µ be given by (2.10). Finally, let us denote by Dµ the
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orthogonal projection onto the (finite dimensional) subspace Nµ := R(B∗|M) of
H2. Then the following conditions are equivalent:

(i) µ ∈ ρ(L);
(ii) dim(M) = dim(Nµ) and N (S∗µ) ∩N ((I −Dµ) W̃µ(µ)) = {0}.

Proof. Suppose that µ is an eigenvalue of L and also (ii) is fulfilled. By the

assumptions µ is an isolated point of σ(L). There exists a vector x =
(
x1

x2

)
∈

D(L), x 6= 0, such that lim
z→µ

(L− z)x = 0. Applying (1.12) we obtain

(2.13) lim
z→µ

(A− z I) (x1 +G(z̄)∗x2) = 0

and

(2.14) lim
z→µ

(
B∗(x1 +G(z̄)∗x2)−W (z)x2

)
= 0.

The relations (2.12) and (2.13) imply that

(2.15)

0 = lim
z→µ

Pµ (A− z I) (x1 +G(z̄)∗x2)

= lim
z→µ

(µ− z)
[
Pµ x1 +

1
µ− z

S∗µx2

]
= S∗µx2.

It follows from (2.14) that x1 + G̃µ(µ)∗x2 ∈M and

(2.16)
Sµ x1 = B∗Pµ x1 = lim

z→µ
B∗Pµ (x1 +G(z̄)∗x2)

= lim
z→µ

B∗(x1 +G(z̄)∗x2) = lim
z→µ

W (z)x2 = W̃µ(µ)x2.

In view of (2.15) and (2.16) we obtain

x2 ∈ N (S∗µ) ∩N ((I −Dµ) W̃µ(µ)).

Thus, by (ii), x2 = 0. Hence, x1 ∈ M and Sµ x1 = 0. Since dim(M) = dim(Nµ),
the mapping B∗|M : M → Nµ is surjective and hence bijective. Consequently,
x1 = 0 and x = 0 which is a contradiction.

If on the other hand one of the conditions in (ii) is violated, then there exists
a h1 ∈M and h2 ∈ H2 such that h1 6= 0 or h2 6= 0 and

S∗µh2 = 0, Sµ h1 = W̃µ(µ)h2.

Observe that in a punctured neighbourhood of µ we have that

W̃µ(z)h2 = W (z)h2, G̃µ(z)∗h2 = G(z̄)∗h2.

It is easy to see that the vector

x =
(
h1 − G̃µ(µ)∗h2

h2

)
,

which is different from zero, satisfies the conditions (2.13) and (2.14). Hence, x is
an eigenvector of L for the eigenvalue µ.
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3. EDGES OF THE ESSENTIAL SPECTRUM OF L AS ACCUMULATION POINTS

OF THE DISCRETE SPECTRUM OF L

In the subsequent considerations we use the following lemmas on eigenvalues of
monotonous operator functions.

Lemma 3.1. Let G be an operator function which is defined on the open
interval I := (γ, δ) with −∞ 6 γ < δ < ∞. Assume that for λ ∈ I the operators
G(λ) are bounded and selfadjoint operators on a Hilbert space into itself such that

G(λ1) � G(λ2), λ1 < λ2 ∈ I.

Suppose that the operator function G is continuous with respect to the operator
norm, and

σess(G(λ)) ⊂ (−∞, 0), λ ∈ I.

For λ ∈ I, we denote by ν+(λ) the total number of eigenvalues of the opera-
tor function G|(γ, λ) counted according to their multiplicities and by n+(λ) the
number of all positive eigenvalues of the operator G(λ) counted according to their
multiplicities. If n0 := min

λ∈I
n+(λ), then

ν+(λ) = n+(λ)− n0 <∞, λ ∈ I.

Proof. The assumptions imply that for λ ∈ I the number n+(λ) is finite.
Each nonnegative eigenvalue of G(λ) is an eigenvalue of finite multiplicity. By
taking into account minimal-maximal properties of eigenvalues of semibounded
operators we infer from the strict monotonicity of the operator function G that

n+(λ1) 6 n+(λ2), λ1 < λ2 ∈ I.

Suppose that λ0 ∈ I is not an eigenvalue of the operator function G. From the
assumption on the essential spectra it follows that G(λ0) has a bounded inverse.
Hence, we can choose a positive number η > 0 such that (−η, η) ⊂ ρ(G(λ0)). Let
us denote by H+(λ0) the invariant subspace of G(λ0) generated by its positive
spectrum (eigenvalues). Obviously,

〈G(λ0)x, x 〉 > η
∥∥x∥∥2

, x ∈ H+(λ0),

〈G(λ0)x, x 〉 6 −η
∥∥x∥∥2

, x ∈ H+(λ0)⊥.

The continuity of the operator function G with respect to the operator norm
implies that there exists a number ε > 0 such that, for λ ∈ I with

∣∣λ− λ0

∣∣ < ε,

〈G(λ)x, x 〉 >
η

2

∥∥x∥∥2
, x ∈ H+(λ0),
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〈G(λ)x, x 〉 6 −η
2

∥∥x∥∥2
, x ∈ H+(λ0)⊥.

Observe that n+(λ) coincides with the dimension of the maximal positive subspace
with respect to the indefinite scalar product {f, g}λ := 〈G(λ) f, g 〉, f, g ∈ H. It
follows that n+(λ) = n+(λ0) for

∣∣λ− λ0

∣∣ < ε.

Suppose now that λ0 ∈ I is an eigenvalue of the operator function G with
multiplicity s := dimN (G(λ0)) > 0. Let us denote as above by H+(λ0) the
invariant subspace of G(λ0) generated by its positive spectrum (eigenvalues).
It follows that, for x ∈ H+(λ0) ⊕ N (G(λ0)), x 6= 0, and λ > λ0, we have
〈G(λ)x, x 〉 > 0. On the other hand a similar argumentation as before shows
that there exist numbers η > 0 and ε > 0 such that, for λ ∈ (λ0 − ε, λ0),

〈G(λ)x, x 〉 >
η

2

∥∥x∥∥2
, x ∈ H+(λ0),

〈G(λ)x, x 〉 < 0, x ∈
(
H+(λ0)⊕N (G(λ0))

)⊥
, 6= 0.

In particular, for x ∈ N (G(λ0)), x 6= 0, and λ < λ0, we have 〈G(λ)x, x 〉 < 0.

We have proved that the growth points of n+ coincide with the eigenvalues
of G and that a jump of n+ at such a point is equal to the multiplicity of the
corresponding eigenvalue. Hence, the lemma is proved.

Lemma 3.2. Let G be an operator function as in Lemma 3.1. Assume ad-
ditionally that G is also defined and continuous at δ with respect to the operator
norm. Then the following conditions are equivalent:

(i) δ is an accumulation point of eigenvalues of G in the interval (γ, δ);

(ii) 0 is an accumulation point of positive eigenvalues of G(δ).

The proof starts with

Proposition 3.3. Under the assumptions of the Lemmas 3.1 and 3.2 we
have

(3.1) σess(G(δ)) ⊂ (−∞, 0].

Proof. Let us fix some ξ > 0. Denote by Hξ/2(δ) the spectral subspace of
G(δ) corresponding to the spectral interval (ξ/2,∞). Since G is continuous at δ,
there exists a point γ < λξ < δ such that

∥∥G(δ)−G(λξ)
∥∥ < ξ

4
.
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Evidently, for each x ∈ Hξ/2(δ), x 6= 0, we obtain

〈G(λξ)x, x 〉 = 〈G(δ)x, x 〉 − 〈 (G(δ)−G(λξ))x, x 〉

> ξ

∥∥x∥∥2

2
− ξ

∥∥x∥∥2

4
= ξ

∥∥x∥∥2

4
> 0.

Therefore Hξ/2(δ) is a positive subspace with respect to the indefinite scalar
product {f, g}λξ

:= 〈G(λξ) f, g 〉, f, g ∈ H. Hence,

(3.2) dim(Hξ/2(δ)) 6 dimn+(λξ) <∞.

Suppose now that some ξ > 0 belongs to σess(G(δ)). From ξ ∈ σess(G(δ)) we infer
that

dim(Hξ/2(δ)) = +∞,

contrary to (3.2).

After this preliminary step we can now return to the proof of Lemma 3.2.
Observe that both of the functions ν+ and n+ are nondecreasing on (γ, δ). By
Lemma 3.1 we obtain

lim
λ↑δ

ν+(λ) = lim
λ↑δ

[n+(λ)− n0] = lim
λ↑δ

n+(λ)− n0.

Therefore lim
λ↑δ

n+(λ) = +∞ if lim
λ↑δ

ν+(λ) = +∞. Taking into account (3.1)

and the fact that G(δ) is a bounded operator, we have proved that (i) implies (ii).
Suppose that (ii) holds and that 0 < ξ < δ. Denote by Hξ(δ) the spectral

subspace ofG(δ) corresponding to the spectral interval (ξ,+∞) and letN(ξ) be the
number of eigenvalues of G(δ) in the interval (ξ,+∞) counted according to their
multiplicities, i.e., N(ξ) = dim(Hξ(δ)). By assumption (ii) we have lim

ξ↓0
N(ξ) =

+∞. An argumentation similar to that in the proof of Proposition 3.3 shows
that due to the continuity of G at δ there exists a number δ − ξ < λξ < δ

such that n+(λξ) > N(ξ). Since n+ is a nondecreasing function, we infer that
lim
λ↑δ

n+(λ) = +∞ and lim
λ↑δ

ν+(λ) = lim
λ↑δ

[n+(λ)−n0] = +∞. Hence, (ii) implies (i).

The counterparts of the Lemmas 3.1 and 3.2 are

Lemma 3.4. Let G be an operator function which is defined on the open
interval I := (γ, δ) with −∞ < γ < δ 6 ∞. Assume that the operators G(λ) are
bounded and selfadjoint operators on a Hilbert space into itself such that

G(λ1) � G(λ2), λ1 < λ2 ∈ I.



On the discrete spectrum of some selfadjoint operator matrices 19

Suppose that the operator function G is continuous with respect to the operator
norm, and

σess(G(λ)) ⊂ (0,∞), λ ∈ I.

For λ ∈ I, we denote by ν−(λ) the total number of eigenvalues of the operator
function G|(λ, δ) counted according to their multiplicities and by n−(λ) the num-
ber of all negative eigenvalues of the operator G(λ) counted according to their
multiplicities. If n0 := min

λ∈I
n−(λ), then

ν−(λ) = n−(λ)− n0 <∞, λ ∈ I.

Lemma 3.5. Let G be an operator function as in Lemma 3.4. Assume ad-
ditionally that G is also defined and continuous at γ with respect to the operator
norm. Then the following conditions are equivalent:

(i) γ is an accumulation point of eigenvalues of G in the interval (γ, δ);
(ii) 0 is an accumulation point of negative eigenvalues of G(γ).

In addition to the conditions (a–c) we assume in the following that

(f) C is a bounded and selfadjoint operator on H2;
(g) σess(Q) 6= ∅.

Now the operator Q, defined by (2.2), is bounded on H2. We introduce the
real numbers

(3.3) α := minσess(Q), β := maxσess(Q).

Let γα be the greatest eigenvalue of A less than α or, if all eigenvalues of A
are greater or equal than α, then γα := −∞. Observe that (γα, α) ⊂ ρ(A). By
the definition of α and Proposition 2.3 it follows that

σess(W (z)) = {z − λ | λ ∈ σess(Q)} ⊂ (−∞, 0), z ∈ (γα, α).

Denote by n+(z) the number of positive eigenvalues of W (z), z ∈ (γα, α),
counted according to their multiplicities. Since the operator function W is increas-
ing on (γα, α) (W ′(z) > I, z ∈ ρ(A)∩R), n+ is a nondecreasing function. Denote
by n0,α the minimal value of n+ in the interval (γα, α), i.e.,

(3.4) n0,α := min
z∈(γα,α)

n+(z).

Proposition 3.6. Suppose that the assumptions (a–c, f–g) are fulfilled. Let
as above γα be the greatest eigenvalue of A less than α or, if all eigenvalues of



20 V. Adamyan, R. Mennicken and J. Saurer

A are greater or equal than α, then γα := −∞. Let n0,α be given by (3.4). If
γα > −∞, then

(3.5) ñ+(γα)− κ(γα) 6 n0,α 6 ñ+(γα),

where ñ+(γα) is the number of positive eigenvalues of the operator W̃γα
(γα) defined

according to (2.10) and κ(γα) is the multiplicity of γα as an eigenvalue of A. If
γα = −∞, then n0,α = 0.

Proof. Suppose that γα > −∞. According to (2.11) the operator function W
admits in a punctured neighbourhood of the eigenvalue γα of A a representation
of the form

(3.6) W (z) = W̃γα
(z) +

1
γα − z

Sγα
S∗γα

,

where W̃γα is the regular part of W at γα and rank(Sγα) 6 κ(γα). Denote by
ñ+(z) the number of positive eigenvalues of the operator W̃γα

(z) in the interval
(γα, α). Since the second term on the right hand side of (3.6) is a nonpositive
operator, we see that n+(z) 6 ñ+(z), z ∈ (γα, α). Hence,

(3.7) n0,α = min
z∈(γα,α)

n+(z) 6 min
z∈(γα,α)

ñ+(z) = ñ+(γα).

On the other hand since the rank of the second term on the right hand side of
(3.6) is less or equal than κ(γα), we obtain ñ+(z) − κ(γα) 6 n+(z), z ∈ (γα, α).
Consequently,

(3.8) ñ+(γα)− κ(γα) = min
z∈(γα,α)

ñ+(z)− κ(γα) 6 min
z∈(γα,α)

n+(z) = n0,α.

Suppose now that there are no eigenvalues of A less than α, i.e., γα = −∞. Since
A� 0, we know that

∥∥z (A− z I)−1
∥∥ 6 1, z ∈ (−∞, 0),

and, by (2.3) and (2.4),

W (z) 6 z I+
(∥∥Q∥∥+∥∥z J (A− z I)−1J∗

∥∥)I 6
(
z+
∥∥Q∥∥+∥∥J J∗∥∥)I, z ∈ (−∞, 0).

Hence, W (z) � 0 and n+(z) = 0 for z ∈ (−∞,−
∥∥Q∥∥− ∥∥J J∗∥∥).



On the discrete spectrum of some selfadjoint operator matrices 21

Theorem 3.7. Let the assumptions (a–c, f–g) be fulfilled and L := LC and
W be given by (1.12) and (2.1). Let the number α be defined by (3.3). Let us
assume that γα is the greatest eigenvalue of A less than α or, if all eigenvalues of
A are greater or equal than α, then γα := −∞. Let n0,α be defined by (3.4).

(a) Suppose that α ∈ ρ(A) and let n+(α) be the number of positive eigenvalues
of W (α) counted according to their multiplicities.

(i) If n+(α) < ∞, then the number of eigenvalues of L in the interval
(γα, α) counted according to their multiplicities is equal to n+(α)−n0,α; the number
of all eigenvalues of L in (−∞, α) counted according to their multiplicities is equal
to n+(α) provided that there are no eigenvalues of A less than α.

(ii) α is an accumulation point of the set (−∞, α)∩ σ(L) if and only if
0 is an accumulation point of the set σ(W (α)) ∩ (0,∞).

(b) Suppose that α is an eigenvalue of A of multiplicity κ(α) and let n̂+(α)
be the number of positive eigenvalues of W̃α(α) counted according to their multi-
plicities, where W̃α(α) is given by (2.10).

(i) If n̂+(α) < ∞, then the number of eigenvalues of L in (γα, α)
counted according to their multiplicities is less or equal than n̂+(α) + κ(α)− n0,α

and greater or equal than n̂+(α)− n0,α.
(ii) α is an accumulation point of the set (−∞, α)∩ σ(L) if and only if

0 is an accumulation point of the set σ(W̃α(α)) ∩ (0,∞).

Proof. In the case (a) the operator function W satisfies on (γα, α) all con-
ditions of the Lemmas 3.1 and 3.2. Applying these lemmas, Theorem 2.1 and
Proposition 3.6 yield immediately statement (a).

In the case (b) according to (2.11) the operator function W has a represen-
tation of the form

(3.9) W (z) = W̃α(z) +
1

α− z
Sα S

∗
α, z ∈ (γα, α).

Denote by n̂+(z) the number of positive eigenvalues of the operator W̃α(z) in
the interval (γα, α). Since the second term on the right hand side of (3.9) is
nonnegative on (γα, α) and since its rank is not greater than κ(α), we obtain that

(3.10) n̂+(z) 6 n+(z) 6 n̂+(z) + κ(α), z ∈ (γα, α).

As W̃α as well as W are increasing operator functions on (γα, α), it follows by
(3.10) that

(3.11) n̂+(α) 6 max
z∈(γα,α)

n+(z) 6 n̂+(α) + κ(α).
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Taking into account that W and W̃α satisfy on the interval (γα, α) the condi-
tions of Lemma 3.1 and W̃α satisfies on the interval (γα, α) also the conditions
of Lemma 3.2, we obtain by applying Theorem 2.1 and the inequality (3.11) the
desired statements (b) (i) and (ii).

The following theorem specifies conditions under which the relation (−∞, α)⊂
ρ(L) is fulfilled.

Theorem 3.8. Let the assumptions (a–c, f–g) be satisfied and L := LC , W
and H be given by (1.12), (2.1) and (1.5). Suppose that α is defined by (3.3) and
that α < minσ(A). Then the following three conditions are equivalent:

(i) L has no eigenvalues in the interval (−∞, α);
(ii) the operator W (α) is nonpositive, i.e., W (α) 6 0;
(iii) for z < α we have C − z I � 0 and

(3.12) lim
z↑α

∥∥(C − z I)−1/2H(z) (C − z I)−1/2
∥∥ 6 1.

Proof. Since by Proposition 2.3

σess(W (α)) = {α− z | z ∈ σess(Q)} ,

the conditions (i) and (ii) are equivalent by Theorem 3.7 (a) (i). As W ′(z) > I,
z ∈ ρ(A) ∩ R, the condition (ii) is equivalent to

(3.13) W (z) � 0, z ∈ (−∞, α).

Suppose that (3.13) holds. Taking into account that

H(z) = B∗(A− z I)−1B > 0, z ∈ (−∞, α),

we infer that

(3.14) C − z I = −W (z) +H(z) � 0, z ∈ (−∞, α).

Since

(3.15)
I = −(C − z I)−1/2W (z) (C − z I)−1/2

+ (C − z I)−1/2H(z) (C − z I)−1/2, z ∈ (−∞, α),

and since both terms on the right hand side of (3.15) are nonnegative, we obtain
that

0 6 (C − z I)−1/2H(z) (C − z I)−1/2 6 I, z ∈ (−∞, α),
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and consequently

(3.16)
∥∥(C − z I)−1/2H(z)(C − z I)−1/2

∥∥ 6 1, z ∈ (−∞, α).

Observe that the operator functions (C − ·I)−1 and H are increasing and
nonnegative on (−∞, α). It follows for z1 < z2 < α that

0 6 (C − z1 I)−1/2H(z1) (C − z1 I)−1/2 6 (C − z1 I)−1/2H(z2) (C − z1 I)−1/2

and

0 6 H(z2)1/2(C − z1 I)−1H(z2)1/2 6 H(z2)1/2(C − z2 I)−1H(z2)1/2.

Using the equality
∥∥X∗X

∥∥ =
∥∥XX∗

∥∥, which is valid for any bounded oper-
ator X, we conclude for z1 < z2 < α that∥∥(C − z1 I)−1/2H(z1)(C − z1 I)−1/2

∥∥
6
∥∥(C − z1 I)−1/2H(z2)1/2H(z2)1/2(C − z1 I)−1/2

∥∥
=
∥∥H(z2)1/2(C − z1 I)−1H(z2)1/2

∥∥
6
∥∥H(z2)1/2(C − z2 I)−1/2(C − z2 I)−1/2H(z2)1/2

∥∥
=
∥∥(C − z2 I)−1/2H(z2)(C − z2 I)−1/2

∥∥ 6 1.

Since the function

ϕ(z) :=
∥∥(C − z I)−1/2H(z)(C − z I)−1/2

∥∥, z ∈ (−∞, α),

is nondecreasing, we have proved that

ϕ(z) 6 lim
z′↑α

ϕ(z′) 6 1, z ∈ (−∞, α).

Hence, (ii) implies (iii).

If (iii) holds, a similar argumentation as before yields that the function ϕ

defined above is nondecreasing. It follows that

0 6 (C − z I)−1/2H(z) (C − z I)−1/2 6 I, z ∈ (−∞, α),

i.e., H(z) 6 C − z I, z ∈ (−∞, α). Hence, W (α) = −C + α I +H(α) 6 0.



24 V. Adamyan, R. Mennicken and J. Saurer

The discrete spectrum of L in the right neighbourhood of the upper bound β
of σess(Q) can be investigated in a quite similar way using the Lemmas 3.4 and 3.5.

Let δβ be the smallest eigenvalue of A greater than β or, if all eigenvalues of
A are less or equal than β, then δβ := +∞.

Observe that (β, δβ) ⊂ ρ(A). By the definition of β and Proposition 2.3 it
follows that

σess(W (z)) = {z − λ | λ ∈ σess(Q)} ⊂ (0,+∞), z ∈ (β, δβ).

Denote by n−(z) the number of negative eigenvalues of W (z), z ∈ (β, δβ),
counted according to their multiplicities. SinceW is increasing on (β, δβ) (W ′(z) >

I, z ∈ ρ(A) ∩ R), n− is a nondecreasing function. Denote by n0,β the minimal
value of n− in the interval (β, δβ), i.e.,

(3.17) n0,β := min
z∈(β,δβ)

n−(z).

Proposition 3.9. Suppose that the assumptions (a–c, f–g) are satisfied. Let
δβ be the smallest eigenvalue of A greater than β or, if all eigenvalues of A are
less or equal than β, then δβ := +∞. Let n0,β be given by (3.17). If δβ < +∞,
then

(3.18) ñ−(δβ)− κ(δβ) 6 n0,β 6 ñ−(δβ),

where ñ−(δβ) is the number of negative eigenvalues of the operator W̃δβ
(δβ) defined

according to (2.10) and κ(δβ) is the multiplicity of δβ as an eigenvalue of A.

Theorem 3.10. Let the assumptions (a–c, f–g) be fulfilled and L := LC and
W be given by (1.12) and (2.1). Let the number β be defined by (3.3). Assume
that δβ is the smallest eigenvalue of A greater than β or, if all eigenvalues of A
are less or equal than β, then δβ := +∞. Let n0,β be defined by (3.17).

(a) Suppose that β ∈ ρ(A) and let n−(β) be the number of negative eigenval-
ues of W (β) counted according to their multiplicities.

(i) If n−(β) < ∞, then the number of eigenvalues of L in the interval
(β, δβ) counted according to their multiplicities is equal to n−(β)− n0,β.

(ii) β is an accumulation point of the set (β,+∞)∩ σ(L) if and only if
0 is an accumulation point of the set σ(W (β)) ∩ (−∞, 0).

(b) Suppose that β is an eigenvalue of A of multiplicity κ(β) and let n̂−(β)
be the number of negative eigenvalues of W̃β(β) counted according to their multi-
plicities, where W̃β(β) is given by (2.10).
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(i) If n̂−(β) <∞, then the number of eigenvalues of L in (β, δβ) counted
according to their multiplicities is less or equal than n̂−(β)+κ(β)−n0,β and greater
or equal than n̂−(β)− n0,β.

(ii) β is an accumulation point of the set (β,∞)∩ σ(L) if and only if 0
is an accumulation point of the set σ(W̃β(β)) ∩ (−∞, 0).

The following theorem deals with accumulation points of isolated eigenvalues
of L inside the interval (α, β).

Theorem 3.11. Suppose that the assumptions (a–c, f–g) are satisfied and
that L := LC and W are given by (1.12) and (2.1). Let the numbers α and β be
defined by (3.3). Assume that α 6 τ < ω 6 β and (τ, ω) ∩ σess(Q) = ∅. Suppose
that ω ∈ ρ(A) (τ ∈ ρ(A)). Then ω (τ) is an accumulation point of σ(L)∩ (τ, ω) if
and only if 0 is an accumulation point of positive (negative) eigenvalues of W (ω)
(W (τ)).

If ω ∈ σ(A) (τ ∈ σ(A)), the statements remain true with W̃ω(ω) (W̃τ (τ))
instead of W (ω) (W (τ)), where W̃ω(ω) (W̃τ (τ)) is defined by (2.10).

Proof. We show the theorem only for the point ω. The proof for the point τ
can be obtained in a similar way using Lemma 3.5.

Suppose first that [τ, ω] ⊂ ρ(A). Since (τ, ω) ∩ σess(Q) = ∅ and

σess(W (z)) = {z − λ | λ ∈ σess(Q)} , z ∈ [τ, ω],

we obtain that σess(W (z))∩ (z−ω, z− τ) = ∅ for z ∈ [τ, ω]. Therefore σ(W (ω))∩
(0, ω − τ) may contain only isolated eigenvalues of W (ω) of finite multiplicity.
Let ξ ∈ (0, ω − τ) ∩ ρ(W (ω)). By the continuity of W in [τ, ω] with respect to
the operator norm there exists a number γω ∈ (τ, ω) such that 0 < ξ < γω − τ

and ξ ∈
⋂

z∈[γω,ω]

ρ(W (z)). Observe that by our choice (0, ξ) ⊂ (z − ω, z − τ) for

z ∈ [γω, ω]. Hence, σess(W (z)) ∩ (0, ξ) = ∅ for z ∈ [γω, ω]. Let us introduce the
analytic operator function

(3.19) Gω(z) := W (z) (ξ I −W (z))−1, z ∈ [γω, ω].

It is easy to see that

0 /∈ σess(Gω(z)), σ(Gω(z)) =
{

µ

ξ − µ

∣∣∣µ ∈ σ(W (z))
}
, z ∈ [γω, ω].

Since the transformation

ϕ(µ) =
µ

ξ − µ
, µ ∈ R \ {ξ} ,
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maps the interval (0, ξ) onto (0,+∞) and σ(W (z))∩(0, ξ), z ∈ (γω, ω), consists only
of a finite number of eigenvalues of finite multiplicity, we conclude that σ(Gω(z))∩
(0,+∞) consists only of a finite number of eigenvalues of finite multiplicity, i.e.,
σess(Gω(z)) ⊂ (−∞, 0), z ∈ (γω, ω). Furthermore, for z ∈ (γω, ω),

G′ω(z) = ξ (ξ I −W (z))−1W ′(z) (ξ I −W (z))−1 > ξ (ξ I −W (z))−2 � 0,

i.e., Gω is an increasing operator function on (γω, ω). Thus the operator function
Gω satisfies all conditions of Lemma 3.2. Therefore ω is an accumulation point of
eigenvalues of Gω if and only if 0 is an accumulation point of positive eigenvalues
of Gω(ω). But by (3.19) positive eigenvalues of Gω(ω) accumulate at the point 0
if and only if the eigenvalues of W (ω) in the interval (0, ξ) accumulate at the point
0. Furthermore, the eigenvalues of Gω in (γω, ω) coincide with the eigenvalues of
W and with the corresponding eigenvalues of L in (γω, ω).

The existence of eigenvalues of A inside of (τ, ω) involves no trouble, because
in the previous argumentation the point γω may be taken greater than the maximal
eigenvalue of A in (τ, ω).

Suppose now that ω ∈ σ(A). This eigenvalue may be shifted to the right or
may be removed at all without any changes of other eigenvalues and corresponding
eigenvectors by a finite dimensional perturbation of A and consequently of L.

The corresponding operator function Wω constructed with respect to the
perturbated operator Lω (as W was introduced with respect to L) is a finite
dimensional perturbation of W̃ω. A selfadjoint perturbation of rank κ(ω) can
reduce the number of eigenvalues of L in (γω, ω) at most by κ(ω) and the same is
true for the number of positive eigenvalues of W̃ω in (0, ξ). Therefore the statement
of the theorem for Lω and Wω remains true with Lω replaced by L and Wω(ω)
replaced by W̃ω(ω), defined according to (2.10).

The following example shows that α and β, respectively, can be or not be
accumulation points of σ(L) ∩ (−∞, α) and σ(L) ∩ (β,+∞), respectively.

Example 3.12. Suppose that {ej | j ∈ N} is an orthonormal basis of the
Hilbert space H1 = H2. Let us consider the selfadjoint operator

Ax :=
∞∑

j=1

j 〈x, ej 〉 ej , x ∈ D(A),

where

D(A) :=

{
x ∈ H1

∣∣∣∣∣
∞∑

j=1

j2
∣∣ 〈x, ej 〉

∣∣2 <∞

}
.
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A is strictly positive and A−1 is compact. The spectrum of A is given by the set
of natural numbers {j | j ∈ N}. Assume that a 6 1 and b > 0, and that

B := b1/2A1/2, C := a I.

The corresponding operator function W , defined by (2.1), is given by

W (z) = −Q+ z I + V (z), z ∈ ρ(A),

where

Q := (a− b) I, V (z) := b z (A− z I)−1 = b z
∞∑

j=1

1
j − z

〈 ·, ej 〉 ej , z ∈ ρ(A).

We have
σess(W ) = σess(Q) = {a− b} , α = β = a− b.

Furthermore, the real numbers

λ±j :=
j + a

2
±
√(j − a

2

)2

+ b j, j ∈ N,

which are (for fixed j) solutions of the quadratic equation

z2 − (j + a) z + j (a− b) = 0,

are eigenvalues of W for the eigenvectors ej , j ∈ N. An easy calculation gives

λ+
j > j, j ∈ N,

and
λ−j =

j

λ+
j

· (a− b) =
a− b

j+a
2 j +

√
( j−a

2 j )2 + b
j

, j ∈ N.

Observe that

λ−j < a− b, j ∈ N, if a− b > 0,

λ−j > a− b, j ∈ N, if a− b < 0,

and lim
j→∞

λ−j = a − b. If a = b, then all eigenvalues λ−j , j ∈ N, merge into one

isolated eigenvalue of W of infinite multiplicity, which is equal to zero.

Taking orthogonal sums of operators as in Example 3.12 with different num-
bers a and b one can easily construct examples of selfadjoint operator matrices
with gaps inside the essential spectrum such that the edges of these gaps can be
or not be accumulation points of eigenvalues of L situated inside of the interval
(α, β).
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4. EXAMPLE

In this section we will apply the results to an example from ordinary differential
equations. First we describe the problem and show that the assumptions (a–c, f)
are fulfilled.

Let n be a natural number and I be the interval [0, 1]. Let c be a function
on I with values in the set of n×n-matrices with complex coefficients, b = (bj)n

j=1

a vector function on I with values in Cn, and p, w be real-valued functions on
I. We assume that all these functions are continuous. Further, suppose that c is
hermitian, i.e.,

c(x)∗ = c(x), x ∈ I,

bj(x) 6= 0, x ∈ I, j = 1, . . . , n, b, p, w are continuously differentiable and

(4.1) p0 := min
x∈I

p(x) > 0, w0 := min
x∈I

w(x) > 0.

For k ∈ N we introduce the Hilbert space

L2
w(I,Ck) :=

{
f : I → Ck

∣∣∣ ∫
I

∣∣ f(x)
∣∣2w(x) dx <∞

}
,

endowed with the scalar product

〈 f, g 〉w :=
∫
I

g(x)∗f(x)w(x) dx

and the corresponding norm

∥∥f∥∥
w

:=

(∫
I

∣∣ f(x)
∣∣2w(x) dx

)1/2

.

Furthermore, for k, l ∈ N we define

H2
l,w(I,Ck) :=

{
f ∈ L2

w

(
I,Ck

) ∣∣ f, f ′, . . . , f (l−1) absolutely continuous,

f (l) ∈ L2
w

(
I,Ck

)}
.

By H1 and H2 we denote the Hilbert space L2
w(I,C) and L2

w(I,Cn), respectively,
and by H the Hilbert space H1 × H2. D denotes the differential operator d/dx.



On the discrete spectrum of some selfadjoint operator matrices 29

Define the operator A in H1, the operator B from H2 into H1 and the operator C
in H2 in the following way:

(4.2)
D(A) := Ḣ2

2,w(I,C) :=
{
η ∈ H2

2,w(I,C) | η(0) = η(1) = 0
}
,

A := − 1
w
Dw pD,

(4.3)
D(B) := Ḣ2

1,w(I,Cn) :=
{
y ∈ H2

1,w(I,Cn) | y(0) = y(1) = 0
}
,

B := −i
1
w
Dw b∗,

and C is the operator of multiplication with the matrix valued function c on H2.
It is well known that A is a selfadjoint, strictly positive Sturm–Liouville

operator in H1. The spectrum of A consists of a strictly increasing sequence
(µj)∞j=1 of infinitely many simple, positive eigenvalues and for z ∈ C\{µj | j ∈ IN}
the operator (A− z I)−1 is compact. In particular, A−1 is compact.

By {ηj | j ∈ N} we denote an orthonormal basis of eigenfunctions of A in H1,
i.e.,

(4.4) − 1
w
Dw pD ηj = µj ηj , ηj(0) = ηj(1) = 0, ηj 6= 0, j ∈ N.

Observe that

(4.5) A−1f =
∞∑

j=1

µ−1
j cj(f) ηj , f ∈ H1,

and

(4.6) A−1/2f =
∞∑

j=1

µ
−1/2
j cj(f) ηj , f ∈ H1,

where
cj(f) := 〈 f, ηj 〉w =

∫
I

f(x) ηj(x)w(x) dx, j ∈ N.

Evidently,

(cj(f))∞j=1 ∈ `2(C) :=

{
(cj)∞j=1 ∈ CN

∣∣∣ ∞∑
j=1

∣∣ cj ∣∣2 <∞

}
.

Lemma 4.1. We have:

D(A1/2) ⊂ H2
1,w(I,C).
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Proof. In view of the relation (4.6) we infer that

D(A1/2) =

{
f ∈ H1

∣∣∣ ∃ (cj)∞j=1 ∈ `2(C) : f =
∞∑

j=1

µ
−1/2
j cj ηj

}
.

By D̃ we denote the differential operator in H1, which is defined by

D̃f := f ′, D(D) := H2
1,w(I,C).

It is well known that D̃ is a closed operator. Let (cj)∞j=1 ∈ `2(C) be fixed. Since

fk :=
k∑

j=1

µ
−1/2
j cj ηj ∈ H2

1,w(I,C), k ∈ N,

and

(4.7) D̃ fk =
k∑

j=1

µ
−1/2
j cj η

′
j , k ∈ N,

it is sufficient to prove that the series

∞∑
j=1

µ
−1/2
j cj η

′
j

converges in H1. It follows immediately from (4.4) that the set{
µ
−1/2
j η′j | j ∈ N

}
is an orthonormal system in L2

wp(I,C). But by assumption (4.1) the metrics on

L2
wp(I,C) and L2

w(I,C) are equivalent. Hence, the lemma is proved.

The operator B is densely defined and closable. The adjoint operator B∗ of

B is given by

(4.8) B∗ = −i bD, D(B∗) = H2
1,w(I,C).

An immediate consequence of Lemma 4.1 is
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Lemma 4.2. We have:

D(A1/2) ⊂ D(B∗).

Finally, the operator C is a bounded and selfadjoint operator on H2.
We have proved that the operators A, B and C fulfill the assumptions (a–c,

f). Let us consider the symmetric operator L0, which is defined by the operator
matrix

L0 =
(
− 1

w Dw pD −i 1
w Dw b∗

−i bD c

)
on Ḣ2

2,w(I,C)× Ḣ2
1,w(I,Cn). Taking into account that C is a bounded and selfad-

joint operator we infer that L0 is essentially selfadjoint, i.e., L0 =: L is selfadjoint.
The selfadjoint operator L (= LC) and the operator function W := WC are given
according to Theorem 1.4. W is defined on ρ(A) and is given by

W (z) = −C + z I +B∗(A− z I)−1B,

where

(4.9)
(
(B∗(A− z I)−1B) y

)
(x) = −b(x) d

dx

∫
I

Gz(x, ξ) (w 〈 y, b 〉)′(ξ) dξ.

The function

Gz(x, ξ) :=
∞∑

j=1

1
µj − z

ηj(x) ηj(ξ), x, ξ ∈ I, z ∈ ρ(A),

is the Green function of the Sturm–Liouville operator A, i.e., Gz is the kernel of
the compact operator (A− z I)−1. Recall that

p(ξ)w(ξ)
(
∂Gz(x, ξ)

∂x

∣∣∣
x=ξ−0

− ∂Gz(x, ξ)
∂x

∣∣∣
x=ξ+0

)
= 1, ξ ∈ (0, 1).

The function Gz(·, ξ) satisfies (4.4) everywhere except x = ξ. Let us define

ϕ(x) :=

x∫
0

ds
w(s) p(s)

, ψ(x) :=

1∫
x

ds
w(s) p(s)

, x ∈ I,

and

ε := ψ(0)−1 =

( 1∫
0

ds
w(s) p(s)

)−1

.
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Obviously, Aϕ = Aψ = 0 and ϕ(0) = 0, ψ(1) = 0. It is well known that

G0(x, ξ) =
{
εϕ(x)ψ(ξ), 0 6 x < ξ 6 1,
εψ(x)ϕ(ξ), 0 6 ξ < x 6 1.

On the other hand we have

(4.10) G0(x, ξ) =
∞∑

j=1

µ−1
j ηj(x) ηj(ξ), x, ξ ∈ I.

A straightforward calculation yields for any absolutely continuous function
g that

(4.11)

d
dx

∫
I

G0(x, ξ) g′(ξ) dξ

= ε
d
dx

(
ψ(x)

x∫
0

ϕ(ξ)g′(ξ) dξ

)
+ ε

d
dx

(
ϕ(x)

1∫
x

ψ(ξ)g′(ξ) dξ

)

= −ε d
dx

(
ψ(x)

x∫
0

ϕ′(ξ)g(ξ) dξ

)
− ε

d
dx

(
ϕ(x)

1∫
x

ψ′(ξ)g(ξ) dξ

)

= −ε
(
ψ(x)ϕ′(x)− ϕ(x)ψ′(x)

)
g(x) +

ε

w(x) p(x)

1∫
0

g(ξ)
p(ξ)w(ξ)

dξ

= − 1
p(x)w(x)

g(x) +
ε

w(x) p(x)

1∫
0

g(ξ)
p(ξ)w(ξ)

dξ.

It follows that

W (z) = −C + z I +B∗A−1B + z B∗A−1(A− z I)−1B

has a representation of the form

(4.12)

(W (z) y)(x) = −
(
c(x)y(x)− 1

p(x)
〈 y(x), b(x) 〉b(x)

)
+ z y(x) + b(x)

1∫
0

Kz(x, ξ)〈 y(ξ), b(ξ) 〉w(ξ) dξ

− ε

w(x) p(x)

1∫
0

1
p(ξ)

〈 y(ξ), b(ξ) 〉dξ b(x),
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where

Kz(x, ξ) :=
∂

∂x

∂

∂ξ
[Gz(x, ξ)−G0(x, ξ)] =

∞∑
j=1

z

µj − z

1
µj

η′j(x) η′j(ξ).

Let us denote by V the operator function, which is defined on ρ(A) and is
given by

(V (z) y)(x) := b(x)

1∫
0

Kz(x, ξ) 〈 y(ξ), b(ξ) 〉w(ξ) dξ, y ∈ L2
w(I,Cn).

The operator V (z) is a compact operator on L2
w(I,Cn). If z 6 0, then

V (z) 6 0. If 0 6 z < µ1, then V (z) > 0. If µs < z < µs+1 for some s ∈ N, then
V (z) has at most a finite number of negative eigenvalues counted according to their
multiplicities. For each s ∈ N the regular part of V at the point µs has at most a
finite number of negative eigenvalues counted according to their multiplicities. The
last term in (4.12) defines a nonpositive one-dimensional operator on L2

w(I,Cn).
Let us denote by Q the multiplication operator on L2

w(I,Cn) with respect to
the matrix function (Qjk)n

j,k=1, which is defined by

(4.13) Qjk(x) := cjk(x)− 1
p(x)

bj(x) bk(x), x ∈ I, j, k = 1, . . . , n,

where c =: (cjk)n
j,k=1, b =: (bj)n

j=1. Furthermore, let us define

α := minσess(Q), β := maxσess(Q).

Remember that by Theorem 2.4

σess(Q) = σess(L).

An immediate consequence of Theorems 3.10 and 3.8 is

Theorem 4.3. (i) If β > 0, then β is not an accumulation point of eigen-
values of L greater than β.

(ii) If α 6 0, then the operator L has no eigenvalues less than α.

Proof. (i) If β > 0, it follows from (4.12) and above mentioned properties of
V (z) that the operator W (β) or the regular part of W at the point β has only
a finite number of negative eigenvalues counted according to their multiplicities.
Hence, by Theorem 3.10, the point β is not an accumulation point of the set
σ(L) ∩ (β,+∞).

(ii) The second statement is an immediate consequence of Theorem 3.8.
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Let
λ1(x) 6 λ2(x) 6 · · · 6 λn(x), x ∈ I,

be the eigenvalues of Q(x), x ∈ I, repeated according to their multiplicities. De-
note

ωj := min
x∈I

λj(x), τj := max
x∈I

λj(x), j = 1, . . . , n.

Evidently, (τj , ωj+1) ∩ σess(L) = ∅ if τj < ωj+1 for some j ∈ {1, . . . , n− 1}.

Theorem 4.4. If τj < ωj+1 6 0 for some j ∈ {1, . . . , n− 1}, then ωj+1 is
not an accumulation point of the set σ(L) ∩ (−∞, ωj+1).

We start the proof with the following

Proposition 4.5. Let M be a selfadjoint operator and T be a nonpositive
compact operator in the Hilbert space H. Suppose that for some ∆ > 0 we have
σ(M) ∩ (0,∆) = ∅. Then 0 is not an accumulation point of the set σ(M + T) ∩
(0,∆).

Proof. Denote by H− and H+ the spectral subspaces of M corresponding
to the intervals (−∞, 0] and [∆,+∞), respectively, and let P− and P+ be the
orthogonal projections on H− and H+, respectively. Put

M± := P±M|H±, T± := P±T|H±, Γ := P+T|H−.

Considering H as the product space of H− and H+ the operator M + T has a
representation of the form

M + T =
(
M+ + T+ Γ

Γ∗ M− + T−

)
.

Since σ(M+) ⊂ [∆,+∞) and T+ is a compact operator, there are no accumulation
points of σ(M+ + T+) in (−∞,∆/2). It follows that σ(M+ + T+) ∩ (−∞,∆/2)
contains at most a finite number of eigenvalues of M+ + T+ of finite multiplicity.
Remove all such eigenvalues back to the interval [∆,+∞) by a finite dimensional
perturbation of M+ +T+ and denote by M̃+ the perturbated operator obtained in
this way. Applying a similar argumentation as in Section 1 and Section 2 of this
paper, it follows immediately that the spectrum of the operator

M̃ :=
(
M̃+ Γ
Γ∗ M− + T−

)
in (0,∆/2) coincides with the spectrum of the operator function

U(z) := (z I −M− − T−) + Γ∗(M̃+ − z I)−1Γ
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in (0,∆/2). By our assumption M− and M− + T− are nonpositive operators and
by construction σ(M̃+) ⊂ (∆/2,+∞). Hence, U(z) � 0 for z ∈ (0,∆/2) and
(0,∆/2) ⊂ ρ(M̃). Taking into account that

rank(M̃− (M + T)) < +∞,

we obtain that the set σ(M + T) ∩ (0,∆/2) is empty or finite.

Now we can continue with the proof of Theorem 4.4.
Consider the operator W (ωj+1) using the representation (4.12). By the as-

sumptions the sum of the first two terms on the right hand side of (4.12) with
z = ωj+1 forms a multiplication operator on a continuous operator matrix, the
spectrum of which does not intersect (0, ωj+1 − τj). The second two terms on the
right hand side of (4.12) with z = ωj+1 are nonpositive compact operators. Hence,
by Proposition 4.5 zero is not an accumulation point of σ(W (ωj+1)) ∩ (0,+∞).
Theorem 3.11 completes the proof.

We leave to the reader to formulate and prove the corresponding theorem for
τj as a possible accumulation point of σ(L) ∩ (τj ,+∞).

Let us now consider the more general case, when the Sturm-Liouville operator
is given by

(4.14) Aq := − 1
w
Dw pD + q I = A+ q I

on
D(Aq) := Ḣ2

2,w(I) :=
{
η ∈ H2

2,w(I,C) | η(0) = η(1) = 0
}
,

where q : I → R is a continuous function and

q0 := min
x∈I

q(x) > 0.

The operator Aq is a selfadjoint, strictly positive operator in H1 and A−1
q is com-

pact.

Lemma 4.6. Suppose that D is a selfadjoint, strictly positive operator in the
Hilbert space H. Then the domain of the square root of D is given by

D(D1/2) = {x ∈ H | ∃ (xn)∞n=1 ⊂ D(D) : xn → x, n→∞;

〈D(xn − xm), xn − xm 〉 → 0, n,m→∞}.

Proof. See [13], Section 4.4.3, p. 253.
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An immediate consequence of Lemma 4.6 is

D(A1/2
q ) = D(A1/2) ⊂ D(B∗).

Hence, the operators Aq, B and C fulfill the assumptions (a–c, f). Let us denote
by Lq the corresponding selfadjoint operator matrix and by Wq the corresponding
operator function. Let us define

q1 := max
x∈I

q(x).

For the subsequent considerations we need the following well known

Lemma 4.7. For selfadjoint operators U , V with D(U) = D(V ) the relation
U > V � 0 implies V −1 > U−1 > 0.

Proof. By our assumptions both operators U and V have a bounded inverse.
From U > V > 0 it follows that I > U−1/2V U−1/2 > 0, where U−1/2V U−1/2 is
densely defined, since its domain is given by R(U1/2|D(U)), U1/2 is surjective and
D(U) is a core for U1/2. Observe that V 1/2U−1/2 is bounded and

1 >
∥∥U−1/2V U−1/2

∥∥ =
∥∥(V 1/2U−1/2)∗(V 1/2U−1/2)

∥∥ =
∥∥V 1/2U−1V 1/2

∥∥.
Since V 1/2U−1 V 1/2 > 0, we conclude that

I > V 1/2U−1 V 1/2.

Hence, V −1 > U−1 > 0.

Theorem 4.8. If β > q1, then β is not an accumulation point of σ(Lq) ∩
(β,∞).

Proof. Let us consider at first the case when q ≡ q1 (6 β) is constant. In this
case the operator function Wq1 is obtained by substituting the kernel Kz(x, ξ) in
the representation (4.12) of W by the kernel

Kq1,z(x, ξ) :=
∂

∂x

∂

∂ξ
[Gz−q1(x, ξ)−G0(x, ξ)] =

∞∑
j=1

z − q1
µj − (z − q1)

1
µj
η′j(x) η′j(ξ).

For z > q1 the corresponding integral operator Vq1(z) or the regular part of Vq1

at the point β has (as in the case q ≡ q1 = 0) only a finite number of negative
eigenvalues counted according to their multiplicities. Hence, in the case β > q1
the operator Wq1(β) or the regular part of Wq1 at the point β has only a finite
number of negative eigenvalues counted according to their multiplicities.
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In the general case the operator function Wq has a representation of the form

(4.15)

(Wq(z) y)(x)

= (Wq1(z) y)(x)− b(x)
d
dx

∫
I

(
Gq,z(x, ξ)−Gz−q1(x, ξ)

)
(w 〈 y, b 〉)′(ξ) dξ,

where Gq,z(x, ξ) denotes the Green function of the Sturm-Liouville operator Aq.
Since

A+ q1 I > Aq � 0

in L2
w(I,Cn), it follows by Lemma 4.7 that the integral operator with the kernel

Gq,z(x, ξ) is (for real z) greater or equal than the integral operator with the kernel
Gz−q1(x, ξ). Consequently, the second term on the right-hand side of (4.15) defines
a nonnegative operator in L2

w(I,Cn). Thus, if the operator Wq1(β) or the regular
part of Wq1 at the point β has only a finite number of negative eigenvalues counted
according to their multiplicities, the same is true for the operator Wq(β) or the
regular part of Wq at the point β. By Theorem 3.10 the assertion follows.

Theorem 4.9. If α 6 q0, then the operator Lq has no eigenvalues less
than α.

Proof. We use the same trick as in the proof before. Let us consider at
first the case when q ≡ q0 is constant. In this case the operator function Wq0 is
obtained by substituting the kernel Kz(x, ξ) in the representation (4.12) of W by
the kernel

Kq0,z(x, ξ) :=
∞∑

j=1

z − q0
µj − (z − q0)

1
µj

η′j(x) η′j(ξ).

If α 6 q0, then the corresponding operator Wq0(α) is nonpositive.
Let us now consider the general case. In view of the definition of q0 the

operator function Wq has a representation of the form

(4.16)

(Wq(z) y)(x)

= (Wq0(z) y)(x)− b(x)
d
dx

∫
I

(Gq,z(x, ξ)−Gz−q0(x, ξ)) (w 〈 y, b 〉)′(ξ) dξ,

where Gq,z(x, ξ) denotes the Green function of the Sturm-Liouville operator Aq.
Since

0 � A+ q0 I 6 Aq

in L2
w(I,Cn), it follows from Lemma 4.7 that the second term on the right-hand

side of (4.16) defines a nonpositive operator in L2
w(I,Cn). Hence, all terms in the

representation of Wq(α) are nonpositive operators in L2
w(I,Cn), and Wq(α) 6 0.

By Theorem 3.8 the assertion follows.
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With a slight modification the previous argumentation can be used to prove
the following

Theorem 4.10. If τj < ωj+1 and ωj+1 6 q0 for some j ∈ {1, . . . , n− 1},
then ωj+1 is not an accumulation point of the set σ(Lq) ∩ (−∞, ωj+1).

Suppose in addition that the components of b and c are also continuously
differentiable and for simplicity that the matrix function c is diagonal, i.e., cjk =
λj δjk, j, k = 1, . . . , n.

As in [3] one can verify that under these assumptions a point z0 ∈ R is an
isolated eigenvalue of Lq if and only if z0 is an eigenvalue of the Sturm-Liouville
boundary eigenvalue problem

(4.17)
− 1
w(x)

d
dx

w(x) g(x, z)
d
dx

η(x) + q(x) η(x) = z η(x),

η(0) = η(1) = 0

with

(4.18) g(x, z) = p(x) +
n∑

j=1

∣∣ bj(x) ∣∣2
z − λj(x)

.

Evidently, each eigenvalue problem for the Sturm-Liouville system (4.17)
with g having a representation of the form (4.18), continuously differentiable
functions w, p, bj , λj , j = 1, . . . , n, a continuous function q, p(x) > p0 > 0,
w(x) > w0 > 0, λ1(x) 6 · · · 6 λn(x), x ∈ I, can be transformed to an eigenvalue
problem for a selfadjoint operator matrix Lq. The results obtained above can be
summarized in the following

Theorem 4.11. Suppose that g admits a representation of the form (4.18),
w, p, bj, λj, j = 1, . . . , n, are continuously differentiable functions, q is real-valued
and continuous, p(x) > p0 > 0, w(x) > w0 > 0, x ∈ I. For each x ∈ I the rational
function g(x, ·) has only real roots µ1(x) 6 µ2(x) 6 · · · 6 µn(x). Put ωj :=
min
x∈I

µj(x), τj := max
x∈I

µj(x), j = 1, . . . , n, q0 := min
x∈I

q(x) and q1 := max
x∈I

q(x). If

ω1 6 q0, then there are no eigenvalues of the boundary eigenvalue problem (4.17)
less than ω1. If τj < ωj+1 and ωj+1 6 q0 for some j ∈ {1, . . . , n− 1}, then the
eigenvalues of the problem (4.17) in the interval (τj , ωj+1) do not accumulate at
ωj+1. If τj < ωj+1 and τj > q1 for some j ∈ {1, . . . , n− 1}, then τj is not an
accumulation point of eigenvalues of the problem (4.17) greater than τj. Finally, if
τn > q1, then τn is not an accumulation point of eigenvalues of the problem (4.17)
greater than τn.



On the discrete spectrum of some selfadjoint operator matrices 39

Let us now apply the results to a problem occuring in magnetohydrodynam-
ics.

The oscillations of a hot compressible gravitating plasma layer in an ambient
magnetic field are described by boundary eigenvalue problems of the form

(4.19) LP ξ = λ ξ,

where ξ is the displacement vector and LP is the differential operator given by ρ−1
0 D ρ0 (v2

a+v2
s) D+k2 v2

a (ρ−1
0 D ρ0 (v2

a+v2
s)+i g) k⊥ (ρ−1

0 D ρ0 v2
s+i g) k‖

k⊥ ( (v2
a+v2

s) D−i g) k2 v2
a+k2

⊥ v2
s k⊥ k‖ v2

s

k‖ (v2
s D−i g) k⊥ k‖ v2

s k2
‖ v2

s

 ,

see [10], Chapter 7.3. Here D denotes the differential operator −i d
dx , ρ0(x) the

equilibrium density of the plasma, va(x) the Alfvén speed, vs(x) the sound speed,
k⊥(x) and k‖(x) are the coordinates of the wave vector k(x) with respect to the
field allied orthonormal bases, k(x) is the length of the vector k(x) and g is the
gravitational constant.

The boundary value problem (4.19) is considered on the interval [0, 1]. In
the physical literature usually the first component of the displacement vector ξ is
supposed to fulfill Dirichlet boundary conditions at x = 0 and x = 1.

Let us neglect the gravitational effects, i.e., g = 0. Then the operator LP is
of the form considered in this section with

p(x) = v2
a(x) + v2

s(x),

q(x) = k2(x) v2
a(x) = (k2

⊥(x) + k2
‖(x)) v

2
a(x),

b(x) =
(
k⊥(x) p(x)
k‖(x) v2

s(x)

)
and

Q(x) =

 k2
‖(x) v

2
a(x) 0

0 k2
‖(x)

v2
s(x) v2

a(x)
v2

s(x) + v2
a(x)

 ,

see [4]. Evidently,

(4.20) βP = supσ(Q) = max
x∈I

k2
‖(x) v

2
a(x) 6 max

x∈I
(k2
⊥(x) + k2

‖(x)) v
2
a(x) =: q1,

and equality in (4.20) is only possible in the case when k2
‖(x0) v2

a(x0) = βP implies
k⊥(x0) = 0.
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Theorem 4.12. Let the differential operator LP be given by (4.19) and βP

be defined by (4.20). If g = 0 and βP = q1, then βP is not an accumulation point
of eigenvalues of LP greater than βP .

Theorem 4.12 is a direct consequence of Theorem 4.8.
On the other hand,

(4.21)
αP = inf σ(Q) = min

x∈I
k2
‖(x)

v2
s(x) v2

a(x)
v2

s(x) + v2
a(x)

6 min
x∈I

(k2
⊥(x) + k2

‖(x)) v
2
a(x) =: q0,

and as a direct consequence of Theorem 4.9 we obtain

Theorem 4.13. Let the differential operator LP be given by (4.19) and αP

be defined by (4.21). If g = 0, then

αP = inf σess(LP ) = inf σ(LP ),

i.e., there are no eigenvalues of LP less than αP .

Finally, Theorem 4.10 yields

Theorem 4.14. Let the differential operator LP be given by (4.19). If g = 0
and

max
x∈I

k2
‖(x)

v2
s(x) v2

a(x)
v2

s(x) + v2
a(x)

< min
x∈I

k2
‖(x) v

2
a(x) =: ωP ,

then ωP is not an accumulation point of eigenvalues of LP less than ωP .
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